Scheduling Jobs on Grid Processors

Joan Boyar
Lene M. Favrholdt

Department of Mathematics and Computer Science
University of Southern Denmark, Odense

The Grid

Grid computing:

- wide area distributed computing
- "A New Infrastructure for 21st Century Science"
- built on the Internet
- analogous to electical power grid
- source and location of processors invisible
- request resources (processors with memory)
- pay for resources used

Grid Scheduling Problem

- Jobs: $J_{1}, J_{2}, \ldots, J_{n}$ given initially job J_{i} has requirement p_{i}
- Processors: $P_{1}, P_{2}, \ldots, P_{k}$ arrive online processor P_{j} has capacity c_{j}
- Goal: Minimize total capacity of processors used

Grid Scheduling Problem

- Jobs: $J_{1}, J_{2}, \ldots, J_{n}$ given initially job J_{i} has requirement p_{i}
- Processors: $P_{1}, P_{2}, \ldots, P_{k}$ arrive online processor P_{j} has capacity c_{j}
- Goal: Minimize total capacity of processors used

Bin Packing Problem [G. Zhang '97]

- Items: sizes $\in\{1,2, \ldots, B\}: s_{1}, s_{2}, \ldots, s_{n}$
- Bins: sizes $\in\{1,2, \ldots, B\}: b_{1}, b_{2}, \ldots, b_{k}$
- arrive on-line
- pack current bin before next arrives
- Goal: Minimize total size of bins used
- Restriction: Must use bin if any remaining item fits

Competitive Ratio

\mathbb{A} is c-competitive if for any input seq. I,

$$
\begin{aligned}
& \mathbb{A}(I) \leq c \cdot \mathrm{OPT}(I)+b . \\
& \text { constant }
\end{aligned}
$$

optimal off-line algorithm

The competitive ratio of \mathbb{A} is
$\mathrm{CR}_{\mathbb{A}}=\inf \{c \mid \mathbb{A}$ is c-competitive $\}$.

Grid Scheduling Algorithms

- FFI — First-Fit Increasing
- FFD - First-Fit Decreasing
- searches entire list of items
- $\mathrm{FFD}_{\alpha} \quad(1 / 2<\alpha \leq 1)$
- try FFD for each item size $B, B-1, \ldots, 1$
- stop looking if bin filled to $\geq \alpha$
- $\alpha \leq 1 / 2: \mathrm{FFD}_{\alpha}$ same as FFD
- $\alpha<3 / 4: \mathrm{FFD}_{\alpha}$ "same" as FFD on identical bins
e $\alpha>3 / 4$: can be worse than FFD on identical bins

FFI — First-Fit Increasing

$B=40$.
Item sizes: $4 \times[11], 4 \times[20]$
Bin sizes: $4 \times[20], 4 \times[11], 4 \times[39]$

Result:

Asymptotically, FFI uses 2 times what OPT (FFD) uses.

FFD — First-Fit Decreasing

$B=16$.
Input sizes: [12], $2 \times[8], 4 \times[6], 8 \times[5]$ Bin sizes: [16], $2 \times[12], 4 \times[10],[12], 6 \times[9]$

Result:

FFD uses ≈ 2 times what OPT uses. [G. Zhang]

$\mathbf{F F D}_{2 / 3}$ - First-Fit Decreasing ${ }_{2 / 3}$

$B=16$.
Input sizes: [12], $2 \times[8], 4 \times[6], 8 \times[5]$ Bin sizes: [16], $2 \times[12], 4 \times[10],[12], 6 \times[9]$

Partial result:

$\mathrm{FFD}_{2 / 3}$ treats items $[12],[8],[8]$ as FFD. But not [6].

$\mathbf{F F D}_{2 / 3}$ - First-Fit Decreasing ${ }_{2 / 3}$

$B=16$.
Input sizes: [12], $2 \times[8], 4 \times[6], 8 \times[5]$ Bin sizes: [16], $2 \times[12], 4 \times[10],[12], 6 \times[9]$

Result:

Items of size 5 paired in bins of size 10.

$\mathbf{F F D}_{2 / 3}$ - First-Fit Decreasing ${ }_{2 / 3}$

$B=60$.
Input sizes: $n \times[40], 2 n \times[30]$
Bin sizes: $n \times[60], n \times[40], n \times[59]$

Result:

$\mathrm{FFD}_{2 / 3}$ uses $n \times 159$.

