$$\psi(2S)$$

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

See the Review on " $\psi(2S)$ and $\chi_{\rm C}$ branching ratios" before the $\chi_{\rm C0}(1P)$ Listings.

$\psi(2S)$ MASS

OUR FIT includes me	asurements of $m_{\psi(2S)}$, $m_{\psi(3770)}$, and $m_{\psi(3770)} - m_{\psi(2S)}$.
VALUE (MeV)	EVTS DOCUMENT ID TECN COMMENT
3686.09 ±0.04 OUR FIT	Error includes scale factor of 1.6.
3686.093±0.034 OUR AVE	RAGE Error includes scale factor of 1.4. See the ideogram
$3686.111 \pm 0.025 \pm 0.009$	AULCHENKO 03 KEDR $e^+e^- \rightarrow hadrons$
3685.95 ± 0.10	413 ¹ ARTAMONOV 00 OLYA $e^+e^- \rightarrow$ hadrons
$3685.98 \pm 0.09 \pm 0.04$	² ARMSTRONG 93B E760 $\overline{p}p \rightarrow e^+e^-$
• • • We do not use the fo	llowing data for averages, fits, limits, etc. $ullet$ $ullet$
3686.00 ± 0.10	413 ³ ZHOLENTZ 80 OLYA e^+e^-
¹ Reanalysis of ZHOLENT rections (KURAEV 85).	ΓZ 80 using new electron mass (COHEN 87) and radiative cor-
ARMSTRONG 03B usin	systematic error recalculated by us according to Eq. (10) in $\log the value for the 1/\psi(1S)$ mass from ALIL CHENKO 03
³ Superseded by ARTAM	DNOV 00.
i j	
WEIGHTED AVER 3686.093±0.034 (E	AGE Fror scaled by 1.4)
	Values above of weighted average, error, and scale factor are based upon the data in this ideogram only. They are not neces- sarily the same as our 'best' values, obtained from a least-squares constrained fit utilizing measurements of other (related) quantities as additional information.
	$\begin{array}{c c} & \chi^{2} \\ \hline & \chi^{2} \\$
3685.6 3685.8	3686 3686.2 3686.4 3686.6
$\psi(2S)$ mass (Me	eV)

$m_{\psi(2S)} - m_{J/\psi(1S)}$

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
589.188 ± 0.028 OUR AVERAGE				
$589.194 \!\pm\! 0.027 \!\pm\! 0.011$	⁴ AULCHENKO	03	KEDR	$e^+e^- ightarrow$ hadrons
589.7 ±1.2	LEMOIGNE	82	GOLI	185 π^- Be $\rightarrow \gamma \mu^+ \mu^-$ A
589.07 ± 0.13	⁴ ZHOLENTZ	80	OLYA	e ⁺ e ⁻
588.7 ±0.8	LUTH	75	MRK1	
$\bullet~\bullet~$ We do not use the followi	ng data for avera	ges, fi	its, limits	s, etc. ● ● ●
588 ±1	⁵ BAI	98E	BES	e ⁺ e ⁻

 4 Redundant with data in mass above. 5 Systematic errors not evaluated.

$\psi(2S)$ WIDTH

VALUE (keV)	EVTS	DOCUMENT ID		TECN	COMMENT
317± 9 OUR FIT					
286 ± 16 OUR AVERAGE					
$358\pm88\pm$ 4		ABLIKIM	08 B	BES2	$e^+e^- ightarrow$ hadrons
$290\pm25\pm$ 4	2.7k	ANDREOTTI	07	E835	$p \overline{p} ightarrow e^+ e^-$, $J/\psi X$
$331{\pm}58{\pm}2$		ABLIKIM	06L	BES2	$e^+e^- ightarrow$ hadrons
264 ± 27		⁶ BAI	0 2B	BES2	e ⁺ e ⁻
$287 \pm 37 \pm 16$		⁷ ARMSTRONG	93 B	E760	$\overline{p} p \rightarrow e^+ e^-$
⁶ From a simultaneous	fit to the	hadronic and μ^+	μ^- c	ross sect	ion, assuming $\Gamma = \Gamma_h +$
$\Gamma_{e}+\Gamma_{\mu}+\Gamma_{ au}$ and (epton univ	ersality. Does not	incluc	le vacuu	m polarization correction.

⁷ The initial-state radiation correction reevaluated by ANDREOTTI 07 in its Ref. [4].

$\psi(2S)$ DECAY MODES

	Mode	Fraction (Γ_i/Γ)	Scale factor/ Confidence level
Γ_1	hadrons	(97.85±0.13) %	
Г ₂ Г ₃	virtual $\gamma ightarrow $ hadrons light hadrons	(1.73±0.14) %	S=1.5
Γ ₄	e^+e^-	$(7.52 \pm 0.17) imes 10$	-3
Г ₅ Г ₆	$\mu^+ \mu^- \ au^+ au^-$	$(\begin{array}{ccc} 7.5 \ \pm 0.8 \end{array}) imes 10 \ (\begin{array}{ccc} 3.0 \ \pm 0.4 \end{array}) imes 10 \end{array}$	–3 –3

Decays into $J/\psi(1S)$ and anything

$ \begin{array}{lll} & \Gamma_8 & J/\psi(1S) \text{neutrals} & (23.5 \pm 0.4) \% \\ & \Gamma_9 & J/\psi(1S) \pi^+ \pi^- & (32.6 \pm 0.5) \% \\ & \Gamma_{10} & J/\psi(1S) \pi^0 \pi^0 & (16.84 \pm 0.33) \% \\ & \Gamma_{11} & J/\psi(1S) \eta & (3.16 \pm 0.07) \% \\ & \Gamma_{12} & J/\psi(1S) \pi^0 & (1.26 \pm 0.13) \times 10^{-3} & \text{S=1.3} \end{array} $	Γ ₇	$J/\psi(1S)$ anything	(57.4 ± 0.9)%	
$ \begin{array}{lll} & \Gamma_9 & J/\psi(1S) \pi^+ \pi^- & (32.6 \pm 0.5) \% \\ & \Gamma_{10} & J/\psi(1S) \pi^0 \pi^0 & (16.84 \pm 0.33) \% \\ & \Gamma_{11} & J/\psi(1S) \eta & (3.16 \pm 0.07) \% \\ & \Gamma_{12} & J/\psi(1S) \pi^0 & (1.26 \pm 0.13) \times 10^{-3} & \text{S=1.3} \end{array} $	Г ₈	$J/\psi(1S)$ neutrals	(23.5 ± 0.4) %	
$ \begin{array}{lll} & \Gamma_{10} & J/\psi(1S)\pi^{0}\pi^{0} & (16.84\pm0.33)\% \\ & \Gamma_{11} & J/\psi(1S)\eta & (3.16\pm0.07)\% \\ & \Gamma_{12} & J/\psi(1S)\pi^{0} & (1.26\pm0.13)\times10^{-3} & \text{S=1.3} \end{array} $	Г9	$J/\psi(1S)\pi^+\pi^-$	(32.6 ± 0.5) %	
$ \begin{array}{ll} \Gamma_{11} & J/\psi(1S)\eta & (\ 3.16\pm 0.07) \ \% \\ \Gamma_{12} & J/\psi(1S)\pi^0 & (\ 1.26\pm 0.13)\times 10^{-3} & \text{S}{=}1.3 \end{array} $	Γ ₁₀	$J/\psi(1S)\pi^0\pi^0$	(16.84±0.33) %	
$\Gamma_{12} J/\psi(1S)\pi^0$ (1.26±0.13)×10 ⁻³ S=1.3	Γ_{11}	$J/\psi(1S)\eta$	(3.16±0.07) %	
	Γ_{12}	$J/\psi(1S)\pi^0$	$(1.26\pm0.13) imes10^{-3}$	S=1.3

