Scheduling Jobs on Grid Processors

Joan Boyar

Lene M. Favrholdt

Department of Mathematics and Computer Science University of Southern Denmark, Odense

The Grid

Grid computing:

- wide area distributed computing
- "A New Infrastructure for 21st Century Science"
- built on the Internet
- analogous to electical power grid
 - source and location of processors invisible
 - request resources (processors with memory)
 - pay for resources used

Grid Scheduling Problem

- Jobs: J_1 , J_2 ,..., J_n given initially job J_i has requirement p_i
- Processors: P_1 , P_2 ,..., P_k arrive online processor P_j has capacity c_j
- Goal: Minimize total capacity of processors used

Grid Scheduling Problem

- Jobs: J_1 , J_2 ,..., J_n given initially job J_i has requirement p_i
- Processors: P_1 , P_2 ,..., P_k arrive online processor P_j has capacity c_j
- Goal: Minimize total capacity of processors used

Bin Packing Problem [G. Zhang '97]

- Items: sizes $\in \{1, 2, ..., B\}$: $s_1, s_2, ..., s_n$
- **• Bins:** sizes $\in \{1, 2, ..., B\}$: $b_1, b_2, ..., b_k$
 - arrive on-line
 - pack current bin before next arrives
- Goal: Minimize total size of bins used
- Restriction: Must use bin if any remaining item fits

Competitive Ratio

A is *c*-competitive if for any input seq. I,

$$\mathbb{A}(I) \leq c \cdot \mathsf{OPT}(I) + b.$$

optimal off-line algorithm

constant

The competitive ratio of $\mathbb A$ is

 $CR_{\mathbb{A}} = \inf \{ c \mid \mathbb{A} \text{ is } c \text{-competitive} \} .$

Grid Scheduling Algorithms

- FFI First-Fit Increasing
- FFD First-Fit Decreasing
 - searches entire list of items
- FFD_{α} (1/2 < $\alpha \le 1$)
 - try FFD for each item size B, B 1, ..., 1
 - stop looking if bin filled to $\geq \alpha$
 - $\alpha \leq 1/2$: FFD $_{\alpha}$ same as FFD
 - $\alpha < 3/4$: FFD_{α} "same" as FFD on identical bins
 - $\alpha > 3/4$: can be worse than FFD on identical bins

FFI — First-Fit Increasing

```
B = 40.
Item sizes: 4 \times [11], 4 \times [20]
Bin sizes: 4 \times [20], 4 \times [11], 4 \times [39]
```


Result:

Asymptotically, FFI uses 2 times what OPT (FFD) uses.

FFD — **First-Fit Decreasing**

B = 16. Input sizes: $[12], 2 \times [8], 4 \times [6], 8 \times [5]$ Bin sizes: $[16], 2 \times [12], 4 \times [10], [12], 6 \times [9]$

Result:

FFD uses ≈ 2 times what OPT uses. [G. Zhang]

B = 16. Input sizes: $[12], 2 \times [8], 4 \times [6], 8 \times [5]$ Bin sizes: $[16], 2 \times [12], 4 \times [10], [12], 6 \times [9]$

Partial result:

 $FFD_{2/3}$ treats items [12], [8], [8] as FFD. But not [6].

B = 16. Input sizes: $[12], 2 \times [8], 4 \times [6], 8 \times [5]$ Bin sizes: $[16], 2 \times [12], 4 \times [10], [12], 6 \times [9]$

Result:

Items of size 5 paired in bins of size 10.

B = 60.Input sizes: $n \times [40], 2n \times [30]$ Bin sizes: $n \times [60], n \times [40], n \times [59]$

Result:

 $\mathsf{FFD}_{2/3}$ uses $n \times 159$.

FFD $_{3/4}$ — **First-Fit Decreasing** $_{3/4}$

```
B = 60.
Input sizes: n \times [40], 2n \times [30]
Bin sizes: n \times [60], n \times [40], n \times [59]
```


Result:

 $\mathsf{FFD}_{3/4} \text{ uses } n \times 100. \ \mathsf{CR}_{FFD_{\alpha}} \geq \frac{2+\alpha}{1+\alpha}.$

B = 120.Input sizes: $2n \times [60], 6n \times [29]$ Bin sizes: $2n \times [88], 6n \times [57], n \times [120]$

Result:

 $\mathsf{FFD}_{2/3} \text{ uses } n \times 518.$

FFD $_{3/4}$ — **First-Fit Decreasing** $_{3/4}$

B = 120.Input sizes: $2n \times [60], 6n \times [29]$ Bin sizes: $2n \times [88], 6n \times [57], n \times [120]$

Result:

 $\mathsf{FFD}_{3/4} \text{ uses } n \ \times \ 416. \ \mathsf{CR}_{FFD_{2/3}} \geq \frac{2(3s-2)+6(2s-3)}{2(3s-2)+4s} \approx 1.8.$

Competitive Ratio — **Results**

- $CR_{FFI} = CR_{FFD} = 2$. [G. Zhang]
- For $\alpha \leq \frac{r-1}{r}$, $\frac{3r}{2r-1} \leq \mathsf{CR}_{\mathsf{FFD}_{\alpha}}$.
- $1.8 \le CR_{FFD_{2/3}} \le 13/7 \approx 1.857.$
- $CR_A \leq 2$ for any "reasonable" A. [G. Zhang]
- $CR_{\mathbb{A}} \geq 5/4$ for any deterministic A.

Relative Worst Order Ratio

 $\mathbb{A}_{\mathsf{W}}(I): \mathbb{A}$'s performance on worst permutation of I, i.e., $\mathbb{A}_{\mathsf{W}}(I) = \max_{\sigma} \{\mathbb{A}(\sigma(I))\}.$

Relative Worst Order Ratio

Competitive Ratio:

$$\mathsf{CR}_{\mathbb{A}} = \max_{\mathbf{I}} \frac{\mathbb{A}(\mathbf{I})}{\mathsf{OPT}(\mathbf{I})}$$

Relative Worst Order Ratio:

$$\mathsf{WR}_{\mathbb{A}} = \max_{I} \frac{\max_{\sigma} \left\{ \mathbb{A}(\sigma(I)) \right\}}{\max_{\sigma} \left\{ \mathbb{B}(\sigma(I)) \right\}}$$

Relative Worst Order Ratio — Results

- FFD is better than FFI
- FFD $_{\alpha}$ is better than FFI
- FFD and FFD_{α} are incomparable

Open Problems

- Best α for FFD $_{\alpha}$?
- Exact competitive ratio of FFD_{α} ?
- Other algorithms?

Paging Results w. RWOR

- New algorithm RLRU better than LRU
- LRU better than FWF
- Look-ahead helps

Other Results w. RWOR

Bin Packing: Worst-Fit better than Next-Fit.

Dual Bin Packing: First-Fit better than Worst-Fit.

Bin Coloring: Greedy better than keeping only one open bin.

Scheduling – minimizing makespan on two related machines: Post-Greedy better than using only fast machine.

Proportional Price Seat Reservation:

First-Fit better than Worst-Fit.