$\mathbf{F F D}_{3 / 4}$ - First-Fit Decreasing ${ }_{3 / 4}$

$B=60$.
Input sizes: $n \times[40], 2 n \times[30]$
Bin sizes: $n \times[60], n \times[40], n \times[59]$

Result:

$\mathrm{FFD}_{3 / 4}$ uses $n \times 100 . \mathrm{CR}_{F F D_{\alpha}} \geq \frac{2+\alpha}{1+\alpha}$.

$\mathbf{F F D}_{2 / 3}$ - First-Fit Decreasing ${ }_{2 / 3}$

$B=120$.
Input sizes: $2 n \times[60], 6 n \times[29]$
Bin sizes: $2 n \times[88], 6 n \times[57], n \times[120]$

Result:

$\mathrm{FFD}_{2 / 3}$ uses $n \times 518$.

$\mathbf{F F D}_{3 / 4}$ - First-Fit Decreasing ${ }_{3 / 4}$

$B=120$.
Input sizes: $2 n \times[60], 6 n \times[29]$
Bin sizes: $2 n \times[88], 6 n \times[57], n \times[120]$

Result:

$\mathrm{FFD}_{3 / 4}$ uses $n \times 416 . \mathrm{CR}_{F F D_{2 / 3}} \geq \frac{2(3 s-2)+6(2 s-3)}{2(3 s-2)+4 s} \approx 1.8$.

Competitive Ratio - Results

- $\quad \mathrm{CR}_{\text {FFI }}=\mathrm{CR}_{\text {FFD }}=2$. [G. Zhang]
- For $\alpha \leq \frac{r-1}{r}, \frac{3 r}{2 r-1} \leq \mathrm{CR}_{\mathrm{FFD}_{\alpha}}$.
- $1.8 \leq \mathrm{CR}_{\mathrm{FFD}_{2 / 3}} \leq 13 / 7 \approx 1.857$.
- $\quad \mathrm{CR}_{\mathbb{A}} \leq 2$ for any "reasonable" \mathbb{A}. [G. Zhang]
- $\mathrm{CR}_{\mathbb{A}} \geq 5 / 4$ for any deterministic \mathbb{A}.

Relative Worst Order Ratio

$\mathbb{A}_{\mathrm{W}}(I)$: \mathbb{A}^{\prime} s performance on worst permutation of I, i.e., $\mathbb{A}_{\mathbf{W}}(I)=\max _{\sigma}\{\mathbb{A}(\sigma(I))\}$.

[Boyar,Favrholdt: CIAC 03]
If $\mathbb{A}_{\mathrm{W}}(I) \geq \mathbb{B}_{\mathrm{W}}(I)-b$ for all I,
$\mathrm{WR}_{\mathbb{A}, \mathbb{B}}=\inf \left\{c \mid \mathbb{A}_{\mathrm{W}}(I) \leq c \cdot \mathbb{B}_{\mathrm{W}}(I)+b\right.$ for all $\left.I\right\}$.

Relative Worst Order Ratio

Competitive Ratio:

$$
\mathrm{CR}_{\mathbb{A}}=\max _{I} \frac{\mathbb{A}(I)}{\mathrm{OPT}(I)}
$$

Relative Worst Order Ratio:

$$
\mathbf{W R}_{\mathbb{A}}=\max _{I} \frac{\max _{\sigma}\{\mathbb{A}(\sigma(I))\}}{\max _{\sigma}\{\mathbb{B}(\sigma(I))\}}
$$

Relative Worst Order Ratio — Results

- FFD is better than FFI
- FFD_{α} is better than FFI
- FFD and FFD_{α} are incomparable

Open Problems

- Best α for FFD $_{\alpha}$?
- Exact competitive ratio of FFD_{α} ?
- Other algorithms?

Paging Results w. RWOR

- New algorithm RLRU - better than LRU
- LRU better than FWF
- Look-ahead helps

Other Results w. RWOR

Bin Packing:
Worst-Fit better than Next-Fit.
Dual Bin Packing:
First-Fit better than Worst-Fit.
Bin Coloring:
Greedy better than keeping only one open bin.
Scheduling - minimizing makespan on two related machines:
Post-Greedy better than using only fast machine.
Proportional Price Seat Reservation:
First-Fit better than Worst-Fit.

