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Model Simulation
of Major Climate Features

Although a typical use of atmosphere-ocean general circulation model (AOGCM) output for cli-
mate impact assessment focuses on one particular region such as a river basin or one of the 50
United States, knowing model simulation overall accuracy on continental to global scales is im-
portant. Fidelity in simulating climate on the largest scales is a necessary condition for credible
predictions of future climate on smaller scales. Model developers devote great effort to assess-
ing the level of agreement between simulated and observed large-scale climate, both for the pres-
ent day and for the two centuries since the Industrial Era began. Unlike physical theories of such
fundamentally simple systems as the hydrogen atom,AOGCMs cannot promise precise accuracy
for every simulated variable on all relevant space and time scales. Nevertheless, before applying a
model to a practical question, users should demand reasonable overall agreement with observa-
tions, with the definition of “reasonable” in part subjective and dependent on the problem at

hand. Here we provide an overview of how well modern AOGCMs satisfy this criterion.

5.1 MEAN SURFACE
TEMPERATURE AND
PRECIPITATION

Simulations of monthly near-surface air tem-
perature and precipitation provide a standard
starting point for model evaluation since these
fields are central to many applications. The two
fields also illustrate the difficulty in designing
appropriate metrics for measuring model quality.

By most measures, modern AOGCMs simulate
the basic structure of monthly mean near-sur-
face temperatures quite well. The globally aver-
aged annual mean value generally lies within
the observed range (~286 to 287 K) of modern
and preindustrial values; this agreement, how-
ever, is in part a consequence of the “final tun-

ing” of the models’ energy balance as described
in Chapter 2 and by itself is not a stringent test
of model quality. More relevant is consideration
of space and time variations about the global an-
nual mean (including the seasonal cycle). The
overall correlation pattern between simulations
and observations typically is 95 to 98%, and
variation magnitudes typically agree within
+25% (Covey et al. 2003). This level of success
has been retained in the latest generation of
models that allow ocean and atmosphere to ex-
change heat and water without artificial adjust-
ments (Randall et al. 2007). Nevertheless, as
shown below, local errors in surface tempera-
ture that are clearly outside the bounds of ob-
servational uncertainty persist in the latest
generation of models.

51




The U.S. Climate Change Science Program

52

AOGCM simulations are considerably less ac-
curate for monthly mean precipitation than for
temperature. The space-time correlation be-
tween models and observations typically is only
about 50 to 60% (Covey et al. 2003). As we dis-
cuss below, these poor correlations originate
mainly in the tropics, where precipitation varies
greatly over relatively small ranges of latitude
and longitude. Strong horizontal gradients in the
field lead to a significant drop in correlations
with observations, even with only slight shifts
in the modeled precipitation distribution. These
modest correlations are relevant for precipita-
tion at a particular location, but AOGCMs gen-
erally reproduce the observed broad patterns of
precipitation amount and year-to-year variabil-
ity (see Fig. 5.1 and Dai 2006). One prominent
error is that models without flux adjustment
typically fail to simulate the observed north-
west-to-southeast orientation of a large region
of particularly heavy cloudiness and precipita-
tion in the southwest Pacific Ocean. Instead,
these models tend to rotate this convergence
zone into an east-west orientation, producing an
unrealistic pair of distinct, parallel convection
bands straddling the equator instead of a con-
tinuous Inter-Tropical Convergence Zone
(ITCZ). The double-ITCZ error has been frus-
tratingly persistent in climate models despite
much effort to correct it.

Another discrepancy between models and ob-
servations appears in the average day-night
cycle of precipitation. While the model’s diurnal
temperature cycle exhibits general agreement
with observations, simulated cloud formation
and precipitation tend to start too early in the
day. Also, when precipitation is sorted into light,
moderate, and heavy categories, models repro-
duce the observed extent of moderate precipi-
tation (10 to 20 mm/day) but underestimate that
of heavy precipitation and overestimate the ex-
tent of light precipitation (Dai 2006). Additional
model errors appear when precipitation is stud-
ied in detail for particular regions [e.g., within
the United States (Ruiz-Barradas and Nigam
2006)].
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For illustration, we show examples from two of
the U.S. models discussed in Chapter 4. In Fig.
5.1 (Delworth et al. 2006) and Fig. 5.2 (Collins
et al. 2006a), simulated and observed maps of
surface temperature and even precipitation ap-
pear rather similar at first glance. Constructing
simulated-minus-observed difference maps,
however, reveals monthly and seasonal mean
temperature and precipitation errors up to 10°C
and 7 mm/day, respectively, at some points.
CCSM3 temperature-difference maps exhibit
the largest errors in the Arctic (note scale
change in Fig. 5.2d), where continental winter-
time near-surface temperature is overestimated.
AOGCMs find this quantity particularly diffi-
cult to simulate because, for land areas near the
poles in winter, models must resolve a strong
temperature inversion above the surface (warm
air overlying cold air). For precipitation, GFDL
difference maps reveal significant widespread
errors in the tropics, most notably in the ITCZ
region discussed above and in the Amazon
River basin, where precipitation is underesti-
mated by several millimeters per day. Similar
precipitation errors appear in CCSM3 results
(e.g., a 28% underestimate of Amazon annual
mean). AOGCM precipitation errors have seri-
ous implications for Earth system models with
interactive vegetation, because such models use
simulated precipitation to calculate plant growth
(see Chapter 6). Errors of this magnitude would
produce an unrealistic distribution of vegetation
in an Earth system model, for example, by spu-
riously deforesting the Amazon basin.

In summary, modern AOGCMs generally simu-
late continental and larger-scale mean surface
temperature and precipitation with considerable
accuracy, but the models often are not reliable
for smaller regions, particularly for precipita-
tion.
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Figure 5.1a—e. Observed and GFDL Model-Simulated Precipitation (mm/day).

Observed image from P. Xie and PA.Arkin 1997: Global precipitation: A 17-year monthly analysis based on gauge observations, satellite
estimates, and numerical model outputs. Bulletin American Meteorological Society, 78, 2539-2558. [Other images from Fig. 17 in T.L.
Delworth et al. 2006: GFDL's CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643—
674. Images reproduced with permission of the American Meteorological Society.]
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Figure 5.2a-c. CCSM3 December-January-February Simulated (top panel), Observed (middle panel), and
Simulated-Minus-Observed (bottom panel) Near-Surface Air Temperature for Land Areas (°C).

Note change in scale from 5.2a to 5.2c. [Figures from W. Collins et al. 2006: The Community Climate System Model Version 3 (CCSM3).
J. Climate, 19(11), 2122-2143. Reproduced with permission of the American Meteorological Society.]
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CCSM3 - HadISST

rmse = 1.53

Figure 5.2d. CCSM3 Annual Mean Simulated-Minus-Observed Sea Surface

Temperature (°C).

[Figure from W. Collins et al. 2006: The Community Climate System Model Version 3 (CCSM3). /. Climate,
19(11),2122-2143. Reproduced with permission of the American Meteorological Society.]

52TWENTIETH CENTURY
TRENDS

Modern AOGCMs are able to simulate not only
the time-average climate but also changes
(trends) in climate over the past 140 years. For
example, Fig. 5.3 shows results from the three
U.S. models and the “average” CMIP3 model.
Plotted in the figure are curves of globally av-
eraged annual mean near-surface temperature
from model simulations and the observational
value as determined from the U.K. Climatic Re-
search Unit (CRU) gridded observational data-
base. Two curves are plotted for the CMIP3
models. The first shows the average over all
CMIP3 models, and the second, the average
over only CMIP3 models that included the ef-
fects of volcanic eruptions. Results from indi-
vidual U.S. models are shown for separate
ensemble members (dotted lines) and for the av-
erage over all ensemble members (continuous
lines). Individual members of a particular model
ensemble differ from each other because they
were run from different initial conditions. Pre-
cise initial conditions, especially deep-ocean

temperature and salinity, are not known for
1860. The spread among individual simulations
from the same model (the dotted-line curves)
thus indicates uncertainty in model-simulated
temperature arising from lack of knowledge
about initial conditions.

These results demonstrate that modern climate
models exhibit agreement with observed global
mean near-surface temperature trends to within
observational uncertainty, despite imprecise ini-
tial conditions and uncertain climate forcing
and heat uptake by the deep ocean (Min and
Hense 2006). Models achieve this agreement
only if they include anthropogenic emissions of
greenhouse gases and aerosols. No plausible
combination of natural climate-forcing factors
allows models to explain the global warming
observed over the last several decades. Indirect
solar effects [e.g., involving cosmic rays and
clouds (Svensmark 2007)] are not generally in-
cluded in AOGCM simulations. These effects
have been proposed occasionally as causes of
global warming, although over the past 20 years
their trends would, if anything, lead to cooling
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Figure 5.3a. Simulation
of 20t Century
Globally Averaged
Surface Temperature
from GFDL CM2.1.

“CRU” is the value based on
the Climate Research Unit
gridded observational
dataset,“IPCC Mean” is the
average value of all CMIP3
models, and “IPCC Mean
Volc” is the average of all
CMIP3 models that included
volcanic forcing. Individual
realizations of the CMIP3 20t
Century experiment are
denoted by the dotted

(Lockwood and Frohlich 2007). Unless the
models grossly underestimate the climate sys-
tem’s natural internally generated variability or
are all missing a large unknown forcing agent,
the conclusion is that most recent warming is
anthropogenic (IPCC 2007b).

Nevertheless, total climate forcing during the
20t Century is not accurately known, especially
the aerosol component (see Chapter 2). Aerosol
forcing used in these simulations, however, is
derived from aerosol parameterizations con-
strained by satellite and ground-based measure-
ments of the aerosols themselves and was not
designed to obtain a fit to observed global mean
temperature trends. The observed trend in sur-
face temperature can result from models with
different aerosol forcing (Schwartz 2007). Thus,
20t Century temperature records cannot distin-
guish models that would warm by differing
amounts for the same total forcing.

Note that climate sensitivity is not prescribed in
AOGCMs. Instead, this sensitivity emerges as a
result of a variety of lower-level modeling
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choices. In contrast to simple energy-balance
models that predict only the global mean tem-
perature using a limited representation of cli-
mate physics, an AOGCM?’ climate sensitivity
is difficult to specify a priori. More fundamen-
tally, AOGCMs, unlike simpler climate models,
have far fewer adjustable parameters than the
number of observations available for model
evaluation (Randall et al. 2007). Thus, an
AOGCM’ multidimensional output can be
compared to observations independent of this
adjustment (e.g., using observed trends in re-
gional temperature). Agreement between mod-
eled and observed trends has been described for
temperature trends on each inhabited continent
(Min and Hense 2007); for trends in climate ex-
tremes, such as heat-wave frequency and frost-
day occurrence (Tebaldi et al. 2006); and for
trends in surface pressure and Arctic sea ice (see
Chapter 9 in IPCC 2007), all of which comple-
ment comparisons between modeled and ob-
served time-averaged climate discussed in the
following sections.
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Global Warming relative to 1900 for giss_model_e_r
(10 years running average smoothed)
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Figure 5.3b. Simulation
of 20t Century
Globally Averaged
Surface Temperature
from GISS Model E-R.

Curve labels are the same as
in Fig. 5.3a.

Figure 5.3c. Simulation
of 20t Century
Globally Averaged
Surface Temperature
from CCSM3.