HTTP://PDG.LBL.GOV

Hadronic decays

Γ ₁₃	$3(\pi^+\pi^-)\pi^0$	(3.5 ± 1.6) $ imes 10^{-3}$	
Γ_{14}	$2(\pi^+\pi^-)\pi^0$	(2.9 ± 1.0) $ imes 10^{-3}$	S=4.6
Γ ₁₅	$\rho_{a_2}(1320)$	$(2.6 \pm 0.9) \times 10^{-4}$	
Γ_{16}	$p\overline{p}$	$(2.74\pm0.12)\times10^{-4}$	
Γ_{17}	$\Delta^{++}\overline{\Delta}^{}$	$(1.28\pm0.35)\times10^{-4}$	
Γ_{18}	$\Lambda \overline{\Lambda} \pi^0$	$<$ 1.2 $\times 10^{-4}$	CL=90%
Γ ₁₉	$\Lambda \overline{\Lambda} \eta$	$<$ 4.9 $\times 10^{-5}$	CL=90%
Γ_{20}	$\Lambda \overline{p} K^+$	$(1.00\pm0.14) imes 10^{-4}$	
Γ_{21}	$\Lambda \overline{p} K^+ \pi^+ \pi^-$	$(1.8 \pm 0.4) \times 10^{-4}$	
Γ ₂₂	$\Lambda \overline{\overline{\Lambda}} \pi^+ \pi^-$	$(2.8 \pm 0.6) \times 10^{-4}$	
Γ_{23}	$\Lambda \overline{\Lambda}$	$(2.8 \pm 0.5) \times 10^{-4}$	S=2.6
Γ ₂₄	$\Sigma^+ \overline{\Sigma}^-$	$(2.6 \pm 0.8) \times 10^{-4}$	
Γ_{25}	$\Sigma^0 \overline{\Sigma}^0$	$(2.2 \pm 0.4) \times 10^{-4}$	S=1.5
Γ ₂₆	$\Sigma(1385)^{+} \overline{\Sigma}(1385)^{-}$	$(1.1 \pm 0.4) \times 10^{-4}$	
Γ ₂₇	$\Xi^{-}\overline{\Xi}^{+}$	$(1.8 \pm 0.6) \times 10^{-4}$	S=2.8
Γ_{28}	$\underline{=}^0 \underline{\underline{=}}^0$	$(2.8 \pm 0.9) \times 10^{-4}$	
Γ ₂₀	$\Xi(1530)^0 \overline{\Xi}(1530)^0$	$< 8.1 \times 10^{-5}$	CL=90%
Γ ₂₀	$\Omega^{-}\overline{\Omega}^{+}$	$< 7.3 \times 10^{-5}$	CL=90%
Γ ₂₁	$\pi^0 p \overline{p}$	$(1.33\pm0.17)\times10^{-4}$	
· 31	$n \overline{D}$	$(6.0 \pm 1.2) \times 10^{-5}$	
Γ <u>22</u>	ωσσ	$(6.9 + 2.1) \times 10^{-5}$	
Γ ₃₄	$\phi \overline{\rho}$	$< 2.4 \times 10^{-5}$	CL=90%
Γ35	$\pi^+\pi^ p\overline{p}$	$(6.0 \pm 0.4) \times 10^{-4}$	
Гз <u>а</u>	$p\overline{n}\pi^-$ or c.c.	$(2.48\pm0.17)\times10^{-4}$	
Γ37	$p\overline{n}\pi^{-}\pi^{0}$	$(3.2 \pm 0.7) \times 10^{-4}$	
57 [38	$2(\pi^{+}\pi^{-}\pi^{0})$	$(4.7 \pm 1.5) \times 10^{-3}$	
Γ30	$n\pi^+\pi^-$	$<$ 1.6 $\times 10^{-4}$	CL=90%
Γ40	$n\pi^+\pi^-\pi^0$	$(9.5 \pm 1.7) \times 10^{-4}$	
Γ ₄₁	$2(\pi^{+}\pi^{-})\eta$	$(1.2 \pm 0.6) \times 10^{-3}$	
	$n'\pi^{+}\pi^{-}\pi^{0}$	$(4.5 \pm 2.1) \times 10^{-4}$	
Γ_{13}	$\omega \pi^+ \pi^-$	$(7.3 \pm 1.2) \times 10^{-4}$	S=2.1
Γлл	$b_1^{\pm}\pi^{\mp}$	$(4.0 \pm 0.6) \times 10^{-4}$	S=1.1
	$b_{0}^{0}\pi^{0}$	$(24 \pm 06) \times 10^{-4}$	
' 45 Г.с	$\omega_1 / \omega_{f_2}(1270)$	$(2.2 \pm 0.4) \times 10^{-4}$	
ч 46 Г	$\pi^{+}\pi^{-}K^{+}K^{-}$	$(2.2 \pm 0.4) \times 10^{-4}$	S—1 0
ч 47 Г. а	$^{\circ}0$ K + K -	$(7.5 \pm 0.9) \times 10^{-4}$	5=1.9
ч 48 Г. а	$F = K + (802)^0 K + (1/30)^0$	$(2.2 \pm 0.4) \times 10^{-4}$	
г 49 Г	$K^{+} K^{-} - +$	$(1.9 \pm 0.3) \times 10^{-3}$	
I 50	$\kappa + \kappa - \pi + \pi - \eta$ $\kappa + \kappa - 2(-+) = 0$	$(1.3 \pm 0.7) \times 10^{-3}$	
51 51	$\kappa + \kappa = 2(\pi + \pi)\pi^{*}$	$(1.00\pm0.31)\times10^{-3}$	
1 ₅₂	$h + h = 2(\pi + \pi)$ $K = (1270)^{+} K^{\pm}$	$(1.8 \pm 0.9) \times 10^{-3}$	
I 53	$\kappa_1(12/0)^+ K^+$	$(1.00\pm0.28)\times10^{-5}$	
I 54	$\kappa_{\tilde{S}}\kappa_{\tilde{S}}\pi'\pi$	$(2.2 \pm 0.4) \times 10^{-4}$	
I 55	$ ho^{\circ} p \overline{p}$	$(5.0 \pm 2.2) \times 10^{-5}$	

HTTP://PDG.LBL.GOV

Created: 7/17/2008 18:14

Г ₉₆	$\Theta(1540)\overline{\Theta}(1540) \rightarrow K^0_{S} p K^- \overline{n} +$	< 8.8	imes 10 ⁻⁶	CL=90%
Γ ₉₇ Γ ₉₈ Γ ₉₉ Γ ₁₀₀ Γ ₁₀₁	$ \begin{array}{l} \Theta(1540) K^{-} \overline{n} \to K^{0}_{S} p K^{-} \overline{n} \\ \Theta(1540) K^{0}_{S} \overline{p} \to K^{0}_{S} \overline{p} K^{+} n \\ \overline{\Theta}(1540) K^{+} n \to K^{0}_{S} \overline{p} K^{+} n \\ \overline{\Theta}(1540) K^{0}_{S} p \to K^{0}_{S} p K^{-} \overline{n} \\ K^{0}_{S} K^{0}_{S} \end{array} $	$< 1.0 \\ < 7.0 \\ < 2.6 \\ < 6.0 \\ < 4.6$	$ imes 10^{-5} \ imes 10^{-6} \ imes 10^{-5} \ imes 10^{-6} \ imes 10^{-6} \ imes 10^{-6}$	CL=90% CL=90% CL=90% CL=90%

Radiative decays

Γ ₁₀₂	$\gamma \chi_{c0}(1P)$	(9.4 ±0.4)%	
Γ ₁₀₃	$\gamma \chi_{c1}(1P)$	$(8.8 \pm 0.4)\%$	
Γ ₁₀₄	$\gamma \chi_{c2}(1P)$	(8.3 ± 0.4) %	
Γ ₁₀₅	$\gamma \eta_c(1S)$	(3.0 \pm 0.5) $ imes$ 10 $^{-3}$	
Γ ₁₀₆	$\gamma \eta_c(2S)$	$< 2.0 \times 10^{-3}$	CL=90%
Γ ₁₀₇	$\gamma \pi^0$	$< 5.4 imes 10^{-3}$	CL=95%
Γ ₁₀₈	$\gamma \eta'$ (958)	$(1.36\pm0.24) imes10^{-4}$	
Γ ₁₀₉	$\gamma f_2(1270)$	(2.1 ± 0.4) $ imes 10^{-4}$	
Γ_{110}	$\gamma f_0(1710)$		
Γ_{111}	$\gamma f_0(1710) \rightarrow \gamma \pi \pi$	(3.0 ± 1.3) $ imes 10^{-5}$	
Γ_{112}	$\gamma f_0(1710) \rightarrow \gamma K \overline{K}$	(6.0 ± 1.6) $ imes 10^{-5}$	
Γ ₁₁₃	$\gamma \gamma$	$< 1.4 \times 10^{-4}$	CL=90%
Г ₁₁₄	$\gamma \eta$	$<$ 9 $\times 10^{-5}$	CL=90%
Γ_{115}	$\gamma \eta \pi^+ \pi^-$	(8.7 ± 2.1) $ imes 10^{-4}$	
Γ ₁₁₆	$\gamma \eta$ (1405)		
Γ ₁₁₇	$\gamma \eta$ (1405) $\rightarrow \gamma K \overline{K} \pi$	$<$ 9 $\times 10^{-5}$	CL=90%
Γ ₁₁₈	$\gamma \eta$ (1405) $\rightarrow \eta \pi^+ \pi^-$	(3.6 ± 2.5) $ imes 10^{-5}$	
Γ ₁₁₉	$\gamma \eta$ (1475)		
Γ ₁₂₀	$\gamma \eta$ (1475) $ ightarrow K \overline{K} \pi$	$< 1.4 \times 10^{-4}$	CL=90%
Γ_{121}	$\gamma \eta$ (1475) $\rightarrow \eta \pi^+ \pi^-$	$< 8.8 \times 10^{-5}$	CL=90%
Γ ₁₂₂	$\gamma 2(\pi^+\pi^-)$	(4.0 \pm 0.6) $ imes$ 10 $^{-4}$	
Γ_{123}	$\gamma K^{*0} \underline{K}^+ \pi^- + \text{c.c.}$	(3.7 ± 0.9) $ imes 10^{-4}$	
Γ ₁₂₄	$\gamma K^{*0} K^{*0}$	(2.4 \pm 0.7) $ imes$ 10 ⁻⁴	
Γ ₁₂₅	$\gamma K^0_S K^+ \pi^- + \text{c.c.}$	(2.6 ± 0.5) $ imes 10^{-4}$	
Γ ₁₂₆	γ K ⁺ K ⁻ π^+ π^-	(1.9 \pm 0.5) $ imes$ 10 $^{-4}$	
Γ ₁₂₇	$\gamma p \overline{p}$	(2.9 \pm 0.6) $ imes$ 10 $^{-5}$	
Γ ₁₂₈	$\gamma \pi^+ \pi^- \rho \overline{\rho}$	(2.8 \pm 1.4) $ imes$ 10 $^{-5}$	
Γ ₁₂₉	$\gamma 2(\pi^+\pi^-)K^+K^-$	$< 2.2 \times 10^{-4}$	CL=90%
Γ_{130}	$\gamma 3(\pi^+\pi^-)$	$< 1.7 \times 10^{-4}$	CL=90%
Г ₁₃₁	$\gamma \mathrm{K}^+ \mathrm{K}^- \mathrm{K}^+ \mathrm{K}^-$	$< 4 \times 10^{-5}$	CL=90%

$\psi(2S)$ PARTIAL WIDTHS

Γ(hadrons)						Γ1
VALUE (keV)		DOCUMENT ID		TECN	COMMENT	
$\bullet \bullet \bullet$ We do not use the	e following	data for averages	s, fits,	limits, e	etc. • • •	
$258\!\pm\!26$		BAI	0 2B	BES2	e ⁺ e ⁻	
$224\!\pm\!56$		LUTH	75	MRK1	e ⁺ e ⁻	
Γ(e ⁺ e ⁻)						Г4
VALUE (keV)		DOCUMENT ID		TECN	COMMENT	
2.38 \pm 0.04 OUR FIT 2.33 \pm 0.07 OUP AVE						
$2.33 \pm 0.037 \pm 0.096$	AGL	ABLIKIM	08 B	BES2	$e^+e^- ightarrow$ hadrons	
$2.330 \!\pm\! 0.036 \!\pm\! 0.110$		ABLIKIM	06L	BES2	$e^+e^- ightarrow$ hadrons	
2.44 ± 0.21		⁸ BAI	02 B	BES2	e ⁺ e ⁻	
2.14 ± 0.21		ALEXANDER	89	RVUE	See $arphi$ mini-review	
$\bullet \bullet \bullet$ We do not use the	e following	data for averages	s, fits,	limits, e	etc. ● ● ●	
2.0 ±0.3		BRANDELIK	79 C	DASP	e ⁺ e ⁻	
2.1 ±0.3		⁹ LUTH	75	MRK1	e ⁺ e ⁻	
⁸ From a simultaneous Γ _τ /0.38847.	fit to e^+e	$^-$, $\mu^+\mu^-$, and l	hadro	nic chan	nel, assuming ${\sf \Gamma}_{{\sf e}}={\sf \Gamma}_{\mu}$	ι =
⁹ From a simultaneous $= \Gamma(\mu^+ \mu^-).$	fit to e^+e	e ⁻ , $\mu^+\mu^-$, and	hadro	onic cha	nnels assuming $\Gamma(e^+\epsilon)$; [—])
$\Gamma(\gamma\gamma)$					Г	113
VALUE (eV)	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
<43	90	BRANDELIK	79 C	DASP	e ⁺ e ⁻	

$\psi(2S) \ \Gamma(i) \Gamma(e^+ e^-) / \Gamma(\text{total})$

This combination of a partial width with the partial width into $e^+e^$ and with the total width is obtained from the integrated cross section into channel(i) in the e^+e^- annihilation. We list only data that have not been used to determine the partial width $\Gamma(i)$ or the branching ratio $\Gamma(i)/total$.