Curve labels are the same as
in Fig. 5.3a.

Figure 5.3d.
Comparison of
Simulations of 20t
Century Globally
Averaged Surface
Temperature from the
Three U.S.CMIP3
Models.

Model curves represent
ensemble means for CCSM3
(ncar_ccsm3_0), GISS Model
E-R (giss_e_r),and GFDL
CM2.1 (gfdl_cm2_1).“CRU/”
“IPCC Mean,” and “IPCC
Mean Volc” labels are the
same as in Fig. 5.3a.
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As an example of 20" Century temperature
trends on continental-to-global spatial scales
and multidecadal time scales, Fig. 5.4 shows
global maps for different time periods between
1880 and 2003 as observed and simulated by
GISS ModelE (Hansen et al. 2006; also see
Knutson et al. 2006). The figure shows general
agreement between model and observations not
only for the overall period but also for segments
1880 to 1940 and 1979 to 2003, which encom-
pass periods of early and late 20 Century
warming. For 1940 to 1979, the model simu-
lates only a small change in global mean tem-
perature in agreement with observations, but it
fails to simulate the strong north polar cooling
observed for this period. As a result, the model-
simulated global mean-temperature change
(upper right corner of each frame) is slightly
positive rather than slightly negative as ob-
served. Part of this discrepancy may result from
chaotic fluctuations within observed climate
that the model cannot synchronize correctly due
to inprecise knowledge of the initial conditions
in the 19 Century period. These chaotic fluc-
tuations generally are more important in re-
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gional trends than in the global average, where
uncorrelated fluctuations in different regions
tend to cancel. For both 20t Century warming
periods, the model simulates, but underesti-
mates, the high-latitude amplification of global
warming. Additional discrepancies between
AOGCMs and observations appear at smaller
scales. For example, model-simulated trends do
not consistently match the observed lack of 20t
Century warming in the central United States
(Kunkel et al. 2006).

5.2.1Trends inVertical Temperature

While models simulate the 20t Century warm-
ing observed at the surface, agreement is less
obvious with tropospheric observations from
satellites and weather balloons. This issue was
the focus of CCSP SAP 1.1 (CCSP 2006). Since
1979 (beginning of the satellite record), glob-
ally averaged warming in the troposphere ac-
cording to climate models is within the range of
available observations. Within the tropics, the
model-simulated troposphere warms more rap-
idly than observed (see CCSP 2006, Fig. 5.4 F-

Surface Temperature Change Based on Local Linear Trends (°C)

1880-2003
Observations

1880-1940 1940-1979 1979-2003

-2 -1-6 -11.361153

Figure 5.4. Near-Surface Temperature Changes as Observed (top panels) and as
Simulated by GISS ModelE (bottom panels) for Selected Time Periods Between 1880
and 2003.

Numbers above upper right panel corners are global means. [Images from Fig. 9 in J. Hansen et al. 2007:

Climate simulations for 1880-2003 with GISS ModelE. Climate Dynamics, 29(7-8), 661-696. Reproduced
with kind permission of Springer Science and Business Media.]
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G). SAP 1.1 noted, however, that “Large struc-
tural uncertainties in the observations . . . make
it difficult to reach more definitive conclusions
regarding the significance and importance of
model-data discrepancies” (CCSP 2006, p. 112
and Section 5.4).

Research since publication of SAP1.1 has con-
tinued to highlight uncertainties implicit in
measuring the difference between surface and
lower-atmospheric warming. For example,
Thorne et al. (2007) found that the tropical at-
mosphere-to-surface warming ratio in both ob-
servations and model simulations is sensitive to
the time period analyzed. Meanwhile, debate
continues over the best way to process data from
satellites (Christy et al. 2007) and weather bal-
loons (Christy and Spencer 2005). AOGCMs
continue to differ from most published obser-
vations on the ratio of atmosphere-to-surface
warming in the tropics since the beginning of
satellite observations (e.g., as shown by Thorne
et al. 2007, Fig. 3), with the ratio being larger in
the models than is seen in decadal observational
trends.

Paradoxically, trends are more consistent be-
tween models and observations on interannual
time scales. AOGCM simulation of tropical at-
mospheric warming involves mainly subgrid-
scale parameterizations. As discussed in
Chapter 2, these are not as trustworthy as ex-
plicitly computed processes, but internal vari-
ability [primarily due to EI Nifio—Southern
Oscillation (ENSO)] provides a useful test of
the models’ ability to redistribute heat realisti-
cally. AOGCMs simulate very well the portion
of tropical temperature trends due to interannual
variability (Santer et al. 2005). In addition, ex-
plaining how atmospheric water vapor increases
coincidentally with surface temperature is dif-
ficult (Trenberth, Fasullo, and Smith 2005; San-
ter et al. 2007; Wentz et al. 2007) unless lower
tropospheric temperature also increases coinci-
dentally with surface temperature. While defi-
ciencies in model subgrid-scale parameter-
izations are certainly possible, trends in poorly
documented forcing agents (see Chapter 4) may
prove important in explaining the discrepancy
over the longer time scales. Future research is
required to resolve the issue because tropos-
pheric observations at face value suggest a trend
toward greater tropical instability, which has im-
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plications for many aspects of model projec-
tions in the tropics.

5.2.2 Model Simulation of Observed
Climate Variability

The following sections discuss a number of spe-
cific climate phenomena directly or indirectly
related to near-surface temperature, precipita-
tion, and sea level. Numerous studies of climate
change have focused on one or two of these phe-
nomena, so a great deal of information (and oc-
casional debate) has accumulated for each of
them. Here we attempt to summarize the points
that would best give users of AOGCM model
output a general sense of model reliability or
unreliability. Although the following sections
individually note different types of climate vari-
ation, the reader should recognize that the total
amount of natural climate variability forms
background “noise” that must be correctly as-
sessed to identify the “signal” of anthropogenic
climate change. Natural variability in turn sep-
arates into an externally forced part (e.g., from
solar energy output and volcanic eruptions) and
internally generated variability just as weather
varies on shorter time scales because of the sys-
tem’s intrinsic chaotic character. As noted
above, long-term trends in both solar and vol-
canic forcing during the past few decades have
had a cooling rather than warming effect. It fol-
lows that if global warming during this period is
not anthropogenic, then the climate system’ in-
ternal variation is the most likely alternative ex-
planation.

Control runs of AOGCMs (in which no changes
in external climate forcing are included) provide
estimates of the level of internally generated cli-
mate variability. Control runs generally obtain
realistic near-surface temperature variability on
annual-to-decadal time scales, although they
typically underestimate variability in areas of
the Pacific and Indian Ocean where ENSO and
the Pacific Decadal Oscillation (PDO) (see
below) predominate (Stouffer, Hegerl, and Tett
2000). Unfortunately, the longest time periods
that are directly relevant to separating natural
from anthropogenic climate change are the least
observed. Assessing variations of surface tem-
perature for time periods longer than 50 to 100
years depends on paleodata such as ice-core
composition and tree-ring thickness. Interpreta-
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tion of these data is made difficult by sparse ge-
ographical coverage and also is complicated by
natural variations in external climate forcing.

5.2.2.1 EXTRA-TROPICAL STORMS

Climate models have developed from numeri-
cal weather-prediction models whose perform-
ance has been judged primarily on their ability
to forecast midlatitude weather. The success of
forecast models in their simulation of midlati-
tude cyclones and anticyclones has resulted in
continuous growth in the value of numerical
weather prediction. The ability of GCMs to gen-
erate realistic statistics of midlatitude weather
also has been central in climate model develop-
ment. This is true not only because midlatitude
weather is important in its own right, but also
because these storms are the primary mecha-
nism by which heat, momentum, and water
vapor are transported by the atmosphere, mak-
ing their simulation crucial for simulation of
global climate. Indeed, a defining feature of at-
mospheric  general circulation  models
(AGCMs) is that they compute midlatitude eddy
statistics and associated eddy fluxes through ex-
plicit computation of the life cycles of individ-
ual weather systems and not through some
turbulence or parameterization theory. Comput-
ing the evolution of individual eddies may seem
very inefficient when primary interest is in
long-term eddy statistics, but the community
clearly has judged for decades that explicit eddy
simulation in climate models is far superior to
attempts to develop closure theories for eddy
statistics. The latter theories typically form the
basis for Earth system models of intermediate
complexity (EMICs), which are far more effi-
cient computationally than GCMs but provide
less convincing simulations.

Two figures illustrate the quality of simulated
midlatitude eddy statistics from coupled
AOGCMs used in IPCC AR4. Shown for the
GFDL CM2.1 in Fig. 5.5a is wintertime vari-
ance of the north-south velocity component at
300 hPa (in the upper troposphere). This quan-
tity represents the magnitude of variability in
the upper troposphere associated with day-to-
day weather. In Fig. 5.5b, the wintertime pole-
ward eddy heat flux or covariance between
temperature and north-south velocity is shown
at 850 mb (in the lower troposphere). For these
calculations, the monthly means were sub-
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tracted before computing variances. In each
case, eddy statistics are compared to estimates
of observed statistics obtained from
NCEP/NCAR Reanalysis (B.Wyman, personal
communication). When analyzing eddy statis-
tics, the data are typically filtered to retain only
those time scales, roughly 2 to 10 days, associ-
ated with midlatitude weather systems. The two
quantities chosen here, however, are sufficiently
dominated by these time scales that they are rel-
atively insensitive to the monthly filtering used
here. In winter, Northern Hemisphere storms
are organized into two major oceanic storm
tracks over the Pacific and Atlantic oceans. His-
torically, atmospheric models of horizontal res-
olutions of 200 to 300 km typically are capable
of simulating midlatitude storm tracks with re-
alism comparable to that shown in the figure.
Eddy amplitudes often are a bit weak and often
displaced slightly equatorward. In spectral mod-
els with resolution coarser than 200 to 300 km,
simulation of midlatitude storm tracks typically
deteriorates significantly (see, e.g., Boyle
1993). General improvements in most models
in the CMIP3 database over previous genera-
tions of models, as described in Chapter 1, are
thought to be partly related to the fact that most
of these models now have grid sizes of 100 to
300 km or smaller. Although even-finer resolu-
tion results in better simulations of midlatitude-
storm structure, including that of warm and cold
fronts and interactions among these storms and
coastlines and mountain ranges, improvements
in midlatitude climate on large scales tend to be
less dramatic and systematic. Other factors be-
sides horizontal resolution are considered im-
portant for details of storm track structure. Such
factors include distribution of tropical rainfall,
which is sensitive to parameterization schemes
used for moist convection, and interactions be-
tween stratosphere and troposphere, which are
sensitive to vertical resolution. Roeckner et al.
(2006), for example, illustrate the importance
of vertical resolution for midlatitude circulation
and storm track simulation.