Γ (hadrons) $\times \Gamma$ (e	e ⁺ e ⁻)/Γ _{to}	tal				$\Gamma_1\Gamma_4/\Gamma$
VALUE (keV)		DOCUMENT	. ID	TECN	COMMENT	
$\bullet \bullet \bullet$ We do not use	the following	g data for aver	ages, fits,	limits, e	tc. • • •	
2.2±0.4		ABRAMS	75	MRK1	e ⁺ e ⁻	
$\Gamma(\tau^+ \tau^-) \times \Gamma(e^+)$	⁺ e ⁻)/Γ _{tota}	h				$\Gamma_6\Gamma_4/\Gamma$
VALUE (eV) E	VTS DO	OCUMENT ID	TECN	COM	MENT	
$\bullet \bullet \bullet$ We do not use	the following	g data for aver	ages, fits,	limits, e	etc. • • •	
9.0±2.6	79 ¹⁰ AI	NASHIN	07 KED	R e^+e	$^{-} \rightarrow \psi(2S)$	$\rightarrow \tau^+ \tau^-$
10 Using $\psi(2S)$ tota	l width of 33	87 ± 13 keV. S	systematic	errors n	ot evaluated.	

Citation: C. Amsler et al. (Particle Data Group), PL B667, 1 (2008) (URL: http://pdg.lbl.gov)

 $\Gamma(J/\psi(1S)\pi^+\pi^-) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$ Γ₉Γ₄/Γ DOCUMENT ID VALUE (keV) TECN COMMENT 0.777±0.016 OUR FIT **0.82** ±0.04 OUR AVERAGE Error includes scale factor of 1.6. See the ideogram below. CLEO 3.773 $e^+e^- \rightarrow \gamma \psi(2S)$ $0.852 \pm 0.010 \pm 0.026$ 19.5k ± 243 ADAM 06 ¹¹ AUBERT 05D BABR 10.6 $e^+e^ 0.76 \ \pm 0.05 \ \pm 0.01$ 544 ¹² BAI 0.68 ± 0.09 98E BES • • • We do not use the following data for averages, fits, limits, etc. 256 ¹³ AUBERT 07AU BABR 10.6 $e^+e^- \rightarrow J/\psi \pi^+\pi^- \gamma$ $0.90 \pm 0.08 \pm 0.06$ ¹¹AUBERT 05D reports [$\Gamma(\psi(2S) \rightarrow J/\psi(1S)\pi^+\pi^-) \times \Gamma(\psi(2S) \rightarrow e^+e^-)/\Gamma_{total}$] × $[B(J/\psi(1S) \rightarrow \mu^+ \mu^-)] = 0.0450 \pm 0.0018 \pm 0.0022$ keV. We divide by our best value $B(J/\psi(1S) \rightarrow \mu^+ \mu^-) = (5.93 \pm 0.06) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. $^{12}\,{\rm The}$ value of ${\rm \Gamma}(e^+\,e^-)$ quoted in BAI 98E is derived using ${\rm B}(\psi(2S)$ \rightarrow $J/\psi(1S)\pi^+\pi^-) = (32.4 \pm 2.6) \times 10^{-2}$ and $B(J/\psi(1S) \rightarrow \ell^+\ell^-) = 0.1203 \pm 0.0038$. Recalculated by us using $B(J/\psi(1S) \rightarrow \ell^+ \ell^-) = 0.1181 \pm 0.0020$. ¹³ AUBERT 07AU reports $[\Gamma(\psi(2S) \rightarrow J/\psi(1S)\pi^{+}\pi^{-}) \times \Gamma(\psi(2S) \rightarrow e^{+}e^{-})/\Gamma_{total}] \times [B(J/\psi(1S) \rightarrow \pi^{+}\pi^{-}\pi^{0})] = 0.0186 \pm 0.0012 \pm 0.0011$ keV. We divide by our best value $B(J/\psi(1S) \rightarrow \pi^+\pi^-\pi^0) = (2.07 \pm 0.13) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value. WEIGHTED AVERAGE 0.82±0.04 (Error scaled by 1.6) ADAM 06 CLEO 1.4 AUBERT 05D BABR 1.5 BAI 98E BES 2.4 5.3 (Confidence Level = 0.070) 0.5 0.7 1.1 0.6 0.8 0.9 1 0.4 $\Gamma(J/\psi(1S)\pi^{+}\pi^{-}) \times \Gamma(e^{+}e^{-})/\Gamma_{total}$ (keV)

$\Gamma(J/\psi(1S)\pi^{0}\pi^{0}) \times \Gamma(e^{+}e^{-})/\Gamma_{\text{total}}$	Γ ₁₀ Γ ₄ /Γ
	IEN I
0.411±0.008±0.018 3.6k±96 ADAM 06 CLEO 3.773	$e^+e^- \rightarrow \gamma \psi(2S)$
$\Gamma(J/\psi(1S)\eta) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$ VALUE (eV) EVTS DOCUMENT ID TECN COMM	Γ ₁₁ Γ ₄ /Γ
75.2± 2.1 OUR FIT	
87 \pm 9 OUR AVERAGE	
83 ± 25 ± 5 14 14 AUBERT 07AU BABR 10.6 $J/$	$e^+e^{\psi\pi^+\pi^-\pi^0\gamma}$
88 \pm 6 \pm 7 291 \pm 24 ADAM 06 CLEO 3.773	$e^+e^- \rightarrow \gamma \psi(2S)$
¹⁴ AUBERT 07AU quotes $\Gamma_{ee}^{\psi(2S)} \cdot B(\psi(2S) \rightarrow J/\psi\eta) \cdot B(J/\psi \rightarrow \pi^+ \pi^- \pi^0) = 1.11 \pm 0.33 \pm 0.07 \text{ eV}.$	· $\mu^+\mu^-$) · B($\eta \rightarrow$
$\Gamma(J/\psi(1S)\pi^{0}) \times \Gamma(e^{+}e^{-})/\Gamma_{\text{total}}$ <u>VALUE (eV) CL% EVTS DOCUMENT ID TECN COMM</u>	Γ ₁₂ Γ ₄ /Γ
<8 90 <37 ADAM 06 CLEO 3.773	$e^+e^- \rightarrow \gamma \psi(2S)$
$\Gamma(p\overline{p}) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$	Γ ₁₆ Γ ₄ /Γ
<u>VALUE (eV) EVTS</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>CON</u>	IMENT
0.051 ± 0.029 OUR FIT 0.50 ± 0.05 OUP AVERACE	
0.59 ± 0.03 CORACLAGE $0.570 \pm 0.038 \pm 0.036$ 2.7k ANDREOTTI 07 E835 p.7.	$\rightarrow e^+e^ I/2/2 X$
$0.70 \pm 0.17 \pm 0.03$ 22 AUBERT 06B e^+	$e^- \rightarrow p \overline{p} \gamma$
$\Gamma(\Lambda\overline{\Lambda}) \times \Gamma(e^+e^-)/\Gamma_{\text{total}}$	Г₂₃Г4/Г 1116-111
1.5±0.4±0.1 AUBERT 07BD BABR 10.6	$\delta e^+ e^- \rightarrow \Lambda \overline{\Lambda} \gamma$
$\Gamma(2(\pi^{+}\pi^{-}\pi^{0})) \times \Gamma(e^{+}e^{-})/\Gamma_{\text{total}}$	Г ₃₈ Г ₄ /Г
VALUE (eV) EVTS DOCUMENT ID TECN COMMENT	
11.2±3.3±1.3 43 AUBERT 06D BABR 10.6 e^+e^-	$T \rightarrow 2(\pi^+\pi^-\pi^0)\gamma$
$\Gamma(K^+K^-2(\pi^+\pi^-)) \times \Gamma(e^+e^-)/\Gamma_{total}$	Г ₅₂ Г ₄ /Г
VALUE (eV) EVTS DOCUMENT ID TECN COM	IMENT
4.4±2.1±0.3 26 AUBERT 06D BABR 10.6	$\delta e^+ e^- \rightarrow K^+ K^- 2(\pi^+ \pi^-) \gamma$
$\Gamma(\pi^{+}\pi^{-}K^{+}K^{-}) \times \Gamma(e^{+}e^{-})/\Gamma_{\text{total}}$ VALUE (eV) EVTS DOCUMENT ID TECN COMMENT	Γ ₄₇ Γ ₄ /Γ
2.56±0.42±0.16 85 AUBERT 07AK BABR 10.6 e^+e^- -	$\rightarrow \pi^+\pi^-K^+K^-\gamma$
$ \Gamma(\phi f_0(980) \rightarrow \pi^+ \pi^-) \times \Gamma(e^+ e^-) / \Gamma_{\text{total}} $ $ VALUE (e^V) \qquad EVTS \qquad DOCUMENT ID \qquad TECN CON $	Г₈₀Г4/Г ^{1MENT}

¹⁵ AUBERT 07AK reports $[\Gamma(\psi(2S) \rightarrow \phi f_0(980) \rightarrow \pi^+\pi^-) \times \Gamma(\psi(2S) \rightarrow e^+e^-)/\Gamma_{total}] \times [B(\phi(1020) \rightarrow K^+K^-)] = 0.17 \pm 0.08 \pm 0.02 \text{ eV}$. We divide by our best value $B(\phi(1020) \rightarrow K^+K^-) = (49.2 \pm 0.6) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.