Lucarini et al. (2006) provide a more detailed
look at the ability of CMIP3 models to simulate
the space-time spectra of observed eddy statis-
tics. These authors view the deficiencies noted,
which vary in detail from model to model, as
serious limitations to model credibility. As in-
dicated in Chapter 1, however, our ability is lim-



ited in translating measures of model biases into
useful measures of model credibility for 21st
Century projections, and the implications of
these biases in eddy space-time spectra are not
self-evident. Indeed, in the context of simulating
eddy characteristics generated in complex tur-
bulent flows in the laboratory (e.g., Pitsch
2006), the quality of atmospheric simulations,
based closely on fluid dynamical first princi-
ples, probably should be thought of as one of
the most impressive characteristics of current
models. As an example of a significant model
deficiency that plausibly can be linked to limi-
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tations in climate projection credibility, note
that the Atlantic storm track, as indicated by the
maximum velocity variance in Fig. 5.5a, follows
a latitude circle too closely and the observed
storm track has more of a southwest-northeast
tilt. This particular deficiency is common in
CMIP3 models (van Ulden and van Oldenborgh
2006) and is related to difficulty in simulating
the blocking phenomenon in the North Atlantic
with correct frequency and amplitude. Van
Ulden and van Oldenborgh make the case that
this bias is significant for the quality of regional
climate projections over Europe.
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Figure 5.5b.Top:
Covariance of North-
South Velocity and
Temperature at 850
hPa as Simulated by
GFDL CM2.1 Model in
Years 1981 to 2000 of
One Realization of
20C3M Simulation, as
Contributed to the
CMIP3 Database.

Units are K-m/s. Middle:
Same quantity as obtained
from NCEP/NCAR
Reanalysis (Kalnay et al.
1996). Bottom: Model minus
observations.
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5.2.2.2 TROPICAL STORMS

Tropical storms (hurricanes in the Atlantic and
typhoons in the Pacific and Indian oceans) are
too small to be simulated reliably in the class of
global-climate models currently used for cli-
mate projections. There is hope for simulating
regional climate aspects that control the gene-
sis of tropical depressions, however. Vitart and
Anderson (2001), for example, identified trop-
ical storm-like vortices in simulations with
models of this type, demonstrating some skill

in simulating the effects of El Nifio on Atlantic
storm frequency.

Simulations with atmospheric models are
steadily moving to higher resolutions (e.g.,
Bengtsson, Hodges, and Esch 2007). The recent
20-km-resolution simulation with an atmos-
pheric model over prescribed ocean tempera-
tures by Oouchi et al. (2006) is indicative of the
kinds of modeling that will be brought to bear
on this problem in the next few years. Experi-
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ence with tropical storm forecasting suggests
that this resolution should be adequate for de-
scribing many aspects of the evolution of ma-
ture tropical storms and possibly the generation
of storms from incipient disturbances, but prob-
ably not tropical storm intensity. A promising
alternative approach is described by Knutson et
al. (2007), in which a regional model of com-
parable resolution (18 km) is used in a down-
scaling framework (see Chapter 3) to simulate
the Atlantic hurricane season. Given observed
year-to-year variations in the large-scale atmos-
phere structure over the Atlantic Ocean, the
model is capable of simulating year-to-year
variations in hurricane frequency over a 30-year
period with a correlation of 0.7 to 0.8. It also
captures the observed trend toward greater hur-
ricane frequency in the Atlantic during this pe-
riod. These results suggest that downscaling
using models of this resolution may be able to
provide a convincing capability for tropical
storm frequency projections into the future, al-
though these projections still will rely on the
quality of global model projections for changes
in sea-surface temperature, atmospheric stabil-
ity, and vertical shear.

5.2.2.3 MONSOONS

A monsoonal circulation is distinguished by its
seasonal reversal after the sun crosses the equa-
tor into the new summer hemisphere. Rain is
most plentiful in, if not entirely restricted to,
summer within monsoonal climates, when con-
tinental rainfall is supplied mainly by evapora-
tion from the nearby ocean. This limits the reach
of monsoon rains to the distance over which
moisture can be transported onshore (Privé and
Plumb 2007). Variations in the monsoon’s spa-
tial extent from year to year determine which
inland regions experience drought.

Over a billion people are dependent on the ar-
rival of monsoon rains for water and irrigation
for agriculture. The Asian monsoon during bo-
real summer is the most prominent example of
a monsoon circulation dominating global rain-
fall during this season. However, the summer
rainfall maximum and seasonal reversal of
winds also indicate monsoon circulations in
West Africa and the Amazon basin. In addition,
during boreal summer, air flows off the eastern
Pacific Ocean toward Mexico and the American
Southwest while, over the Great Plains, mois-
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ture from the Gulf of Mexico brings an annual
peak in rainfall. Thus, the climate in these re-
gions also is described as monsoonal.

Because of the Asian monsoon’s geographical
extent, measures of the fidelity of Asian mon-
soonal simulations can differ depending on spe-
cific regional focus and the metrics being used.
Kripalani et al. (2007) judged that 3/4 of the 18
analyzed coupled models match the timing and
magnitude of the summertime peak in precipi-
tation over East Asia between 100 and 145°E
and 20 to 40°N evident in the NOAA-NCEP
Climate Prediction Center’s Merged Analysis of
Precipitation (CMAP, Xie, and Arkin 1997).
However, only half of these models were able to
reproduce the gross observed spatial distribu-
tion of monsoon rainfall and its migration along
the coast of China toward the Korean peninsula
and Japan. Considering a broader range of lon-
gitude (40 to 180°E) that includes the Indian
subcontinent, Annamalai, Hamilton, and Sper-
ber (2007) found that 6 of 18 AOGCMs signif-
icantly correlated with the observed spatial
pattern of CMAP precipitation from June
through September. (These six models also pro-
duced relatively realistic simulation of ENSO
variability, which is known to influence inter-
annual variations in the Asian summer mon-
soon.) Kitoh and Uchiyama (2006) computed
the spatial correlation and root-mean-square
error of simulated precipitation over a similar
region and found, for example, the GFDL mod-
els in the top tercile with a spatial correlation
exceeding 0.8.

During boreal winter, Asian surface winds are
directed offshore: from the northeast over India
and the northwest over East Asia. Hori and
Ueda (2006) provide correlations between ob-
served spatial distributions of surface pressures
and 850-mb zonal winds during the East Asian
winter monsoon with winds and pressures sim-
ulated by nine CMIP3 models. Correlations for
zonal winds, for example, vary from 0.96 to
0.75. Monsoonal simulations in these models
clearly vary considerably in quality, more so
perhaps than other circulation features. Ob-
served year-to-year variability of the West
African monsoon is related to remote ocean
temperatures in the North and South Atlantic
and Indian oceans (Rowell et al. 1992; Zhang
and Delworth 2006) as well as to temperatures
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in the nearby Gulf of Guinea. Cook and Vizy
(2006) found that slightly more than half of 18
analyzed coupled models reproduced the ob-
served precipitation maximum over land from
June through August. Of these models, only six
(including GISS ModelE-H and both GFDL
models) reproduced the observed anticorrela-
tion between Gulf of Guinea ocean temperature
and Sahel rainfall.

The late 20" Century Sahel drought was a dra-
matic change in the Earth’s hydrological cycle
that plausibly must be simulated by climate
models if we are to have any confidence in their
ability to project future climate in this region.
Atmospheric models, when run over observed
oceanic temperatures, simulate this drought rea-
sonably well (Hoerling et al. 2006). In these
models, the drought is at least partly forced by
warming of the Northern Hemisphere oceans,
particularly the North Atlantic, with respect to
Southern Hemisphere oceans, especially the In-
dian Ocean and Gulf of Guinea. Although the
consensus is that these variations in ocean tem-
perature gradients are at least partly due to nat-
ural variability, they may have been partly
anthropogenically forced. Analysis of CMIP3
simulations of the 20t Century by Biasutti and
Giannini (2006), supporting the earlier model-
ing study of Rotstayn and Lohmann (2002),
suggests that aerosol forcing in these models
played a part in generating this drought by cool-
ing the North Atlantic with respect to other
ocean basins. A small number of coupled mod-
els simulate droughts of the observed magni-
tude, including GFDL models (Held and Soden
2006), but why some models are more realistic
in this regard than others is not understood.

Rainfall over the Sahel and Amazon are anti-
correlated: when the Gulf of Guinea warms,
rainfall generally is reduced over the Sahel but
increases over South America. Amazon rainfall
also depends on the eastern equatorial Pacific,
and, during an EI Nifio, rainfall is reduced in the
Nordeste region of the Amazon. Li et al. (2006)
compare the hydrological cycle of 11 CGCMs
over the Amazon during the late 20" and 21
centuries. Based on a comparison to CMAP
rainfall, the GISS ModelE-R is among the best.

The ability of climate models to simulate North-
ern Hemisphere summer rainfall over the U.S.
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Great Plains and Mexico was summarized by
Ruiz-Barradas and Nigam (2006). Models gen-
erally have more difficulty in simulating sum-
mer rainfall in the Great Plains than winter
rainfall, and this disparity probably should be
thought of as reflecting the quality of future
rainfall projections as well. Strengths and weak-
nesses vary considerably across the models. As
an example, GISS ModelE-H closely matches
the annual precipitation cycle over the Great
Plains and Mexico and is one of two models to
simulate interannual precipitation variations
significantly correlated with observed variabil-
ity during the second half of the 20t Century.

Initial monsoon evaluations simulated by the
most recent generation of climate models have
emphasized the seasonal time scale. However,
subseasonal variations, such as break periods
when the monsoon rains are interrupted tem-
porarily, are crucial to forecasting the mon-
soon’s impact on water supply. Simulating the
diurnal cycle and the local hour of rainfall also
is important to partitioning rainfall between
runoff and transpiration, and these are impor-
tant topics for future model evaluation. Trans-
ports of moisture by regional circulations
beneath model resolution (such as low-level jets
along the Rockies and Andes and tropical cy-
clones) contribute to the onshore transport of
moisture. In general, models show some success
at simulating gross seasonal features of various
monsoon circulations, but studies are limited on
variations of the smaller spatial and time scales
important to specific watersheds and hydrolog-
ical projections.

5.2.2.4 MADDEN-JULIAN OSCILLATIONS

The Madden-Julian Oscillation (MJO) consists
of large-scale eastward-propagating patterns in
humidity, temperature, and atmospheric circu-
lation that strengthen and weaken tropical rain-
fall as they propagate around the Earth in
roughly 30 to 60 days. This pattern often domi-
nates tropical precipitation variability on time
scales longer than a few days and less than a
season, creating such phenomena as 1- to 2-
week breaks in Asian monsoonal rainfall and
weeks with enhanced hurricane activity in the
eastern North Pacific and the Gulf of Mexico.
Inadequate prediction of the evolution of these
propagating structures is considered a main im-
pediment to more useful extended-range



weather forecasts in the tropics, and improved
simulation of this phenomenon is considered an
important metric for the credibility of climate
models in the tropics.

Nearly all models capture the pattern’ essential
feature, with large-scale eastward propagation
and with roughly the correct vertical structure.
But propagation often is too rapid and ampli-
tudes too weak. Recent surveys of model per-
formance indicate that simulations of MJO
remain inadequate. For example, Lin et al.
(2006), in a study of many CMIP3 models, con-
clude that “... current GCMs still have signifi-
cant problems and display a wide range of skill
in simulating the tropical intraseasonal vari-
ability,” while Zhang et al. (2005) in another
multimodel comparison study, state that “...
commendable progress has been made in MJO
simulations in the past decade, but the models
still suffer from severe deficiencies ....” As an
example of recent work, Boyle et al. (2008) at-
tempted, with limited success, to determine
whether two U.S. CMIP3 models could main-
tain a preexisting strong MJO pattern when ini-
tialized with observations [from the Tropical
Ocean Global Atmosphere—-Coupled Ocean At-
mosphere Response Experiment (called TOGA-
COARE) field experiment].