$\Gamma(\phi\pi^{+}\pi^{-}) \times \Gamma(e^{+}e^{-})/\Gamma_{\text{total}} \qquad \Gamma_{79}\Gamma_{4}/\Gamma$ $VALUE (eV) = EVTS \qquad DOCUMENT ID \qquad TECN \qquad COMMENT$
0.57±0.23±0.01 10 ¹⁶ AUBERT,BE 06D BABR 10.6 $e^+e^- \rightarrow K^+K^-\pi^+\pi^-\gamma$
¹⁶ AUBERT,BE 06D reports $[\Gamma(\psi(2S) \rightarrow \phi\pi^+\pi^-) \times \Gamma(\psi(2S) \rightarrow e^+e^-)/\Gamma_{total}] \times [B(\phi(1020) \rightarrow K^+K^-)] = 0.28 \pm 0.11 \pm 0.02 \text{ eV}$. We divide by our best value $B(\phi(1020) \rightarrow K^+K^-) = (49.2 \pm 0.6) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma(2(\pi^{+}\pi^{-})\pi^{0}) \times \Gamma(e^{+}e^{-})/\Gamma_{\text{total}} \qquad \Gamma_{14}\Gamma_{4}/\Gamma$ $\frac{VALUE(eV)}{VALUE(eV)} \xrightarrow{EVTS} \xrightarrow{DOCUMENT ID} \xrightarrow{TECN} \xrightarrow{COMMENT}$
29.7±2.2±1.8 410 AUBERT 07AU BABR 10.6 $e^+e^- \rightarrow 2(\pi^+\pi^-)\pi^0\gamma$
$\Gamma(\omega \pi^{+} \pi^{-}) \times \Gamma(e^{+} e^{-}) / \Gamma_{\text{total}} \qquad \Gamma_{43} \Gamma_{4} / \Gamma$ VALUE (eV) EVTS DOCUMENT ID TECN COMMENT
3.01±0.84±0.02 37 ¹⁷ AUBERT 07AU BABR 10.6 $e^+e^- \rightarrow \omega \pi^+\pi^-\gamma$
¹⁷ AUBERT 07AU reports $[\Gamma(\psi(2S) \rightarrow \omega \pi^+ \pi^-) \times \Gamma(\psi(2S) \rightarrow e^+ e^-)/\Gamma_{total}] \times [B(\omega(782) \rightarrow \pi^+ \pi^- \pi^0)] = 2.69 \pm 0.73 \pm 0.16$ eV. We divide by our best value $B(\omega(782) \rightarrow \pi^+ \pi^- \pi^0) = (89.2 \pm 0.7) \times 10^{-2}$. Our first error is their experiment's error and our second error is the systematic error from using our best value.
$\Gamma(2(\pi^{+}\pi^{-})\eta) \times \Gamma(e^{+}e^{-})/\Gamma_{\text{total}} \qquad \Gamma_{41}\Gamma_{4}/\Gamma$ VALUE (eV) <u>EVTS</u> <u>DOCUMENT ID</u> <u>TECN</u> <u>COMMENT</u>
$\Gamma(2(\pi^{+}\pi^{-})\eta) \times \Gamma(e^{+}e^{-})/\Gamma_{\text{total}} \qquad \Gamma_{41}\Gamma_{4}/\Gamma$ $\frac{VALUE(eV)}{2.87\pm1.41\pm0.01} \xrightarrow{EVTS} 16 \xrightarrow{DOCUMENT ID} 07AU \text{ BABR} \xrightarrow{COMMENT} 10.6 e^{+}e^{-} \rightarrow 2(\pi^{+}\pi^{-})\eta\gamma$
$ \begin{split} & \Gamma(2(\pi^+\pi^-)\eta) \times \Gamma(e^+e^-)/\Gamma_{\text{total}} & \Gamma_{41}\Gamma_4/\Gamma \\ \hline \\ & \underline{VALUE\ (eV)} & \underline{EVTS} & \underline{DOCUMENT\ ID} & \underline{TECN} & \underline{COMMENT} \\ \hline & 2.87 \pm 1.41 \pm 0.01 & 16 & 18 & \text{AUBERT} & 07 \text{AU} & \text{BABR} & 10.6 & e^+e^- \rightarrow 2(\pi^+\pi^-)\eta\gamma \\ \hline & 18 & \text{AUBERT} & 07 \text{AU} & \text{reports} \left[\Gamma(\psi(2S) \rightarrow 2(\pi^+\pi^-)\eta) \times \Gamma(\psi(2S) \rightarrow e^+e^-)/\Gamma_{\text{total}}\right] \times \\ & \left[B(\eta \rightarrow 2\gamma)\right] = 1.13 \pm 0.55 \pm 0.08 & \text{eV}. \text{ We divide by our best value } B(\eta \rightarrow 2\gamma) = \\ & (39.31 \pm 0.20) \times 10^{-2}. \text{ Our first error is their experiment's error and our second error is the systematic error from using our best value. \end{split} $
$ \begin{split} & \Gamma(2(\pi^{+}\pi^{-})\eta) \times \Gamma(e^{+}e^{-})/\Gamma_{\text{total}} & \Gamma_{41}\Gamma_{4}/\Gamma \\ & \xrightarrow{VALUE (eV)} & \xrightarrow{EVTS} & \xrightarrow{DOCUMENT ID} & \underbrace{TECN} & \underbrace{COMMENT} \\ & 2.87 \pm 1.41 \pm 0.01 & 16 & 18 & \text{AUBERT} & 07 \text{AU BABR} & 10.6 & e^{+}e^{-} \rightarrow 2(\pi^{+}\pi^{-})\eta \gamma \\ & 18 & \text{AUBERT 07AU reports} \left[\Gamma(\psi(2S) \rightarrow 2(\pi^{+}\pi^{-})\eta) \times \Gamma(\psi(2S) \rightarrow e^{+}e^{-})/\Gamma_{\text{total}}\right] \times \\ & \left[B(\eta \rightarrow 2\gamma)\right] = 1.13 \pm 0.55 \pm 0.08 \text{ eV}. \text{ We divide by our best value } B(\eta \rightarrow 2\gamma) = \\ & (39.31 \pm 0.20) \times 10^{-2}. \text{ Our first error is their experiment's error and our second error is the systematic error from using our best value.} \\ & \Gamma(K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}) \times \Gamma(e^{+}e^{-})/\Gamma_{\text{total}} & \Gamma_{59}\Gamma_{4}/\Gamma \\ & \xrightarrow{VALUE (eV)} & EVTS & DOCUMENT ID & TECN & COMMENT \\ \end{split} $
$ \begin{split} & \Gamma(2(\pi^{+}\pi^{-})\eta) \times \Gamma(e^{+}e^{-})/\Gamma_{\text{total}} & \Gamma_{41}\Gamma_{4}/\Gamma \\ \hline \\ & \frac{VALUE \ (eV)}{2.87 \pm 1.41 \pm 0.01} & \frac{EVTS}{16} & \frac{DOCUMENT \ ID}{16} & \frac{TECN}{07 \text{AU BABR}} & \frac{COMMENT}{10.6 \ e^{+}e^{-} \rightarrow 2(\pi^{+}\pi^{-})\eta\gamma} \\ \hline \\ & \frac{18}{4} \text{AUBERT 07 AU reports} \ [\Gamma(\psi(2S) \rightarrow 2(\pi^{+}\pi^{-})\eta) \times \Gamma(\psi(2S) \rightarrow e^{+}e^{-})/\Gamma_{\text{total}}] \times \\ & [B(\eta \rightarrow 2\gamma)] = 1.13 \pm 0.55 \pm 0.08 \ eV. We \ divide \ by \ our \ best \ value \ B(\eta \rightarrow 2\gamma) = \\ & (39.31 \pm 0.20) \times 10^{-2}. \ Our \ first \ error \ is \ their \ experiment's \ error \ and \ our \ second \ error \ is \ the \ systematic \ error \ from \ using \ our \ best \ value. \end{split} $ $ \begin{aligned} & \Gamma(K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}) \times \Gamma(e^{+}e^{-})/\Gamma_{\text{total}} & \Gamma_{59}\Gamma_{4}/\Gamma \\ \hline \\ & \frac{VALUE \ (eV)}{4.4 \pm 1.3 \pm 0.3} & 32 & AUBERT \ 07 \text{AU BABR} & 10.6 \ e^{+}e^{-} \rightarrow K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}\gamma \end{aligned}$
$ \begin{split} & \Gamma(2(\pi^{+}\pi^{-})\eta) \times \Gamma(e^{+}e^{-})/\Gamma_{\text{total}} & \Gamma_{41}\Gamma_{4}/\Gamma \\ & \xrightarrow{VALUE (eV)} & \underbrace{EVTS} & \underbrace{DOCUMENT \ ID} & \underbrace{TECN} & \underbrace{COMMENT} \\ & 2.87 \pm 1.41 \pm 0.01 & 16 & 18 & \text{AUBERT} & 07 \text{AU BABR} & 10.6 \ e^{+}e^{-} \rightarrow 2(\pi^{+}\pi^{-})\eta\gamma \\ & 18 & \text{AUBERT 07 AU reports} \left[\Gamma(\psi(2S) \rightarrow 2(\pi^{+}\pi^{-})\eta) \times \Gamma(\psi(2S) \rightarrow e^{+}e^{-})/\Gamma_{\text{total}}\right] \times \\ & \left[B(\eta \rightarrow 2\gamma)\right] = 1.13 \pm 0.55 \pm 0.08 \ eV. We divide by our best value & B(\eta \rightarrow 2\gamma) = \\ & (39.31 \pm 0.20) \times 10^{-2}. \text{ Our first error is their experiment's error and our second error is the systematic error from using our best value. \\ & \Gamma(K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}) \times \Gamma(e^{+}e^{-})/\Gamma_{\text{total}} & \Gamma_{59}\Gamma_{4}/\Gamma \\ & \underbrace{VALUE (eV)}_{VALUE (eV)} & \underbrace{EVTS}_{AUBERT} & 07 \text{AU BABR} & 10.6 \ e^{+}e^{-} \rightarrow K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}\gamma \\ & \Gamma(K^{+}K^{-}\pi^{+}\pi^{-}\eta) \times \Gamma(e^{+}e^{-})/\Gamma_{\text{total}} & \Gamma_{50}\Gamma_{4}/\Gamma \\ & \underbrace{VALUE (eV)}_{VALUE (eV)} & \underbrace{EVTS}_{DOCUMENT \ ID} & \underbrace{TECN}_{DOCUMENT \ ID} & \underbrace{COMMENT}_{TECN} & COMMENT \\ & \underbrace{VALUE (eV)}_{VALUE (eV)} & \underbrace{EVTS}_{DOCUMENT \ ID} & \underbrace{TECN}_{COMMENT} & \underbrace{COMMENT}_{TECN} & \underbrace{COMMENT}$
$ \begin{split} & \Gamma(2(\pi^{+}\pi^{-})\eta) \times \Gamma(e^{+}e^{-})/\Gamma_{\text{total}} & \Gamma_{41}\Gamma_{4}/\Gamma \\ \hline & VALUE (eV) & EVTS & DOCUMENT ID & TECN & COMMENT \\ \hline & 2.87 \pm 1.41 \pm 0.01 & 16 & ^{18} \text{ AUBERT} & 07 \text{AU BABR} & 10.6 & e^{+}e^{-} \rightarrow 2(\pi^{+}\pi^{-})\eta\gamma \\ \hline & 2.87 \pm 1.41 \pm 0.01 & 16 & ^{18} \text{ AUBERT} & 07 \text{AU BABR} & 10.6 & e^{+}e^{-} \rightarrow 2(\pi^{+}\pi^{-})\eta\gamma \\ \hline & 2.87 \pm 1.41 \pm 0.01 & 16 & ^{18} \text{ AUBERT} & 07 \text{AU BABR} & 10.6 & e^{+}e^{-} \rightarrow 2(\pi^{+}\pi^{-})\eta\gamma \\ \hline & 2.87 \pm 1.41 \pm 0.01 & 16 & ^{18} \text{ AUBERT} & 07 \text{AU BABR} & 10.6 & e^{+}e^{-} \rightarrow 2(\pi^{+}\pi^{-})\eta\gamma \\ \hline & 18 \text{ AUBERT} & 07 \text{ AU reports} & [\Gamma(\psi(2S) \rightarrow 2(\pi^{+}\pi^{-})\eta) \times \Gamma(\psi(2S) \rightarrow e^{+}e^{-})/\Gamma_{\text{total}}] \times \\ & [B(\eta \rightarrow 2\gamma)] = 1.13 \pm 0.55 \pm 0.08 & eV. We divide by our best value B(\eta \rightarrow 2\gamma) = \\ & (39.31 \pm 0.20) \times 10^{-2}. & \text{Our first error is their experiment's error and our second error is the systematic error from using our best value. \\ & \Gamma(K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}) \times \Gamma(e^{+}e^{-})/\Gamma_{\text{total}} & \Gamma_{59}\Gamma_4/\Gamma \\ \hline & VALUE (eV) & EVTS & DOCUMENT ID & TECN & COMMENT \\ & A (\pm 1.3 \pm 0.3 & 32 & \text{AUBERT} & 07 \text{AU BABR} & 10.6 & e^{+}e^{-} \rightarrow K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}\gamma \\ & \Gamma(K^{+}K^{-}\pi^{+}\pi^{-}\eta) \times \Gamma(e^{+}e^{-})/\Gamma_{\text{total}} & \Gamma_{50}\Gamma_4/\Gamma \\ \hline & VALUE (eV) & EVTS & DOCUMENT ID & TECN & COMMENT \\ & 3.05 \pm 1.80 \pm 0.02 & 7 & ^{19} \text{ AUBERT} & 07 \text{AU BABR} & 10.6 & e^{+}e^{-} \rightarrow K^{+}K^{-}\pi^{+}\pi^{-}\eta\gamma \\ \hline \end{array}$