The difficulty in simulating MJO is related to
the phenomenon’s multiscale nature: the propa-
gating pattern itself is large enough to be re-
solvable by climate models, but the convection
and rainfall modulated by this pattern, which
feed back on the large-scale environment, occur
on much smaller, unresolved scales. In addition
to this dependence on parameterization of trop-
ical convection, a long list of other effects has
been shown by models and observational stud-
ies to be important for MJO. These effects in-
clude the pattern of evaporation generated as
MJO propagates through convecting regions,
feedback from cloud-radiative interactions, in-
traseasonal ocean temperature changes, the di-
urnal cycle of convection over the ocean, and
the vertical structure of latent heating , espe-
cially the proportion of shallow cumulus con-
gestus clouds and deep convective cores in
different phases of oscillation (Lin et al. 2004)].

A picture seems to be emerging that simulation
difficulty may not be due to a single model de-
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ficiency but is a result of the phenomenon’s
complexity, given the long list of factors thought
to be significant. In several multimodel studies
such as Lin et al. (2006), a few models do per-
form well. However, without a clearer under-
standing of how these factors combine to
generate the observed characteristics of MJO,
maintaining a good simulation when the model
is modified for other reasons is difficult, as is
applying the understanding gained from one
model’s successful simulation to other models.
Whether models with superior MJO simulations
should be given extra weight in multimodel
studies of tropical climate change is unclear.

5.2.2.5 EL NINO-SOUTHERN OSCILLATION

By the mid-20" Century, scientists recognized
that a local anomaly. in rainfall and oceanic up-
welling near the coast of Peru was in fact part of
a disruption to atmospheric and ocean circula-
tions across the entire Pacific basin. During El
Nifio, atmospheric mass migrates west of the
dateline as part of the Southern Oscillation, re-
ducing surface pressure and drawing rainfall
into the central and eastern Pacific (Rasmussen
and Wallace 1983). Together, EI Nifio and the
Southern Oscillation, abbreviated in combina-
tion as ENSO, are the largest source of tropical
variability observed during recent decades. Be-
cause of the Earth’s rotation, easterly winds
along the equator cool the surface by raising
cold water from below, which offsets heating by
sunlight absorption (e.g., Clement et al. 1996).
Cold water is especially close to the surface in
the east Pacific, while warm water extends
deeper in the west Pacific so upwelling has lit-
tle effect on surface temperature there. The
westward increase in temperature along the
equator is associated with a decrease in atmos-
pheric pressure, reinforcing the easterly trade
winds. El Nifio occurs when easterly trade
winds slacken, reducing upwelling and warm-
ing the ocean surface in the central and east Pa-
cific.

Changes along the equatorial Pacific have been
linked to global disruptions of climate (Ro-
pelewski and Halpert 1987). During an El Nifio
event, the Asian monsoon typically is weakened,
along with rainfall over eastern Africa, while
precipitation increases over the American
Southwest. El Nifio raises the surface tempera-
ture as far poleward as Canada, while changes
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Table 5.1. Spacing
of Grid Points at
the Equator in the
American
Coupled Models
Developed for
AR4*
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in the north Pacific Ocean are linked to decadal
variations in ENSO (Trenberth and Hurrell
1994). In many regions far from eastern equa-
torial Pacific, accurate projections of climate
change in the 21t Century depend upon the ac-
curate projection of changes to EI Nifio. More-
over, the demonstration that ENSO alters
climate across the globe indicates that even
changes to the time-averaged equatorial Pacific
during the 21st Century will influence climate
far beyond the tropical ocean. For example,
long-term warming of the eastern equatorial Pa-
cific relative to the surrounding ocean will favor
a weaker Asian monsoon year after year, even
in the absence of changes to the size and fre-
quency of El Nifio events.

In general, coupled models developed for
CMIP3 are far more realistic than those of a
decade ago, when ENSO variability was com-
paratively weak and some models lapsed into
permanent El Nifio states (Neelin et al. 1992).
Even compared to models assessed more re-
cently by the El Nifio Simulation Intercompar-
ison Project (called ENSIP) and CMIP2 (Latif
et al. 2001; AchutaRao and Sperber 2002),
ENSO variability of ocean surface temperature
is more realistic in CMIP3 simulations, al-
though sea-level pressure and precipitation
anomalies show little recent improvement
(AchutaRao and Sperber 2006). Part of this
progress is the result of increased resolution of
equatorial ocean circulation that has accompa-
nied increases in computing speed. Table 5.1
shows horizontal and vertical resolution near

: q Vertical

MODEL  Longitude Latitude ", (s
GFDL CM2.0 1 1/3 50
GFDL CM2.1 1 1/3 50
GISSAOM 5 4 13
GISS ModelE-H 2 2 16
GISS ModelE-R ) 4 13
NCAR CCSM3 1.125 0.27 27
NCAR PCM 0.94 0.5 32
*Except for GISS models, spacing of grid points
generally increases away from the equator outside
the ENSO domain, so resolution is highest at the
equator.
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the equator in oceanic components of the seven
American coupled models whose output was
submitted to CMIP3.

Along the equator, oceanic waves that adjust the
equatorial temperature and currents to changes
in the wind are confined tightly to within a few
degrees of latitude. To simulate this adjustment,
the ocean state is calculated at points as closely
spaced as 0.27 degrees of latitude in the NCAR
CCSM3. NCAR PCM has a half-degree resolu-
tion, while both GFDL models have equatorial
resolution of a third of a degree. This degree of
detail is a substantial improvement compared to
previous generations of models. In contrast, the
GISS AOM and ModelE-R calculate equatorial
temperatures at grid points separated by four de-
grees of latitude. This is broad compared to the
latitudinal extent of cold temperatures observed
within the eastern Pacific. The cooling effect of
upwelling is spread over a larger area, so the
amplitude of the resulting surface temperature
fluctuation is weakened. In fact, both the GISS
AOM models and ModelE-R have unrealistic
ENSO variations that are much smaller than ob-
served (Hansen et al. 2007). This minimizes the
influence of their simulated El Nifio and La
Nifia events on climate outside the equatorial
Pacific, and we will not discuss these two mod-
els further in this section.

In comparison to previous generations of global
models, where ENSO variability was typically
weak (Neelin et al. 1992), the AR4 coupled
models generally simulate EI Nifio near the ob-
served amplitude or even above (AchutaRao
and Sperber 2006). The latter study compared
sea-surface temperature (SST) variability within
the tropical Pacific, calculated under preindus-
trial conditions. Despite its comparatively low
two-degree latitudinal grid spacing, the GISS
ModelE-H (among American models) most
closely matches observed SST variability since
the mid-19t Century, according to the HadISST
v1.1 dataset (Rayner et al. 2003). The NCAR
PCM also exhibits EI Nifio warming close to the
observed magnitude. This comparison is based
on spatial averages within three longitudinal
bands, and GISS ModelE-H, along with NCAR
models, exhibits its largest variability in the
eastern band as observed. However, GISS Mod-
elE-H underestimates variability since 1950,
when the NCAR CCSM3 is closest to observa-



tions (Joseph and Nigam 2006). Although the
fidelity of each model’s ENSO variability de-
pends on the specific dataset and period of com-
parison (c.f. Capotondi, Wittenberg, and Masina
2006; Merryfield 2006; van Oldenborgh, Philip,
and Collins 2005), the general consensus is that
GISS ModelE-H, both NCAR models, and
GFDL CMZ2.0 have roughly the correct ampli-
tude, while variability is too large by roughly
one-third in GFDL CM2.1. Most models (in-
cluding GISS ModelE-H and both NCAR mod-
els but excluding GFDL models) exhibit the
largest variability in the eastern band of longi-
tude, but none of the CMIP3 models matches
the observed variability at the South American
coast where EIl Nifio was identified originally
(AchutaRao and Sperber 2006; Capotondi, Wit-
tenberg, and Masina 2006). This possibly is be-
cause the longitudinal spacing of model grids is
too large to resolve coastal upwelling and its in-
terruption during El Nifio (Philander and
Pacanowski 1981). Biases in atmospheric mod-
els (e.g., underestimating persistent stratus
cloud decks along the coast) also may con-
tribute (Mechoso et al. 1995).

El Nifio occurs every few years, albeit irregu-
larly. The spectrum of anomalous ocean tem-
perature shows a broad peak between 2 and 7
years, and multidecadal variations occur in
event frequency and amplitude. Almost all AR4
models have spectral peaks within this range of
time scales. Interannual power is distributed
broadly within the American models, as ob-
served, with the exception of NCAR CCSM3,
which exhibits strong biennial oscillations
(Guilyardi 2006).

Although models generally simulate the ob-
served magnitude and frequency of events, re-
producing their seasonality is more elusive.
Anomalous warming typically peaks late in the
calendar year, as originally noted by South
American fisherman. Among American mod-
els, this seasonal dependence is simulated only
by NCAR CCSM3 (Joseph and Nigam 2006).
Warming in GFDL CM2.1 and GISS ModelE-
H is nearly uniform throughout the year, while
warming in NCAR PCM is largest in Decem-
ber but exhibits a secondary peak in early sum-
mer. The mean seasonal cycle along the
equatorial Pacific also remains a challenge for
the models. Each year, the east Pacific cold
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tongue is observed to warm during boreal
spring and cool again late in the calendar year.
GFDL CM2.1 and NCAR PCML1 have the
weakest seasonal cycle among American mod-
els, while GISS ModelE-H, GFDL 2.0, and
NCAR CCSM3 are closest to the observed am-
plitude (Guilyardi 2006). Among the worldwide
suite of CMIP3 models, amplitude of the sea-
sonal cycle of equatorial ocean temperature
generally varies inversely with the ENSO
cycle’s strength.

Several studies have compared mechanisms
generating ENSO variability in CMIP3 models
to those inferred from observations (e.g., van
Oldenborgh, Philip, and Collins 2005; Guilyardi
2006; Merryfield 2006; Capotondi, Wittenberg,
and Masina 2006). Models must simulate the
change in ocean upwelling driven by changes in
surface winds, which in turn are driven by re-
gional contrasts in ocean temperature. In gen-
eral, GFDL2.1 is ranked consistently among
American models as providing the most realis-
tic simulation of El Nifio. This is not based pri-
marily on its surface-temperature variability
(which is slightly too large) but on its faithful
simulation of the observed relationship between
ocean temperature and surface wind, along with
wind-driven ocean response. While SST vari-
ability in CMIP3 models is controlled by anom-
alies of either upwelling rate or temperature,
these processes alternate in importance over
several decades within GFDL CM2.1 as ob-
served (Guilyardi 2006). Since the 1970s the
upwelling temperature, rather than the rate, has
been the predominant driver of SST variability
(Wang 1995). A confident prediction of future
El Nifio amplitude requires both the upwelling
rate and temperature, along with their relative
amplitude, to be simulated correctly. This re-
mains a challenge.

El Nifio events are related to climate anomalies
throughout the globe. Models with more realis-
tic ENSO variability generally exhibit an anti-
correlation with the strength of the Asian
summer monsoon (e.g., Annamalai, Hamilton,
and Spencer 2007), while 21st Century changes
to Amazon rainfall have been shown to depend
on projected trends in the tropical Pacific (Li et
al. 2006). El Nifio has a long-established rela-
tion to North American climate (Horel and Wal-
lace 1981), assessed in CMIP3 models by
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Joseph and Nigam (2006). This relation is
strongest during boreal winter, when tropical
anomalies are largest. Anomalous circulations
driven by rainfall over the warming equatorial
Central Pacific radiate atmospheric distur-
bances into midlatitudes amplified within the
north Pacific storm track (Sardeshmukh and
Hoskins 1988; Held, Lyons, and Nigam 1989;
Trenberth et al. 1998). To simulate ENSO’s in-
fluence on North America, models must repre-
sent realistic rainfall anomalies in the correct
season so the connection is amplified by win-
tertime storm tracks. The connection between
equatorial Pacific and North American climate
is simulated most accurately by the NCAR
PCM model (Joseph and Nigam 2006). In
GFDL CM2.1, North American anomalies are
too large, consistent with the model’s excessive
El Nifo variability within the equatorial Pacific.
The connection between the two regions is re-
alistic if the model’s tropical amplitude is ac-
counted for. In the GISS model, anomalous
rainfall during ENSO is small, consistent with
the weak tropical wind stress anomaly cited
above. The influence of EI Nifio over North
America is nearly negligible in this model. The
weak rainfall anomaly presumably is a result of
unrealistic coupling between atmospheric and
ocean physics. When SST instead is prescribed
in this model, rainfall calculated by the GISS
ModelE AGCM over the American Southwest
is significantly correlated with El Nifio as ob-
served.

Realistic simulation of EI Nifio and its global
influence remains a challenge for coupled mod-
els because of myriad contributing processes
and their changing importance in the observa-
tional record. Key aspects of coupling between
ocean and atmosphere—the relation between
SST and wind stress anomalies, for example—
are the result of complicated interactions among
resolved model circulations, along with para-
meterizations of ocean and atmospheric bound-
ary layers and moist convection. Simple models
identify parameters controlling the magnitude
and frequency of El Nifio, such as the wind
anomaly resulting from a change in SST (e.g.,
Zebiak and Cane 1987; Fedorov and Philander
2000), offering guidance to improve the realism
of fully coupled GCMs. However, in a GCM,
the coupling strength is emergent rather than
prescribed, and it is often unclear a priori how to
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change the coupling. Nonetheless, improved
simulations of the ENSO cycle compared to
previous generations (AchutaRao and Sperber
2006) suggest that additional realism can be ex-
pected in the future.

5.2.2.6 ANNULAR MODES

The primary mode of Arctic interannual vari-
ability is the Arctic Oscillation (Thompson and
Wallace 1998), which also is referred to as the
northern annular mode (NAM) and is related to
the North Atlantic Oscillation (Hurrell 1995).
The primary mode of Antarctic interannual vari-
ability is the southern annular mode (SAM)
(Thompson and Wallace 2000), also known as
Antarctic Oscillation. The variability modes are
particularly important for attributing and pro-
jecting climate change; observed circulation
changes in the past few decades (especially in
the Southern Hemisphere) and model-projected
changes in future circulation strongly resemble
these structures.

Coupled climate models have shown skill in
simulating NAM (Fyfe, Boer, and Flato 1999;
Shindell et al. 1999; Miller, Schmidt, and Shin-
dell 2006). In some cases, too much variability
in the simulation of sea-level pressure is asso-
ciated with NAM (Miller, Schmidt, and Shin-
dell 2006). Global climate models also
realistically simulate SAM (Fyfe, Boer, and
Flato 1999; Cai, Whetton, and Karoly 2003;
Miller, Schmidt, and Shindell 2006), although
some details of SAM (e.g., amplitude and zonal
structure) show disagreement among global cli-
mate model simulations and reanalysis data
(Raphael and Holland 2006; Miller, Schmidt,
and Shindell 2006).

In response to increasing concentrations of
greenhouse gases and tropospheric sulfate
aerosols in the 20t Century, the multimodel av-
erage exhibits a positive trend in the annular
mode index in both hemispheres, with decreas-
ing sea-level pressure over the poles and a com-
pensating increase in midlatitudes most
apparent in the Southern Hemisphere (Miller,
Schmidt, and Shindell 2006). A variety of mod-
eling studies also have shown that trends in
stratospheric climate can affect the tropos-
phere’s annular modes (Shindell et al. 1999). In-
deed, an important result from atmospheric
modeling in recent years is the realization that



the stratospheric ozone hole has contributed sig-
nificantly to observed trends in surface winds
and sea-level pressure distribution in the South-
ern Hemisphere (Thompson and Solomon
2002; Gillett and Thompson 2003). The mod-
els, however, may not be trustworthy in their
simulation of the relative magnitude of green-
house gas and stratospheric ozone effects on the
annular mode. They also may underestimate the
coupling of stratospheric changes due to vol-
canic aerosols with annular surface variations
(Miller, Schmidt, and Shindell 2006; Arblaster
and Meehl 2006).

5.2.2.7 OTHER MODES OF MULTIDECADAL
VARIABILITY

In the Arctic during the last century, two long-
period warm events occurred, one between 1920
and 1950 and another beginning in the late
1970s. Wang et al. (2007) evaluated a set of
CMIP3 models for their ability to reproduce the
amplitudes of air temperature variability of this
character. As examples, CCSM3 and GFDL-
CM2 models contain variance similar to that ob-
served in the Arctic region.

Multidecadal variability in the North Atlantic is
characterized by the Atlantic Multidecadal Os-
cillation (AMO) index, which represents a spa-
tial average of SST (Enfield, Mestas-Nufiez,
and Trimble 2001). Kravtsov and Spannagle
(2007) analyzed SST from a set of current gen-
eration climate models. Their analysis attempts
to separate variability associated with internal
ocean fluctuations from that associated with
changes by anthropogenic contributions. By
isolating the multidecadal period of several re-
gions in the ensemble SST series through sta-
tistical methods, they found that models obtain
the observed magnitude of the AMO (Kravtsov
and Spannagle 2007).

In the midlatitude Pacific region, decadal vari-
ability generally is underrepresented in the
ocean (e.g., volume transports as described by
Zhang and McPhaden 2006), with some mod-
els approaching amplitudes seen in observa-
tions. Examination of complicated feedbacks
between atmosphere and ocean at decadal and
longer scales shows that, while climate models
generally reproduce the SST pattern related to
the Pacific Decadal Oscillation (PDO), ob-
served correlations between PDO and tropical
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SST are not seen in the models (e.g., Alexander
et al. 2006).

One of the most difficult areas to simulate is the
Indian Ocean because of the competing effects
of warm water inflow through the Indonesian
archipelago, ENSO, and monsoons. The
processes interact to varying degrees, challeng-
ing a model’s ability to simulate all system as-
pects with observed relative emphasis. An index
used to understand variability is the Indian
Ocean Dipole pattern that combines informa-
tion about SST and wind stress fields (Saji et al.
1999). While most models evaluated by Saji,
Xie, and Yamagata (2005) were able to simulate
the Indian Ocean’ response to local atmos-
pheric forcing in short time periods (semian-
nual), longer-period events such as the ocean’s
response to ENSO changes in the Pacific were
not simulated well.

5.2.3 Polar Climates

Changes in polar snow and ice cover affect the
Earth’s albedo and thus the amount of insola-
tion heating the planet (e.g., Holland and Bitz
2003; Hall 2004; Dethloff et al. 2006). Melting
glaciers and ice sheets in Greenland and western
Antarctica could produce substantial sea-level
rise (Arendt et al. 2002; Braithwaite and Raper
2002; Alley et al. 2005). Polar regions thus re-
quire accurate simulation for projecting future
climate change and its impacts.

Polar regions present unique environments and,
consequently, challenges for climate modeling.
Key processes include sea ice, seasonally frozen
ground, and permafrost (Lawrence and Slater
2005; Yamaguchi, Noda, and Kitoh 2005).
Processes also include seasonal snow cover
(Slater et al. 2001), which can have significant
subgrid heterogeneity (Liston 2004), and clear-
sky precipitation, especially in the Antarctic
(King and Turner 1997; Guo, Bromwich, and
Cassano 2003). Polar regions test the ability of
models to handle extreme geophysical behavior
such as longwave radiation in clear, cold envi-
ronments (Hines et al. 1999; Chiacchio, Fran-
cis, and Stackhouse 2002; Pavolonis, Key, and
Cassano 2004) and cloud microphysics in the
relatively clean polar atmosphere (Curry et al.
1996; Pinto, Curry, and Intrieri 2001; Morrison
and Pinto 2005). In addition, polar atmospheric
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boundary layers can be very stable (Duynkerke
and de Roode 2001; Tjernstrém, Zagar, and
Svensson 2004; Mirocha, Kosovic, and Curry
2005), and their simulation remains an impor-
tant area for model improvement.

For polar regions, much of simulated-variability
assessment has focused on primary modes of
polar interannual variability, along with the
northern and southern annular modes. Less at-
tention has been given to the ability of global
climate-system models to simulate shorter-du-
ration climate and weather variability in polar
regions. Uotila et al. (2007) and Cassano et al.
(2007) evaluated the ability of an ensemble of
15 global climate-system models to simulate
daily variability in sea-level pressure in the
Antarctic and Arctic. In both polar regions, they
found that the ensemble was not able to repro-
duce many features of daily synoptic climatol-
ogy, with only a small subset of models
accurately simulating the frequency of primary
synoptic weather patterns identified in global
reanalysis datasets. U.S. models discussed in de-
tail in Chapter 2 of this report spanned the same
range of accuracy as non-U.S. models, with
GFDL and CCSM models part of a small, ac-
curate subset. More encouraging results were
obtained by Vavrus et al. (2006), who assessed
the ability of seven global climate models to
simulate extreme cold-air outbreaks in the
Northern Hemisphere.

Attention also has been given to the ability of
regional climate models to simulate polar cli-
mate. In particular, the Arctic Regional Climate
Model Intercomparison Project (ARCMIP) en-
gaged a suite of Arctic regional atmospheric
models to simulate a common domain and pe-
riod over the western Arctic (Curry and Lynch
2002). Rinke et al. (2006) evaluated spatial and
temporal patterns simulated by eight ARCMIP
models and found that the model ensemble
agreed well with global reanalyses, despite
some large errors for individual models. Tjern-
strom et al. (2005) evaluated near-surface prop-
erties simulated by six ARCMP models. In
general, surface pressure, air temperature, hu-
midity, and wind speed all were well simulated,
as were radiative fluxes and turbulent momen-
tum flux. The research group also found that
turbulent heat flux was poorly simulated and
that, over an entire annual cycle, the accumu-
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lated turbulent heat flux simulated by models
was many times larger than the observed turbu-
lent heat flux (Fig. 5.6).

In global models, polar climate may be affected
by errors in simulating other planetary regions,
but much of the difference from observations
and the uncertainty about projected climate
change stem from current limitations in polar
simulation. These limitations include missing or
incompletely represented processes and poor
resolution of spatial distributions.