$\psi(2S)$ BRANCHING RATIOS

Γ(hadrons)/Γ _{total}					Γ_1/Γ
VALUE	DOCUMENT	ID	TECN	COMMENT	-
0.9785±0.0013 OUR AVERAGE	20				
0.9779 ± 0.0015	²⁰ BAI	02 B	BES2	e ⁺ e ⁻	
0.981 ± 0.003	²⁰ LUTH	75	MRK1	e^+e^-	
²⁰ Includes cascade decay into <i>J</i>	$/\psi(1S).$				
$\Gamma(\text{virtual}\gamma \rightarrow \text{hadrons})/\Gamma_{\text{tot}}$	al				Γ_2/Γ
VALUE	<u>DOCUMENT</u>	ID	TECN	COMMENT	
0.0173±0.0014 OUR AVERAGE	Error includes	scale fac	tor of 1.	.5.	
0.0166 ± 0.0010 21	21	04	RVUE	e ⁺ e ⁻	
0.0199±0.0019	²¹ BAI	02B	BES2	e^+e^-	
• • • We do not use the followin	g data for avera	iges, fits,	limits, e	etc. • • •	
0.029 ± 0.004	²¹ LUTH	75	MRK1	e^+e^-	
²¹ Included in $\Gamma(hadrons)/\Gamma_{tota}$	ŀ				
²² Using B($\psi(2S) \rightarrow \ell^+ \ell^-$) = determined by a fit to data fr	= (0.73 ± 0.04) om BAI 00 and	% from BAI 02C.	RPP-20	02 and R $=$	2.28 ± 0.04
Γ(light hadrons)/Γ _{total}					Г ₃ /Г
VALUE	<u>DOCUMENT</u>	ID	TECN	<u>COMMENT</u>	
• • • We do not use the followin	g data for avera	iges, fits,	limits, e	etc. • • •	
0.169 ± 0.026	²³ ADAM	05A	CLEO	$e^+e^- \rightarrow e^-$	<i>ψ</i> (2 <i>S</i>)
²³ Uses B($J/\psi X$) from ADAM from PDG 04.	05A, B $(\chi_{cJ}\gamma)$,	$B(\eta_{\textit{C}}\gamma)$	from A	THAR 04 ar	d B($\ell^+ \ell^-$)
$\Gamma(e^+e^-)/\Gamma_{total}$					Г₄/Г
VALUE (units 10^{-4})	DOCUMENT	ID	TECN	COMMENT	
75.2± 1.7 OUR FIT					
• • • We do not use the followin	g data for avera	iges, fits,	limits, e	etc. • • •	
88 ±13	²⁴ FELDMAN	77	RVUE	e^+e^-	
²⁴ From an overall fit assuming surement of the ratio see the	equal partial we entry $\Gamma(\mu^+\mu^-)$	idths for $^{-})/\Gamma(e^{+})$	e ⁺ e ⁻ e ⁻) be	and $\mu^+ \mu^-$. slow. Include	For a mea- s LUTH 75,
HILGER 75, BURMESTER 7	7.		,		
$\Gamma(\mu^+\mu^-)/\Gamma_{ ext{total}}$					Г ₅ /Г
VALUE (units 10 ⁻⁴)	DOCUMENT	ID			
75±8 OUR FIT					
$\Gamma(\mu^+\mu^-)/\Gamma(e^+e^-)$					Γ_5/Γ_4
	DOCUMENT	ID	TECN	COMMENT	
		fit	1:		
 vve do not use the following 	g data for avera	iges, fits,	iimits, é	ετς. ● ● ●	
0.89 ± 0.16	BOYARSKI	75C	MRK1	e ⁺ e ⁻	

Citation: C. Amsler et al. (Particle Data Group), PL B667, 1 (2008) (URL: http://pdg.lbl.gov)

 $\Gamma(\mu^+\mu^-)/\Gamma(J/\psi(1S))$ anything Γ_5/Γ_7 VALUE TECN COMMENT DOCUMENT ID 0.0130±0.0014 OUR FIT SPEC $e^+e^ 0.014 \pm 0.003$ HILGER 75 $\Gamma(J/\psi(1S) \text{ neutrals})/\Gamma_{\text{total}}$ Γ_8/Γ VALUE DOCUMENT ID 0.235 ± 0.004 OUR FIT $\Gamma(J/\psi(1S)\pi^+\pi^-)/\Gamma_{\text{total}}$ Γ9/Γ VALUE **EVTS** DOCUMENT ID TECN COMMENT 0.326 ±0.005 OUR FIT 0.323 ±0.013 OUR AVERAGE 02B BES2 $e^+e^ 0.323\ \pm 0.014$ BAI 0.32 ± 0.04 ABRAMS 75B MRK1 e⁺ $J/\psi \pi^+ \pi^-$ • • We do not use the following data for averages, fits, limits, etc. • ²⁷ ADAM 05A CLEO $e^+e^- \rightarrow \psi(2S)$ 60k $0.3354 \pm 0.0014 \pm 0.0110$ ²⁷ Not independent from other values reported by ADAM 05A. $\Gamma(e^+e^-)/\Gamma(J/\psi(1S)\pi^+\pi^-)$ Γ_4/Γ_9 VALUE DOCUMENT ID TECN COMMENT $0.0230 \pm 0.0008 \text{ OUR FIT}$ ²⁸ AUBERT $0.0252 \pm 0.0028 \pm 0.0011$ 02B BABR e^+e^- ²⁸ Using B($J/\psi(1S) \rightarrow e^+e^-$) = 0.0593 ± 0.0010. $\Gamma(\mu^+\mu^-)/\Gamma(J/\psi(1S)\pi^+\pi^-)$ Γ_5/Γ_9 VALUE DOCUMENT ID TECN COMMENT 0.0229±0.0026 OUR FIT 0.0224±0.0029 OUR AVERAGE ²⁹ AUBERT $0.0216 \pm 0.0026 \pm 0.0014$ 02B BABR e^+e^- ²⁹ GRIBUSHIN $0.0327 \pm 0.0077 \pm 0.0072$ 96 FMPS 515 π^- Be $\rightarrow 2\mu X$ ²⁹Using B($J/\psi(1S) \rightarrow \mu^+\mu^-$) = 0.0588 ± 0.0010. $\Gamma(\tau^+\tau^-)/\Gamma(J/\psi(1S)\pi^+\pi^-)$ Γ_6/Γ_9 *VALUE* (units 10^{-3}) TECN COMMENT DOCUMENT ID 9.2 ±1.1 OUR FIT $e^+e^ 8.73 \pm 1.39 \pm 1.57$ BAI 02 BES $\Gamma(J/\psi(1S)\pi^+\pi^-)/\Gamma(J/\psi(1S))$ anything) Γ_9/Γ_7 VALUE DOCUMENT ID TECN COMMENT 0.5680±0.0031 OUR FIT 0.559 ±0.007 OUR AVERAGE Error includes scale factor of 1.5. See the ideogram below. 05A CLEO $e^+e^- \rightarrow \psi(2S)$ ADAM $0.5637 \pm 0.0027 \pm 0.0046$ 60k $0.525\ \pm 0.009\ \pm 0.022$ $4090\,\pm\,67$ ANDREOTTI 05 E835 $\psi(2S) \rightarrow J/\psi X$ ^{30,31} ABLIKIM $\psi(2S) \rightarrow J/\psi X$ $0.536 \ \pm 0.007 \ \pm 0.016$ 20k 04B BES 0.496 ± 0.037 ARMSTRONG 97 E760 $\overline{p}p \rightarrow \psi(2S)$

³⁰ From a fit to the J/ψ recoil mass spectra. ³¹ ABLIKIM 04B quotes $B(\psi(2S) \rightarrow J/\psi X) / B(\psi(2S) \rightarrow J/\psi \pi^+ \pi^-)$.

³⁸ Recalculated by us using $B(J/\psi(1S) \rightarrow \ell^+ \ell^-) = 0.1181 \pm 0.0020$. ³⁹ Recalculated by us using $B(J/\psi(1S) \rightarrow \mu^+ \mu^-) = 0.0588 \pm 0.0010$. ⁴⁰ Not independent from other values reported by ADAM 05A.

⁴¹ From a fit to the J/ψ recoil mass spectra.

- ⁴² The value for B($\psi(2S) \rightarrow J/\psi(1s)\eta$) reported in HIMEL 80 is derived using B($\psi(2S)$) $\rightarrow J/\psi(1S)\pi^+\pi^-$) = (33 ± 3))% and B($J/\psi(1S) \rightarrow \ell^+\ell^-$) = 0.138 ± 0.018. Calculated by us using B($J/\psi(1S) \rightarrow \ell^+\ell^-$) = (0.1181 ± 0.0020).
- 43 Not independent from other values reported by ADAM 05A.

 44 Not independent from other values reported by ANDREOTTI 05.

$\Gamma(J/\psi(1S)\pi^0)/\Gamma_{ ext{total}}$					Г ₁₂ /Г
VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
12.6 \pm 1.3 OUR AVERAGE	Error	includes scale factor	of 1.3.	See the	e ideogram below.
13 ± 1 ± 1	88	ADAM	05A	CLEO	$e^+e^- \rightarrow \psi(2S)$
$14.3 \pm 1.4 \pm 1.2$	280	BAI	041	BES2	$\psi(2S) \rightarrow J/\psi \gamma \gamma$
14 ±6	7	HIMEL	80	MRK2	e ⁺ e ⁻
9 ± 2 ± 1	23	⁴⁵ OREGLIA	80	CBAL	$\psi(2S) ightarrow J/\psi 2\gamma$
45					a a

⁴⁵ Recalculated by us using $B(J/\psi(1S) \rightarrow \ell^+ \ell^-) = 0.1181 \pm 0.0020$.

⁴⁶Not independent from other values reported by ADAM 05A.

Citation: C. Amsler et al. (Particle Data Group), PL B667, 1 (2008) (URL: http://pdg.lbl.gov)

Citation: C. Amsler et al. (Particle Data Group), PL B667, 1 (2008) (URL: http://pdg.lbl.gov)

$\Gamma(\Lambda\overline{\Lambda}\pi^{0})/\Gamma_{\text{total}}$					Г ₁₈ /Г
VALUE (units 10 ⁻⁴)	CL%	DOCUMENT ID		TECN	COMMENT
<1.2	90	⁵⁰ ABLIKIM	07H	BES2	$e^+e^- \rightarrow \psi(2S)$
⁵⁰ Using B($\Lambda \rightarrow \pi^- p$	e) = 63.9%	$\%$ and B $(\eta ightarrow \gamma \gamma)$	= 39	.4%.	
$\Gamma(\Lambda\overline{\Lambda}\eta)/\Gamma_{\text{total}}$					Г ₁₉ /Г
VALUE (units 10^{-4})	CL%	DOCUMENT ID		TECN	COMMENT
<0.49	90	⁵¹ ABLIKIM	07H	BES2	$e^+e^- \rightarrow \psi(2S)$
⁵¹ Using B($\Lambda \rightarrow \pi^- p$) = 63.9%	6.			
$\Gamma(\Lambda \overline{p}K^+)/\Gamma_{total}$					Г ₂₀ /Г
VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
1.0±0.1 ±0.1	74.0	BRIERE	05	CLEO	$e^+e^- \to \psi(2S) \to p\overline{p}K^+\pi^-$
$\Gamma(\Lambda \overline{\rho} K^+ \pi^+ \pi^-) / \Gamma_1$	otal				Г ₂₁ /Г
VALUE (units 10 ⁻⁴)	EVTS	DOCUMENT ID		TECN	COMMENT
$1.8 \pm 0.3 \pm 0.3$	45.8	BRIERE	05	CLEO	$e^+e^- \rightarrow \psi(2S) \rightarrow \pi \pi \kappa^+ \pi^+ \pi^- \pi^-$
					$ppr + \pi + \pi - \pi$
$\Gamma(\Lambda\overline{\Lambda}\pi^{+}\pi^{-})/\Gamma_{\text{total}}$					Г ₂₂ /Г
VALUE (units 10 ⁻⁴)	EVTS	DOCUMENT ID		TECN	COMMENT
2.8±0.4±0.5	73.4	BRIERE	05	CLEO	$e^+e^- ightarrow \psi(2S) ightarrow ightarrow p\overline{p}2(\pi^+\pi^-)$
$\Gamma(\Lambda\overline{\Lambda})/\Gamma_{total}$					Г ₂₃ /Г
VALUE (units 10^{-4}) CL%	EVTS	DOCUMENT ID	TECN	СОМЛ	1ENT

28 ± 05 OUR		Error includes s	cale fa	ctor of	2.6 See the ideogram below
2.0 ±0.5 0007		LITOI INCIUCES S	cale la		2.0. See the locogram below.
$3.39\!\pm\!0.20\!\pm\!0.32$	337	ABLIKIM	07 C	BES	$e^+e^- ightarrow \psi(2S) ightarrow$ hadrons
$6.3\ \pm 1.7\ \pm 0.1$		⁵² AUBERT	07 BD	BABR	10.6 $e^+e^- \rightarrow \Lambda \overline{\Lambda} \gamma$
$3.28\!\pm\!0.23\!\pm\!0.25$	208	PEDLAR	05	CLEO	$e^+e^- ightarrow \psi(2S) ightarrow$ hadrons
$1.81\!\pm\!0.20\!\pm\!0.27$	80	⁵³ BAI	01	BES	$e^+e^- ightarrow \psi(2S) ightarrow$ hadrons
\bullet \bullet \bullet We do not	use the follo	owing data for av	/erages	s, fits, li	mits, etc. • • •
< 4	90	FELDMAN	77	MRK1	$e^+e^- ightarrow \psi(2S) ightarrow$ hadrons
⁵² AUBERT 07BI	D reports [B	$(\psi(2S) ightarrow \Lambda \overline{\Lambda})]$	\times [$\Gamma(\psi$	$(2S) \rightarrow$	$(e^+e^-)] = (15 \pm 4 \pm 1) \times 10^{-4}$

keV. We divide by our best value $\Gamma(\psi(2S) \rightarrow e^+e^-) = 2.38 \pm 0.04$ keV. Our first error is their experiment's error and our second error is the systematic error from using our best value. ⁵³ Estimated using B($\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$)= 0.310 ± 0.028.

HTTP://PDG.LBL.GOV Page 19

⁵⁹ Computed using $B(\pi^0 \to \gamma \gamma) = (98.80 \pm 0.03)\%$.

	、 · · · ,		·			Г., /Г
$(\eta PP)/total$						1 32/1
<u>VALUE (units 10^{-4})</u>		DOCUMENT	ID	TEC	N <u>COMMENT</u>	
0.00 ± 0.12 OUR AVE		60 ARLIKIM	c		a + a - b	du(25)
$0.50 \pm 0.11 \pm 0.07$	44.0 ± 0.5	ADLINIW	C	JJE DES	$p \overline{p} \gamma \gamma$	$\psi(23) \rightarrow$
$0.8\ \pm 0.3\ \pm 0.3$	9.8	BRIERE	C	05 CLE	$e^+e^- \rightarrow$	$\psi(2S) \rightarrow$
					$p\overline{p}\pi^+\pi$	$-\pi^0$
⁶⁰ Computed using	$B(\eta \rightarrow \gamma \gamma) =$	$= (39.43 \pm 0.26)$	%.			
$\Gamma(\omega p \overline{p}) / \Gamma_{total}$						Г <u>33</u> /Г
$V_{411} = (units 10^{-4}) = F_{1}$	/TS	DOCUMENT ID	-	TECN	COMMENT	557
0.69±0.21 OUR AVE		DOCOMENT ID			comment	
$0.6 \pm 0.2 \pm 0.2$ 21	2	BRIERE	05 (CLEO	$e^+e^- \rightarrow \psi(2)$	S) →
					$p\overline{p}\pi^+\pi^-\pi^0$)
$0.8 \pm 0.3 \pm 0.1$ 14	1.9 ± 0.1 6	^L BAI	03b E	BES ($\psi(2S) \rightarrow p \overline{p} \pi$	$+\pi^{-}\pi^{0}$
⁶¹ Normalized to B($\psi(2S) \rightarrow J/e$	$\psi \pi^+ \pi^-) = 0.30$	5 ± 0).016.		
$\Gamma(\phi \rho \overline{\rho}) / \Gamma_{total}$						Г34/Г
$VALUE$ (units 10^{-4})	CI %	DOCUMENT ID		TECN	COMMENT	547
	00	BRIERE	05			25)
\U.24	90	DIVIENC	05	CLLO	$e^{\vee}e^{-} \rightarrow \psi($	$(23) \rightarrow$
• • • We do not use	the following	data for averages	, fits,	limits,	etc. • • •	
<0.26	90 6	⁵² BAI	03 B	BES	$\psi(2S) \rightarrow K^{-}$	[⊢] K [−] σ _Ω
62 Normalized to B($\psi(25) \rightarrow 1/2$	$(\pi^{+}\pi^{-}) = 0.30$	5 + 0	016		
	$\varphi(20) = 0/1$	<i>~ ~ ~)</i> 0.00	0 1 0			
$\Gamma(\pi^+\pi^-p\overline{p})/\Gamma_{tot}$	al					Г ₃₅ /Г
VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT	
6.0 ± 0.4 OUR AVER	AGE					
$5.9 {\pm} 0.2 {\pm} 0.4$	904.5	BRIERE	05	CLEO	$e^+e^- \rightarrow \psi($	$(2S) \rightarrow$
o ⊥)	6		70		$p\overline{p}\pi^+\pi^-$	
o ±∠ 63 ∧ · · · ·			10	WINNI	e'e	
•• Assuming entirely	strong decay.					
$\Gamma(p\overline{n}\pi^{-} \text{ or c.c.})/\Gamma$	total					Г ₃₆ /Г
VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT	
2.48±0.17 OUR AVE	ERAGE					
$2.45 \pm 0.11 \pm 0.21$	851	ABLIKIM	061	BES2	$e^+e^- \rightarrow p\tau$	τ ⁻ Χ
$2.52 \pm 0.12 \pm 0.22$	849	ABLIKIM	061	BES2	$e^+e^- \rightarrow \overline{p}\tau$	$\tau^+ X$
$\Gamma(p\overline{n}\pi^{-}\pi^{0})/\Gamma_{tota}$						Г ₃₇ /Г
VALUE (units 10^{-4})	FVTS	DOCUMENT ID)	TECN	COMMENT	0.7
$3.18 \pm 0.50 \pm 0.50$	$\frac{135 + 21}{135 + 21}$	ABLIKIM	06	BES2	$e^+e^- \rightarrow p$	$\pi^{-}\pi^{0}X$
					P	_ /_
$(\eta \pi^+ \pi^-)/\Gamma_{total}$						Г ₃₉ /Г
VALUE (units 10^{-4})	CL%	DOCUMENT ID		TECN	COMMENT	
<1.6	90	BRIERE	05	CLEO	$e^+e^- ightarrow \psi$	[2 <i>S</i>) →
					$2(\pi^{+}\pi^{-})^{-}$	π0

HTTP://PDG.LBL.GOV Page 23 Created: 7/17/2008 18:14

$\Gamma(\eta \pi^+ \pi^- \pi^0) / \Gamma_t$	otal					Г ₄₀ /Г
VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT	
9.5±0.7±1.5		⁶⁴ BRIERE	05	CLEO	$e^+e^- ightarrow$ hadr	$\psi(2S) ightarrow$
• • • We do not use	e the follow	wing data for avera	ges, fit	ts, limits	, etc. • • •	
$10.3 \pm 0.8 \pm 1.4$	201.7	⁶⁵ BRIERE	05	CLEO	$e^+e^- \rightarrow$	$\psi(2S) \rightarrow$
$8.1 \pm 1.4 \pm 1.6$	50.0	⁶⁵ BRIERE	05	CLEO	$\eta 3\pi(\eta - e^+e^- \rightarrow \eta 3\pi(\eta - e^+e^-)$	$ \begin{array}{cc} \rightarrow & \gamma \gamma) \\ \psi(2S) \rightarrow \\ \rightarrow & 3\pi) \end{array}$
~ ·						,

⁶⁴ Average of $\eta \rightarrow \gamma \gamma$ and $\eta \rightarrow 3\pi$.