As with other regions, model resolution affects
simulation of important processes. In polar re-
gions, surface distributions of snow depth vary
markedly, especially when snow drifting occurs.
Improved snow models are needed to represent
such spatial heterogeneity (e.g., Liston 2004),
which will continue to involve scales smaller
than resolved for the foreseeable future. Frozen
ground, whether seasonally frozen or occurring
as permafrost, presents additional challenges.
Models for permafrost and seasonal soil freez-
ing and thawing are being implemented in land
surface models (see Chapter 2). Modeling soil
freeze and thaw continues to be a challenging
problem as characteristics of energy and water
flowing through soil affect temperature
changes. Such fluxes are poorly understood (Ya-
maguchi, Noda, and Kitoh 2005).

Frozen soil affects surface and subsurface hy-
drology, which influences the surface water’s
spatial distribution with attendant effects on
other parts of the polar climate system such as
carbon cycling (e.g., Gorham 1991; Aurela,
Laurila, Tuovinen 2004), surface temperature
(Krinner 2003), and atmospheric circulation
(Gutowski et al. 2007). The flow of fresh water
into polar oceans potentially alters their circu-
lation, too. Surface hydrology modeling typi-
cally includes, at best, limited representation of
subsurface water reservoirs (aquifers) and hor-
izontal flow of water both at and below the sur-
face. These features limit the ability of climate
models to represent changes in polar hydrology,
especially in the Arctic.

Vegetation has been changing in the Arctic
(Callaghan et al. 2004), and projected warming,
which may be largest in regions where snow and
ice cover retreat, may produce further changes



in vegetation (e.g., Lawrence and Slater 2005).
Current models use static distributions of vege-
tation, but dynamic vegetation models will be
needed to account for changes in land-atmos-
phere interactions influenced by vegetation.

A key concern in climate simulations is how
projected anthropogenic warming may alter
land ice sheets, whose melting could raise sea
levels substantially. At present, climate models
do not include ice-sheet dynamics (see Chapter
2), and thus cannot account directly for ways in
which ice sheets might change, possibly chang-
ing heat absorption from the sun and atmos-
pheric circulation in the vicinity of ice sheets.

Distributions of snow, ice sheets, surface water,
frozen ground, and vegetation have important
spatial variation on scales smaller than the res-
olutions of typical contemporary climate mod-
els. This need for finer resolution may be
satisfied by regional models simulating just a
polar region. Because both northern and south-
ern polar regions are within circumpolar at-
mospheric circulations (cf. Giorgi and Bi 2000
and Gutowski et al. 2007b), their coupling with
other regions is more limited than in the case of
midlatitude regions, which could allow polar-
specific models that focus on Antarctic and Arc-
tic processes, in part, to improve modeling of
surface-atmosphere exchange processes (Fig.
5.6). Although each process above has been
simulated in finer-scale, stand-alone models,
their interactions as part of a climate system
also need to be simulated and understood.

5.2.3.1 SeEA ICE

Sea ice plays a critical role in the exchange of
heat, mass, and momentum between ocean and
atmosphere, and any errors in the sea-ice sys-
tem will contribute to errors in other compo-
nents. Two recent papers (Holland and Raphael
2006; Parkinson, Vinnikov, and Cavalieri 20063,
b) quantify how current models simulate the cli-
mate system’s sea-ice process. Very limited ob-
servations make any evaluation of sea ice
difficult. The primary observation available is
sea-ice areal concentration. In some compar-
isons, sea-ice extent (the area where local ice
concentration is greater than 15%) is used. For
the past few decades, satellites have made it
possible to produce a more complete dataset of
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observations. Observations of ice extent were
fewer before that. Other quantities that might be
evaluated include ice thickness, but, due to lim-
ited observations, comparisons with models are
difficult and will not be discussed further here.

The seasonal pattern in ice growth and decay in
polar regions for all the models is reasonable
(Holland and Raphael 2006; see Fig. 5.7). How-
ever, a large amount of variability between mod-
els occurs in their representation of sea-ice
extent in both Northern and Southern hemi-
spheres. Generally, models do better in simulat-
ing the Arctic than the Antarctic region, as
shown with Fig. 5.8. An example of the com-
plex nature of reproducing the ice field is given
in Parkinson, Vinnikov, and Cavalieri (2006a,b),
which found that all models showed an ice-free
region in winter to the west of Norway, as seen
in observational data, but all also produced too
much ice north of Norway. The authors suggest
that this is because the North Atlantic Current is
not being simulated correctly. In a qualitative
comparison, Hudson Bay is ice covered in win-
ter in all models correctly reproducing the ob-
servations. The set of models having the most
fidelity in the Arctic is not the same as the set
having the most fidelity in the Antarctic. This
difference may be due to distinctive ice regimes
in the north and south or to differences in sim-
ulations of oceanic or meteorological circula-
tions in those regions.

Holland and Raphael (2006) examined carefully
the variability in Southern Ocean sea-ice extent.
As an indicator of ice response to large-scale at-
mospheric events, they compared data from a
set of IPCC AR4 climate models to the atmos-
pheric index SAM for the April-June (AMJ) pe-
riod (see Table 5.2). The models show that ice
variability does respond modestly to large-scale
atmosphere forcing but less than the limited ob-
servations show. Table 5.2 uses the U.S. models
to examine whether models exhibit the observed
out-of-phase buildup of ice between the Atlantic
and Pacific sectors (referred to as the Antarctic
Dipole).
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Figure 5.6. Cumulative 50 T T T T T
Fluxes of Surface

Sensible Heat (top

panel) and Latent Heat 0
(bottom) at the
SHEBA Site.

Data are from six models
simulating a western Arctic
domain for Sept. 1997
through Sept. 1998 for
ARCMIP. SHEBA
observations are gray shaded
regions; model results are
shown by the individual
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Table 5.2. Correlations

of the Leading Mode of AMJ SAM and High-Pass AMJ SAM and Detrended

A Filtered Fields Fields
Sea-Ice Variability and
Southern Annular Observations 0.47 0.47
Mode (SAM) for
Observations and CCSM3 0.40 0.44
Model Simulations GFDL-CM2.1 0.39 0.19
GISS-ER 0.30 0.20

The leading mode of sea-ice variability represents a shift of ice from the Atlantic to the Pacific
sector. Bold values are significant at the 95% level, accounting for autocorrelation of the time series.

[Table modified from Table 1, p. 19, in M.M. Holland and M.N. Raphael 2006: Twentieth Century
simulations of the Southern Hemisphere climate in coupled models. Part II: Sea ice conditions
and variability. Climate Dynamics, 26, 229-245. Reproduced with kind permission of Springer
Science and Business Media.]
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Figure 5.7. Annual Cycle
of Southern Hemisphere
Ice Extent.

It is defined as the area of ice
with concentrations greater
than 15%. Observations are
identified by the black curve
labeled “Obs,” while the results
from individual models are
identified by the six colored
curves. [From Fig. 1 in M.M.
Holland and M.N. Raphael 2006:
Twentieth Century simulations
of the Southern Hemisphere
climate in coupled models. Part
II: Sea ice conditions and
variability. Climate Dynamics, 26,
229-245. Reproduced with kind
permission of Springer Science
and Business Media.]

Figure 5.8. Difference
Between Modeled 1979
to 2004 Monthly Average
Sea-Ice Extents and
Satellite-Based
Observations (modeled
minus observed).

Data are shown for each of 11
major GCMs for both (a)
Northern Hemisphere and (b)
Southern Hemisphere. [From
Fig. 4 in C.L. Parkinson, K.Y.
Vinnnikov, and D.J. Cavalieri
2006: Correction to evaluation
of the simulation of the annual [
cycle of Arctic and Antarctic. F
J. Geophysical Research, 111,
C07012. Reproduced by
permission of the American
Geophysical Union (AGU).]
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Figure 5.9. Maps of
Simulation Errors in
Annual Mean SST.

Units are Kelvin (K). Errors
are computed as model
minus observations from
Reynolds SST data
(provided by NOAA-CIRES
Climate Diagnostics Center,
Boulder, Colorado, from
their Web site,
Wwww.cdc.noaa.gov). (a)
CM2.0 (using model years
101 to 200). (b) CM2.1
(using model years 101 to
200). Contour interval is

1 K, except for no shading
of values between 1 K and
+1 K. [Images from T.L.
Delworth et al. 2006:
GFDL's CM2 global coupled
climate models. Part 1:
Formulation and simulation
characteristics. J. Climate, 19,
643-684. Reproduced by
permission of the American
Meteorological Society.]
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5.2.4 Ocean Structure and
Circulation

Unlike the atmosphere, the amount of observa-
tional data available to evaluate ocean simula-
tions is very limited for long time periods.
Nevertheless, sufficient data exist to identify a
set of ocean characteristics or metrics to evalu-
ate ocean models for their climate simulation
properties. The most important is sea-surface
temperature, but other quantities that serve as
good indicators of ocean realism in climate
models are ocean heat uptake, meridional over-
turning and ventilation, sea-level variability, and
global sea-level rise.

5.2.4.1 SEA-SURFACE TEMPERATURE

Sea-surface temperature (SST) plays a critical
role in determining climate and the predictabil-
ity of climate changes. Because of interactions
in atmospheric and ocean circulations at the sur-
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face, errors in SSTs typically originate with de-
ficiencies in both atmospheric and ocean model
components. In general, more recent model ver-
sions show improvement over previous models
when simulated SST fields are compared to ob-
servations. Figure 5.9 (Delworth et al. 2006)
shows comparisons of simulated and observed
mean SST fields of both the older GFDL
CM2.0 and newer CM2.1 averaged over a 100-
year period. The new model reduced a cold bias
in the Northern Hemisphere from earlier simu-
lations, resulting in both a more-realistic repre-
sentation of atmospheric wind stress at the
ocean surface and a modified treatment of sub-
grid-scale oceanic mixing. The CCSM3.0
model’s improved SST simulation over
CCSM2.0 results mainly from changes in rep-
resenting processes associated with the mixed
layer of upper ocean waters (Danabasoglu et al.
2006).

Sea Surface Temperature: Model minus Observations
(a) CM2.0




In addition to SST mean values, 20t Century
trends of SST changes also are significant for
model evaluation, since ocean SST contributes
the dominant signal to the observed global sur-
face temperature trend. An intermodel compar-
ison of 50-year tropical SST trends is shown in
Fig. 5.10. Trends range from a low of 0.1°C/50
yrs to a high of about 0.6°C/50 yrs, with the ob-
servational trend estimate given as about
0.43°C/50 yrs. The figure also shows some ran-
domness within a group of simulations run by
the same model. For example, the two different
GFDL model versions discussed above were
each run for multiple realizations of the 20t
Century. CM 2.0 simulations are noted by
GFDL201, GFDL202, and GFDL203, and CM
2.1 simulations are noted by GFDL211,
GFDL212, and GFDL213.
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5.2.4.2 MerRIDIONAL OVERTURNING
CIRCULATION AND VENTILATION

The planetary-scale circulation transporting
heat and freshwater throughout global oceans is
referred to as global thermohaline circulation.
The Atlantic portion is called the Atlantic
meridional overturning circulation (AMOC).
Tropical and warm waters flow northward via
the Gulf Stream and North Atlantic Current.
Southward flow occurs when water is subducted
in regions around Labrador and Greenland; sur-
face waters freshen, become denser, and flow
down the slope to deeper depths. Similar
processes occur at locations in the Southern
Ocean. “Ventilation” is the name given to the
process by which these dense surface waters are
carried into the ocean interior. An important cli-
mate parameter is the rate at which this process
occurs. The pattern of circulation may weaken,
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Figure 5.10.Trends
and Standard
Deviations of
Tropical SST
Between 1950 and
1999.