 65 Not independent from other values reported by BRIERE 05.

 $\Gamma(2(\pi^+\pi^-)\eta)/\Gamma_{\text{total}}$ Γ_{41}/Γ $\frac{DOCUMENT ID}{AUBERT} \qquad \frac{TECN}{07AU} \begin{array}{c} \frac{COMMENT}{BABR} \\ 10.6 \ e^+e^- \rightarrow 2(\pi^+\pi^-)\eta\gamma \end{array}$ VALUE (units 10^{-3}) EVTS 66 AUBERT $1.2 \pm 0.6 \pm 0.1$ 16 ⁶⁶ AUBERT 07AU quotes $\Gamma_{ee}^{\psi(2S)} \cdot B(\psi(2S) \rightarrow 2(\pi^+ \pi)\eta) \cdot B(\eta \rightarrow \gamma \gamma) = 1.2 \pm 0.7 \pm 0.1 \text{ eV}.$

$\Gamma(\eta' \pi^+ \pi^- \pi^0)/\Gamma$	total					Γ ₄₂ /Ι
VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT	
$4.5 \pm 1.6 \pm 1.3$	12.8	BRIERE	05	CLEO	$e^+e^- \rightarrow \psi($	2 <i>S</i>) →

 $\Gamma(\omega \pi^+ \pi^-)/\Gamma_{\text{total}}$ VALUE (units 10^{-4}) EVTS DOCUMENT ID TECN COMMENT **7.3±1.2 OUR AVERAGE** Error includes scale factor of 2.1. See the ideogram below. ABLIKIM 07D BES2 $e^+e^- \rightarrow \psi(2S)$ $8.4 \pm 0.5 \pm 1.2$ 386 67 AUBERT 07AU BABR 10.6 $e^+e^- \rightarrow \omega \pi^+\pi^-\gamma$ $12.2 \pm 2.2 \pm 0.7$ 37 $8.2 \pm 0.5 \pm 0.7$ 391BRIERE05CLEO $e^+e^- \rightarrow \psi(2S) \rightarrow 2(\pi^+\pi^-)\pi^0$ $4.8 \pm 0.6 \pm 0.7$ 100 ± 22 68 BAI03BBES $\psi(2S) \rightarrow 2(\pi^+\pi^-)\pi^0$

⁶⁷ AUBERT 07AU quotes $\Gamma_{ee}^{\psi(2S)} \cdot B(\psi(2S) \rightarrow \omega \pi^+ \pi^-) \cdot B(\omega \rightarrow 3\pi) = 2.69 \pm 0.73 \pm$ 0.16 eV. ⁶⁸ Normalized to B($\psi(2S) \rightarrow J/\psi \pi^+ \pi^-$) = 0.305 ± 0.016.

HTTP://PDG.LBL.GOV

 Γ_{43}/Γ

Created: 7/17/2008 18:14

 $\Gamma(\pi^+\pi^-K^+K^-)/\Gamma_{\text{total}}$ Γ_{47}/Γ VALUE (units 10^{-4}) DOCUMENT ID TECN EVTS COMMENT 7.5 ± 0.9 OUR AVERAGE Error includes scale factor of 1.9. 07AK BABR 10.6 $e^+e^- \rightarrow \pi^+\pi^-K^+K^-\gamma$ ⁷² AUBERT $10.8 \pm 1.9 \pm 0.2$ 85 $e^+e^- \rightarrow \psi(2S) \rightarrow$ 05 BRIERE CLEO $7.1 \pm 0.3 \pm 0.4$ 817.2 $K^{+}K^{-}\pi^{+}\pi^{-}$ 73 TANENBAUM 78 16 ± 4 MRK1 e ⁷²AUBERT 07AK reports $[B(\psi(2S) \rightarrow \pi^+\pi^-K^+K^-)] \times [\Gamma(\psi(2S) \rightarrow e^+e^-)] =$ $(2.56 \pm 0.42 \pm 0.16) \times 10^{-3}$ keV. We divide by our best value $\Gamma(\psi(2S) \rightarrow e^+e^-) = 2.38 \pm 0.04$ keV. Our first error is their experiment's error and our second error is the systematic error from using our best value. ⁷³Assuming entirely strong decay. $\Gamma(\rho^0 K^+ K^-)/\Gamma_{\text{total}}$ Γ_{48}/Γ VALUE (units 10^{-4}) TECN COMMENT EVTS DOCUMENT ID CLEO $e^+e^- \rightarrow \psi(2S) \rightarrow$ $2.2 \pm 0.2 \pm 0.4$ 223.8 05 BRIERE $K^{+}K^{-}\pi^{+}\pi^{-}$ $\Gamma(K^*(892)^0 \overline{K}_2^*(1430)^0) / \Gamma_{\text{total}}$ Γ49/Γ VALUE (units 10^{-4}) CL% EVTS DOCUMENT ID TECN COMMENT $1.86 \pm 0.32 \pm 0.43$ 93 ± 16 04C $\psi(2S) \rightarrow$ BAI $K^{+}K^{-}\pi^{+}\pi^{-}$ • • We do not use the following data for averages, fits, limits, etc. <1.2 90 BAI 98J BES _+ _- $\Gamma(K^+K^-\pi^+\pi^-\eta)/\Gamma_{total}$ Γ_{50}/Γ DOCUMENT ID TECN COMMENT <u>VALUE (units 10^{-3})</u> EVTS 07AU BABR 10.6 $e^+e^- \rightarrow K^+K^-\pi^+\pi^-n\gamma$ 7 ⁷⁴ AUBERT $1.3 \pm 0.7 \pm 0.1$ ⁷⁴ AUBERT 07AU quotes $\Gamma_{ee}^{\psi(2S)} \cdot B(\psi(2S) \rightarrow 2(\pi^+ \pi)\eta) \cdot B(\eta \rightarrow \gamma \gamma) = 1.2 \pm 0.7 \pm 0.1 \text{ eV}.$ $\Gamma(K_1(1270)^{\pm}K^{\mp})/\Gamma_{\text{total}}$ Γ_{53}/Γ VALUE (units 10^{-4}) DOCUMENT ID TECN COMMENT 75 _{RAI} e⁺e⁻ $10.0 \pm 1.8 \pm 2.1$ 99C BES ⁷⁵ Assuming B($K_1(1270) \rightarrow K\rho$)=0.42 ± 0.06 $\Gamma(K_{S}^{0}K_{S}^{0}\pi^{+}\pi^{-})/\Gamma_{\text{total}}$ Γ_{54}/Γ *VALUE* (units 10^{-4}) EVTS DOCUMENT ID TECN COMMENT 050 BES2 $e^+e^- \rightarrow \psi(2S)$ 83 ± 9 $2.20 \pm 0.25 \pm 0.37$ ABLIKIM $\Gamma(\rho^0 p \overline{p}) / \Gamma_{\text{total}}$ Γ_{55}/Γ VALUE (units 10^{-4}) DOCUMENT ID EVTS TECN COMMENT 05 CLEO $e^+e^- \rightarrow \psi(2S) \rightarrow$ $0.5 \pm 0.1 \pm 0.2$ 61.1 BRIERE $p\overline{p}\pi^+\pi^-$