Observations are shown
by the leftmost bar in
each figure. All others are
model results. Error bars
show 95% significance
levels for trends. [Images
from Fig. 9 in D. Zhang and
M.J. McPhaden 2006:
Decadal variability of the
shallow Pacific meridional
overturning circulation:
Relation to tropical sea-
surface temperatures in
observations and climate
change models. Ocean
Modelling, 15, 250-273.
Used with permission
from Elsevier.]
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affecting the climate in the region surrounding
the North Atlantic. Schmittner, Latif, and
Schneider (2005) examined a small ensemble
set of simulations to quantify uncertainty in
model representation of 20t Century AMOC
transports. To make their estimate, they evalu-
ated global temperature, global salinity, pycno-
cline depth, surface temperature, surface
salinity in the Atlantic (SST, SSS), and the over-
turning calculations at three Atlantic locations.
Their results suggest that temperature is simu-
lated most successfully on a large scale and that
the overturning transports at 24°N are close
(~18 Sv) to observed measurements (~15.8 Sv).
However, the maximum mean overturning
transports in these models are too high, between
21.2 and 31.7 Sv, when compared to the ob-
served value (17.7 Sv). Several other CMIP3
models underestimated maximum transport.
The authors do not attempt to explain why mod-
els are different from each other and from ob-
servations.

Another aspect of planetary-scale ocean circu-
lation of interest is transport of mass by the
Antarctic Circumpolar Current through the
Drake Passage. The passage, between the tip of
South America and the Antarctic Peninsula, pro-
vides a constrained passage to measure the flow
between two large ocean basins. Observed mean
transport is around 135 Sv (Cunningham et al.
2003). Russell, Stouffer, and Dixon (2006,
2007) estimate passage flow for a subset of cli-
mate models. Simulated mean values show a
wide range. For example, GFDL and GISS-EH
models do fairly well in reproducing the ob-
served average transport with values between
113 and 175 Sv. Once again, the interaction be-
tween the atmospheric and ocean component
models appears to be important in reproducing
the observed transport. The strength and loca-
tion of the zonal wind stress provided by the at-
mosphere correlate with how well the transport
reflects observed values.

5.2.4.3 NORTHWARD HEAT TRANSPORT

A common metric used to quantify the realism
in ocean models is the northward transport of
heat. This integrated quantity (from top to bot-
tom and across latitude bands) gives an estimate
of how heat moves within the ocean and is im-
portant in balancing the overall heat exchange
between the tropics and the extratropical regions
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of the Earth. The calculations for the ocean’s
northward heat transport in the current genera-
tion of climate models show that the models
reasonably represent the observations (Delworth
et al. 2006; Collins et al. 2006a; Schmidt et al.
2006). The current models have significantly
improved over the last generation in the North-
ern Hemisphere. Comparisons of simulated val-
ues to observed values for the North Atlantic are
within the uncertainty of the observations. In
the Southern Hemisphere, the comparisons in
all the models are not as good, with the Indian
Ocean transport estimates contributing to a sig-
nificant part of the mismatch. In coupled ocean-
atmosphere simulations, erroneous ocean heat
transport is compensated by changes in atmos-
pheric heat transport that give a more realistic
total heat transport (Covey and Thompson
1989).

Heat Content. The global mean mass-weighted
ocean temperature is called the ocean’s heat
content. Its time evolution is centrally important
in determining how realistically the models re-
produce heat uptake. The seasonal cycle and
longer-term trends of heat content provide use-
ful model metrics, although the seasonal cycle
does not affect the deep ocean. An evaluation of
temporally evolving ocean-heat content in the
CMIP3 suite of climate models shows the mod-
els’ abilities to simulate the zonally integrated
annual and semiannual cycle in heat content. In
the middle latitudes (Gleckler, Sperber, and
AchutaRao 2006), the models do a reasonable
job, although a broad spread of values is appar-
ent for tropical and polar regions. This analysis
showed that the models replicate the annual
cycle’s dominant amplitude along with its phas-
ing in the midlatitudes (Figs. 5.11 a-b and 5.12
a—f). At high latitudes, comparisons with obser-
vations are not as consistent. Although the an-
nual cycle and global trend are reproduced,
model analyses (e.g., Hansen et al. 20053, b)
show they do not simulate decadal changes in
estimates made from observations (Levitus et
al. 2001). Part of the difficulty of comparisons
at high latitudes and long periods is the paucity
of observational data (Gregory et al. 2004).
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Figure 5.11a-b.
Observed and
Simulated Zonally
Integrated Ocean
Heat Content
(0-250 m).
Observations are
represented by the curve
labeled “WOA04.” All
other curves are model
results. (a) annual cycle
amplitude (108 J/m?) and
(b) semiannual/annual
(A2/A1).[From Fig. 1 in PJ.
Gleckler, K.R. Sperber, and
K.AchutaRao 2006: Annual
cycle of global ocean heat
content: Observed and
simulated. J. Geophysical
Research, 111, C06008.
Reproduced by
permission of the
American Geophysical
Union (AGU).]
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Figure 5.12a—f. Annual Cycle of Observed and Simulated Basin Average Global Ocean Heat Content (0-250 m).

Observations are represented by the curves labeled “WOAOQ1” and “WOAO04.” Units are 1022 J. Arctic Ocean is defined as north of 60°N,
and Southern Ocean is south of 60°S. [From Fig. 3 in PJ. Gleckler, K.R. Sperber, and K.AchutaRao 2006: Annual cycle of global ocean heat
content: Observed and simulated. J. Geophysical Research, 111, C06008. Reproduced by permission of the American Geophysical Union
(AGU)]
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5.2.5 Global Mean Sea-Level Rise

Two separate physical processes contribute to
sea-level rising: (1) ocean thermal expansion
from an increase in ocean heat uptake (steric
component) and (2) addition of freshwater from
precipitation, continental ice melt, and river
runoff (eustatic component). Various ocean
models handle freshwater fluxes in different
ways. With the addition of a free surface in the
current generation of ocean models, freshwater
flux into oceans can be included directly
(Griffies et al. 2001). The freshwater contribu-
tion is computed in quantities estimated by the
climate model’s atmosphere and ice-sheet com-
ponents (e.g., Church, White, and Arblaster
2005; Gregory, Lowe, and Tett 2006). In gen-
eral, state-of-the-art climate models underesti-
mate the combined global mean sea-level rise
as compared to tide gauge and satellite altime-
ter estimates, while the rise for each separate
component is within the observed values’ un-
certainty. The reason for this is an open research
question and may relate either to observational
sampling or to incorrectly accounting for all eu-
static contributions. The steric component to
global mean sea-level rise is estimated at 0.40 +
0.05 mm/yr from observations (Antonov, Levi-
tus, and Boyer 2005). Models simulate a similar
but somewhat smaller rise (Gregory, Lowe, and
Tett 2006; Meehl et al. 2005). Significant dif-
ferences also occur in the magnitudes of
decadal variability between observed and simu-
lated sea level. Progress is being made, however,
over the previous generation of climate models.
When atmospheric effects from volcanic erup-
tions are included, for example, current-gener-
ation ocean models capture the volcanoes’
observed impact (a decrease in the global mean
sea level). Figure 5.13 from Church, White, and
Arblaster (2005) gives an example of a few
models and their detrended estimate of the his-
toric global mean sea level. It shows the influ-
ence of including additional atmospheric
forcing agents in changing the ocean’s steric
height.

5.3 EXTREME EVENTS

Flood-producing precipitation, drought, heat
waves, and cold waves have severe impacts on
North America. Flooding resulted in average
annual losses of $3.7 billion between 1983 and
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2003 (www.flooddamagedata.org). Losses from
the 1988 drought were estimated at $40 billion
and the 2002 drought at $11 billion. Heat waves
in 1995 resulted in 739 additional deaths in
Chicago alone (Whitman et al. 1997). A large
component of overall climate change impacts
probably will arise from changes in the inten-
sity and frequency of extreme events.

Modeling of extreme events poses special chal-
lenges since they are, by definition, rare. Al-
though the intensity and frequency of extreme
events are modulated by ocean and land surface
state and by trends in the mean climate state, in-
ternal atmospheric variability plays a very large
role, and the most extreme events arise from
chance confluence of unlikely conditions. The
very rarity of extreme events makes statistical
evaluation of model performance less robust
than for mean climate. For example, in evaluat-
ing a model’s ability to simulate heat waves as
intense as that in 1995, only a few episodes in
the entire 20t Century approach or exceed that
intensity (Kunkel et al. 1996). For such rare
events, estimates of the real risk are highly un-
certain, varying from once every 30 years to
once every 100 years or more. Thus, a model
that simulates these occurrences at a frequency
of once every 30 years may be performing ade-
quately, but its performance cannot be distin-
guished from that of the model that simulates a
frequency of once every 100 years.

Although it might be expected that a change in
mean climate conditions will apply equally to
changes in extremes, this is not necessarily the
case. Using as an example the 50-state record-
low temperatures, the decade with the largest
number of records is the 1930s, yet winters dur-
ing that decade averaged third warmest since
1890; in fact, no significant correlation is
shown between the number of records and U.S.
wintertime temperature (Vavrus et al. 2006).
Thus, the severest cold air outbreaks in the past
do not necessarily coincide with cold winters.
Another examination of model data showed that
future changes in extreme temperatures differ
from changes in mean temperature in many re-
gions (Hegerl et al. 2004). This means that cli-
mate model output must be analyzed explicitly
for extremes by examining daily (or even finer—
resolution) data, a resource-intensive effort.
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Figure 5.13. Observed and Modeled Global Ocean Heat Content (GOHC) and Global Mean Sea Level (GMSL)
for 1960 to 2000.

The response to volcanic forcing, as indicated by differences between pairs of PCM simulations for GOHC (a) and GMSL (b) is shown for
the ensemble mean (bold line) and the three ensemble members (light lines). Observational estimates of GOHC and GMSL are shown by
the black and blue bold lines. For a and b, all results are for the upper 300 m only and have been detrended over the period 1960 to 2000.
For c, the ensemble mean (full-depth) GMSL for GISS-ER, MIROC3.2(hires), MIROC3.2(medres), and PCM models (after subtracting a
quadratic) are shown. [From Fig. 2 in J.A. Church, N.J.White, and M. Arblaster 2005: Significant decadal-scale impact volcanic eruptions on
sea level and ocean heat content. Nature, 438(7064), 74-77. Used with permission from Nature Publishing Group.]
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Evaluation of model performance with respect
to extremes is hampered by incomplete data on
historical frequency and severity of extremes.
Frich et al. (2002) analyzed ten indicators of cli-
mate extremes and presented global results.
However, many areas were missing due to lack
of suitable station data, particularly in the trop-
ics. Using some of these indices for compar-
isons between models and observations has
become common. Another challenge for model
evaluation is the spatially averaged nature of
model data, representing an entire grid cell,
while station data represent point observations.
For some comparisons, averaging station data
over areas representing a grid cell is necessary.

Several approaches are used to evaluate model
performance for simulation of extremes. One
approach examines whether a model reproduces
the magnitude of extremes. For example, a daily
rainfall amount of 100 mm or more is expected
to occur about once every year in Miami, every
6 years in New York City, every 13 years in
Chicago, and every 200 years in Phoenix. A
useful metric would be the extent to which a
model is able to reproduce absolute magnitudes
and spatial variations of such extremes. A sec-
ond approach examines whether a model repro-
duces observed trends in extremes. Perhaps the
most prominent observed global trend is an in-
crease in the frequency of heavy precipitation,
particularly during the last 20 to 30 years of the
20 Century. This trend is significant at the 95%
confidence level for the period 1979 to 2003
and at the 99% confidence level for the period
1951 to 2003 (Trenberth et al. 2007). Another
notable observed trend is an increase in the
length of the frost-free season.

In some key respects, model simulation of tem-
perature extremes probably is less challenging
than simulating precipitation extremes, in large
part due to the scales of these phenomena. The
typical heat wave or cold wave covers a rela-
tively large region, on the order of several hun-
dred miles or more or a number of grid cells in
a modern climate model. By contrast, heavy
precipitation can be much more localized, often
extending over regions of much less than 150
km, or less than the size of a grid cell. Thus, the
modern climate model can simulate directly the
major processes causing temperature extremes
while heavy precipitation is sensitive to para-
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meterization of subgrid-scale processes, partic-
ularly convection (Chapter 2; Emori and Brown
2005; lorio et al. 2004).

5.3.1 DROUGHTS AND EXCESSIVE RAINFALL
LEADING TO FLOODS

Recent analysis indicates a globally averaged
trend toward greater areal coverage of drought
since 1972 (Dai et al. 2004). A simulation by
the HadCM3 model reproduces this dry trend
(Burke, Brown, and Christidis 2006) only if an-
thropogenic forcing is included. A control sim-
ulation indicates that the observed drying trend
is outside the range of natural variability. The
model, however, does not always correctly sim-
ulate the regional distributions of areas of in-
creasing wetness and dryness. The relationship
between droughts and variability was covered
above in Section 5.2.2.3 Monsoons.

Several different measures of excessive rainfall
have been used in analyses of model simula-
tions. A common one is the annual maximum
5-day precipitation amount, one of the Frich et
al. (2002) indices. This has been analyzed in
several recent studies (Kiktev et al. 2003;
Hegerl et al. 2004; Tebaldi et al. 2006). Other
analyses have examined thresholds of daily pre-
cipitation, either absolute (e.g., 50 mm/day in
Dai 2006) or percentile (e.g., 4h-largest precip-
itation event equivalent to 99t percentile of 365
daily values as in Emori et al. 2005). Recent
studies of model simulations produced for
CMIP3 provide information on the performance
of the latest model generation.

Models generally tend to underestimate very
heavy precipitation. This is shown in a compar-
ison between satellite (TRMM) estimates of
daily precipitation and model-simulated values
within the 50°S-50°N latitude belt (Dai 2006).
TRMM observations derive 7% of total precip-
itation from very heavy rainfall of 50 mm or
more per day, in contrast to only 0 to 2% for the
models. For the frequency of very heavy pre-
cipitation of 50 mm or more per day, TRMM
data show a frequency of 0.35% (about once
every 300 days), whereas it is 0.02 to 0.11%
(once every 900 to 5000 days) for the models. A
global analysis of model simulations showed
that models produced too little precipitation in
events exceeding 10 mm/day (Sun et al. 2006).
Examining how many days it takes to accumu-
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late two-thirds of annual precipitation, models
generally show too many days compared to ob-
servations over North America, although a few
models are close to reality. In contrast to the
general finding of a tendency toward underesti-
mation, a study (Hegerl et al. 2004) of two mod-
els indicates generally good agreement with
observed annual maximum 5-day precipitation
amounts over North America for HadCM3 and
even somewhat of an overestimation for
CGCM2.

This model tendency to produce rainfall events
less intense than observed appears to be due in
part to global models’ low spatial resolution.
Experiments with individual models show that
increasing resolution improves the simulation
of heavy events. For example, the fourth-largest
precipitation event in a model simulation with a
resolution of about 300 km averaged 40 mm
over the conterminous United States, compared
to an observed value of about 80 mm. When the
resolution was increased to 75 km and 50 km,
the fourth-largest event was still smaller than
observed but by a much smaller amount (lorio
etal. 2004). A second important factor is the pa-
rameterization of convection. Thunderstorms
are responsible for many intense events, but
their scale is smaller than the size of model
grids and thus must be indirectly represented in
models (Chapter 2). One experiment showed
that changes to this representation improve
model performance and, when combined with
high resolution of about 1.1° latitude, can pro-
duce quite-accurate simulations of the fourth-
largest precipitation event on a globally
averaged basis (Emori et al. 2005). Another ex-
periment found that the use of a cloud-resolv-
ing model imbedded in a global model
eliminated underestimation of heavy events
(lorio et al. 2004). A cloud-resolving model
eliminates the need for convection parameteri-
zation but is very expensive to run. These sets of
experiments indicate that the problem of heavy-
event underestimation may be reduced signifi-
cantly in future as increases in computer power
allow simulations at higher spatial resolution
and perhaps eventually the use of cloud-resolv-
ing models.

Improved model performance at higher spatial
resolutions provides motivation for use of re-
gional climate models when only a limited area,
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such as North America, is of interest. These
models have spatial resolution sufficient to re-
solve major mountain chains, and some thus
display considerable skill in areas where topog-
raphy plays a major role in spatial patterns. For
example, they are able to reproduce rather well
the spatial distribution of the magnitude or ex-
tent of precipitation in the 95t percentile (Leung
and Qian 2003), frequency of days with more
than 50 mm and 100 mm (Kim and Lee 2003),
frequency of days over 25 mm (Bell, Sloan, and
Snyder 2004), and annual maximum daily pre-
cipitation amount (Bell, Sloan, and Snyder
2004) over the western United States. Kunkel et
al. (2002) found that an RCM’s simulation of
extreme-event magnitude over the United States
varied spatially and depended on event duration.
There was a tendency for overestimation in
western United States and good agreement or
underestimation in central and eastern United
States.

Most studies of observed precipitation extremes
suggest that they have increased in frequency
and intensity during the latter half of the 20t
Century. A study by Tebaldi et al. (2006) indi-
cates that models generally simulate a trend to-
ward a world characterized by intensified
precipitation, with a greater frequency of heavy-
precipitation and high-quantile events, although
with substantial geographical variability. This is
in agreement with observations. Wang and Lau
(2006) find that CGCMs simulate an increasing
trend in heavy rain over the tropical ocean.

5.3.2 Heat and Cold Waves

Analyses of simulations for IPCC AR4 by seven
climate models indicate that they reproduce the
primary features of cold air outbreaks (CAOSs),
with respect to location and magnitude (Vavrus
et al. 2006). In the analyses, a CAO is an
episode of at least 2 days duration during which
the daily mean winter (December-January-
February) surface temperature at a gridpoint is
two standard deviations below the gridpoint’s
winter mean temperature. Maximum frequen-
cies of about four CAO days per winter are sim-
ulated over western North America and Europe,
while minimal occurrences of less than one day
per winter exist over the Arctic, northern Africa,
and parts of the North Pacific. GCMs generally
are accurate in their simulation of primary fea-



tures, with high pattern correlation to observa-
tions and maximum number of days meeting
CAO criteria around 4 per winter. One favored
region for CAQOs is in western North America,
extending from southern Alaska into the upper
Midwest. Here, models simulate a frequency of
about 4 CAO days per year, in general agree-
ment with the observed values of 3 to 4 days.
Models underestimate frequency in the south-
eastern United States (mean simulated values
range from 0.5 to 2 days vs 2 to 2.5 days in ob-
servations). This regional bias occurs in all
models and reflects the inability of GCMs to
penetrate Arctic air masses far enough south-
eastward over North America.

CMIP3 model simulations show a positive trend
for growing season, heat waves, and warm
nights and a negative trend for frost days and
daily temperature range (maximum minus min-
imum) (Tebaldi et al. 2006). The simulations in-
dicate that this is in general agreement with
observations, except that there is no observed
trend in heat waves. The modeled spatial pat-
terns generally have larger positive trends in
western North America than in eastern sections.
For the United States, this is in qualitative
agreement with observations showing that de-
creases in frost-free season and frost days are
largest in the western United States (Kunkel et
al. 2004; Easterling 2002).

Analysis of individual models provides a more
detailed picture of model performance. In a sim-
ulation from PCM (Meehl, Tebaldi, and Nychka
2004), the largest trends for decreasing frost
days occur in the western and southwestern
United States (values greater than —2 days per
decade). Trends near zero in the upper Midwest
and northeastern United States show good
agreement with observations. The biggest dis-
crepancy between model and observations is
over parts of the southeastern United States,
where the model shows trends for decreasing
frost days and observations show slight in-
creases. This is thought to be a partial conse-
quence of two large El Nifio events in
observations during this time period (1982-
1983 and 1997-1998) when anomalously cool
and wet conditions occurred over the southeast-
ern United States and contributed to slight in-
creases of frost days. The model’s ensemble
mean averages out effects from individual El
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Nifio events, and thus frost-day trends reflect a
more general response to forcings that occurred
during the latter part of the 20t Century. An
analysis of short-duration heat waves simulated
by PCM (Meehl and Tebaldi 2004) indicates
good agreement with observed heat waves for
North America. In that study, heat waves were
defined by daily minimum temperature. The
most intense events occurred in the southeastern
United States for both model simulation and ob-
servations. The overall spatial pattern of heat-
wave intensity in the model matched closely
with the observed pattern. In a four-member en-
semble of simulations from HadCM3 (Chris-
tidis et al. 2005), the model showed a rather
uniform pattern of increases in the warmest
night for 1950 to 1999. Observations also show
a global mean increase, but with considerable
regional variations. In North America, observed
trends in the warmest night vary from negative
in the south-central sections to strongly positive
in Alaska and western Canada, compared to a
rather uniform pattern in the model. However,
this discrepancy might be expected, since the
observations probably reflect a strong imprint
of internal climate variability that is reduced by
ensemble averaging of the model simulations.

Analysis of the magnitude of temperature ex-
tremes for California in a regional climate
model simulation (Bell, Sloan, and Snyder
2004) shows mixed results. The hottest maxi-
mum in the model is 4°C less than observations,
while the coldest minimum is 2.3°C warmer.
The number of days >32°C is 44 in the model
compared to an observed value of 71. This
could result from the lower diurnal temperature
range in the model (15.4°C observed vs 9.7°C
simulated). While these results are better than
the driving GCM, RCM results are still some-
what deficient, perhaps reflecting the study re-
gion’s very complex topography.

Models display some capability to simulate ex-
treme temperature and precipitation events, but
there are differences from observed character-
istics. Models typically produce global in-
creases in extreme precipitation and severe
drought and decreases in extreme minimum
temperatures and frost days, in general agree-
ment with observations. Models have a general,
though not universal, tendency to underestimate
the magnitude of heavy precipitation events.
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Regional-trend features are not always captured.
Since the causes of observed regional-trend
variations are not known in general and such
trends could be due in part to the climate sys-
tem’s stochastic variability, assessing the sig-
nificance of these discrepancies is difficult.
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