$\Gamma(K^+\overline{K}^*(892)^0\pi^-+\text{c.c.})/k$	total		Г ₅₆ /Г
VALUE (units 10^{-4})	DOCUMENT ID	TECN CC	OMMENT
6.7±2.5	TANENBAUM 78	MRK1 e^+	-e-
$\Gamma(2(\pi^+\pi^-))/\Gamma_{total}$			Г ₅₇ /Г
VALUE (units 10^{-4}) EVTS	DOCUMENT ID	TECN CC	OMMENT
2.4±0.6 OUR AVERAGE Error	includes scale factor of 2	.2.	
2.2±0.2±0.2 308	BRIERE 05	CLEO e [⊣]	${}^-e^- ightarrow \psi(2S) ightarrow 2(\pi^+\pi^-)$
4.5 ± 1.0	TANENBAUM 78	MRK1 e^{+}	-e-
$\Gamma(ho^0\pi^+\pi^-)/\Gamma_{ m total}$			Г ₅₈ /Г
VALUE (units 10 ⁻⁴) EVTS	DOCUMENT ID	TECN CC	DMMENT
2.2±0.6 OUR AVERAGE Error	includes scale factor of 1	4.	
2.0±0.2±0.4 285.5	BRIERE 05	CLEO e [¬]	$egin{array}{lll} e^- & ightarrow \psi(2S) ightarrow 2(\pi^+\pi^-) \end{array}$
4.2 ± 1.5	TANENBAUM 78	MRK1 e^{\neg}	- e
$\Gamma(K^+K^-\pi^+\pi^-\pi^0)/\Gamma_{\text{total}}$			Г ₅₉ /Г
$\frac{VALUE \text{ (units } 10^{-4})}{EVTS} \qquad DC$	OCUMENT ID TECN	COMMEN	Т
12.6 \pm 0.9 OUR AVERAGE			
$18.5 \pm 5.6 \pm 0.3$ 32 ⁷⁰ A	UBERT 07AU BABI	R 10.6 e ⁺ K ⁺ K	$e^- \rightarrow \pi^+ \pi^- \pi^0 \gamma$
$11.7 \pm 1.0 \pm 1.5$ 597 A	BLIKIM 06G BES2	$\psi(2S)$ –	$\rightarrow K^+ K^- \pi^+ \pi^- \pi^0$
12.7±0.5±1.0 711.6 B	RIERE 05 CLEC) e ⁺ e ⁻ -	$\rightarrow \psi(2S) \rightarrow 0$
⁷⁶ AUBERT 07AU reports [B(ψ = (44 ± 13 ± 3) × 10 ⁻⁴ k 2.38 ± 0.04 keV. Our first e systematic error from using o	$\psi(2S) \rightarrow K^+ K^- \pi^+ \pi^-$ eV. We divide by our be rror is their experiment's ur best value.	$[\pi^{-}\pi^{0})] \times [\Gamma]$ st value $\Gamma(\pi)$ error and c	$\psi(2S) \rightarrow e^+e^-)]$ $\psi(2S) \rightarrow e^+e^-) =$ bur second error is the
$\Gamma(K^+K^-2(\pi^+\pi^-)\pi^0)/\Gamma_{\rm to}$	tal		Г ₅₁ /Г
VALUE (units 10^{-4}) EVTS	DOCUMENT ID	TECN CC	OMMENT
10.0±2.5±1.8 65	ABLIKIM 07D	BES2 e^+	$e^- e^- ightarrow \psi(2S)$
$\Gamma(\omega f_0(1710) \rightarrow \omega K^+ K^-)/$	Γ _{total}		Г ₆₀ /Г
VALUE (units 10^{-5}) EVTS	DOCUMENT ID TEC	N СОММЕ	NT
5.9±2.0±0.9 19	ABLIKIM 06G BES	$52 \overline{\psi(2S)} \\ \kappa^+$	$\stackrel{\rightarrow}{\kappa}_{\kappa}^{-}\pi^{+}\pi^{-}\pi^{0}$
$\Gamma(K^*(892)^0 K^- \pi^+ \pi^0 + c.c)$	c.)/Γ _{total}		Г ₆₁ /Г
VALUE (units 10^{-4}) EVTS	DOCUMENT ID TEC	N <u>COMME</u>	NT
8.6±1.3±1.8 238	ABLIKIM 06G BES	$\begin{array}{ccc} 52 & \psi(2S) \\ & & \mathcal{K}^+ \end{array}$	$\overrightarrow{K}_{\pi}^{-}\pi^{+}\pi^{-}\pi^{0}$
$\Gamma(K^*(892)^+K^-\pi^+\pi^-+c)$.c.)/F _{total}		Γ62/Γ
VALUE (units 10^{-4}) EVTS	DOCUMENT ID TEC	N COMME	- 52, - NT
9.6±2.2±1.7 133	ABLIKIM 06G BES	$52 \overline{\psi(2S)} \\ \kappa^+$	$\overrightarrow{K}_{\kappa}^{-}\pi^{+}\pi^{-}\pi^{0}$
HTTP://PDG.LBL.GOV	Page 27	Created	7/17/2008 18:14

``	• •	/ · LOLAI				- 05/ -
VALUE (units 10^{-4})	EVTS	DOCUMENT ID	TEC	<u></u>	MMENT	
$7.3 \pm 2.2 \pm 1.4$	78	ABLIKIM 06	G BE	S2 $\psi(2$	$(2S) \rightarrow$	•
					$K^{+}K^{-}\pi^{+}\pi$	$-\pi^0$
Г(<i>К</i> *(892) ⁰ <i>К</i> [_]	ρ^+ + c.c.)	/Γ _{total}				Г ₆₄ /Г
VALUE (units 10^{-4})	EVTS	DOCUMENT ID	TEC	<u></u>	MMENT	
6.1±1.3±1.2	125	ABLIKIM 06	G BE	S2 ψ (2	$(2S) \rightarrow$	
					$K^{+}K^{-}\pi^{+}\pi$	$-\pi^0$
$\Gamma(\eta K^+ K^-) / \Gamma_t$	otal					Г ₆₅ /Г
VALUE (units 10^{-4})	CL%	DOCUMENT ID)	TECN	COMMENT	
<1.3	90	BRIERE	05	CLEO	$e^+ e^- \rightarrow e^+$	$\psi(2S) ightarrow$
					$K^{+}K^{-}$	$\pi^+\pi^-\pi^0$
$\Gamma(\omega K^+ K^-)/\Gamma_0$	total					Г ₆₆ /Г
VALUE (units 10^{-4})	EVTS	DOCUMENT I	D	TECN	COMMENT	
1.85 ± 0.25 OUR A	VERAGE E	rror includes scale	factor c	of 1.1.		
$2.38 \pm 0.37 \pm 0.29$	78	ABLIKIM	060	BES2	$\psi(2S) ightarrow$. 0
10 + 03 + 03	76.8	BRIERE	05		$K^+ K^-$	$\pi^+\pi^-\pi^0$
1.9 ±0.3 ±0.5	10.0	DRIERE	00	CLLO	$\kappa^+\kappa^-$	$\pi^{+}\pi^{-}\pi^{0}$
$15 \pm 03 \pm 02$	320 ± 52	77 dai	020	DEC	1(2S)	
$1.5 \pm 0.5 \pm 0.2$	23.0 ± 3.2	DAI	030	DLS	$\psi(23) \rightarrow$	
77 Normalized to	$B(\eta/(2S) \rightarrow B(\eta/(2S))$	$I/\psi \pi^+ \pi^-) = 0.2$	03E	016	$\psi(23) \rightarrow K^+ K^-$	$\pi^+\pi^-\pi^0$
⁷⁷ Normalized to	$B(\psi(2S) \rightarrow 0$	$J/\psi \pi^+ \pi^-) = 0.3$	805 ± 0).016.	$\psi(23) \rightarrow K^+ K^-$	π+ _π - _π 0 Γε-/Γ
⁷⁷ Normalized to $\Gamma(3(\pi^+\pi^-))/\Gamma$	$B(\psi(2S) \rightarrow total$	$J/\psi \pi^+ \pi^-) = 0.3$	305 ± 0).016.	$\psi(23) \rightarrow K^+ K^-$	_π + _π - _π 0 Γ ₆₇ /Γ
⁷⁷ Normalized to $\Gamma(3(\pi^+\pi^-))/\Gamma$ <u>VALUE (units 10⁻⁴)</u> 35 + 20 OUR A	$B(\psi(2S) \rightarrow 0$ total	$J/\psi \pi^+ \pi^-) = 0.3$	305 ± 0).016. <u>TECN</u>	$\psi(23) \rightarrow K^+ K^-$	_π + _π - _π 0 Γ ₆₇ /Γ
⁷⁷ Normalized to $\Gamma(3(\pi^+\pi^-))/\Gamma$ <u>VALUE (units 10⁻⁴)</u> 3.5 ±2.0 OUR A 5.45+0.42+0.87	$B(\psi(2S) \rightarrow 0$ total WERAGE E	$J/\psi \pi^+ \pi^-) = 0.3$ <u>DOCUMENT ID</u> rror includes scale f ABLIKIM	305 ± 0	0.016. <u>TECN</u> of 2.8. BES2	$\psi(23) \rightarrow K^+ K^-$ $\underline{COMMENT}$ $e^+ e^- \rightarrow 0$	$\pi^{+}\pi^{-}\pi^{0}$ Γ_{67}/Γ
⁷⁷ Normalized to $\Gamma(3(\pi^+\pi^-))/\Gamma_{1}$ <u>VALUE (units 10⁻⁴)</u> 3.5 ± 2.0 OUR A 5.45±0.42±0.87	$B(\psi(2S) \rightarrow $ total WERAGE E 671	$J/\psi \pi^+ \pi^-) = 0.3$ $\frac{DOCUMENT ID}{TOC includes scale for a matrix ABLIKIM}$	305 ± 0 $\frac{1}{1000}$).016. <u>TECN</u> of 2.8. BES2	$\varphi(23) \rightarrow K^+ K^-$ $\frac{COMMENT}{e^+ e^- \rightarrow 2}$ $3(\pi^+ \pi^-)$	$\frac{\pi^{+}\pi^{-}\pi^{0}}{\Gamma_{67}/\Gamma}$ $\frac{\psi(2S) \rightarrow}{\Gamma_{0}}$
⁷⁷ Normalized to $\Gamma(3(\pi^+\pi^-))/\Gamma_{}$ <u>VALUE (units 10⁻⁴)</u> 3.5 ±2.0 OUR A 5.45±0.42±0.87 1.5 ±1.0	B($\psi(2S) \rightarrow 1$ total <u>EVTS</u> WERAGE E 671	$J/\psi \pi^+ \pi^-) = 0.3$ $\frac{DOCUMENT ID}{T}$ rror includes scale f ABLIKIM 78 TANENBAUI	035 ± 0 , factor c 05н M 78	0.016. <u>TECN</u> of 2.8. BES2 MRK1	$\begin{array}{c} \varphi(23) \rightarrow \\ K^+ K^- \end{array}$ $\begin{array}{c} \hline \\ e^+ e^- \rightarrow \\ 3(\pi^+ \pi^- e^+ e^- \end{array}$	$\pi^{+}\pi^{-}\pi^{0}$ Γ_{67}/Γ $\psi(2S) \rightarrow$
⁷⁷ Normalized to $\Gamma(3(\pi^+\pi^-))/\Gamma_{}$ <u>VALUE (units 10⁻⁴)</u> 3.5 ±2.0 OUR A 5.45±0.42±0.87 1.5 ±1.0 ⁷⁸ Assuming entir	$B(\psi(2S) \rightarrow 0$ total EVTS VERAGE E 671 rely strong dec	$J/\psi \pi^+ \pi^-) = 0.3$ $\frac{DOCUMENT \ ID}{ABLIKIM}$ 78 TANENBAUR cay.	035 ± 0 305 ± 0 9 factor c 05н 05н 078	0.016. <u>TECN</u> of 2.8. BES2 MRK1	$\begin{array}{c} \varphi(23) \rightarrow \\ K^+ K^- \end{array}$ $\begin{array}{c} \hline \\ e^+ e^- \rightarrow \\ 3(\pi^+ \pi^- \\ e^+ e^- \end{array}$	$\pi^{+}\pi^{-}\pi^{0}$ Γ_{67}/Γ $\psi(2S) \rightarrow$
⁷⁷ Normalized to $\Gamma(3(\pi^+\pi^-))/\Gamma_{}$ <u>VALUE (units 10⁻⁴)</u> 3.5 ±2.0 OUR A 5.45±0.42±0.87 1.5 ±1.0 ⁷⁸ Assuming entir $\Gamma(p\overline{p}\pi^+\pi^-\pi^0)$	$B(\psi(2S) \rightarrow 0.5 \text{ total})$ total VERAGE E 671 rely strong dec // total	$J/\psi \pi^+ \pi^-) = 0.3$ $\frac{DOCUMENT \ ID}{Tror includes scale from ABLIKIM}$ 78 TANENBAUR cay.	035 ± 0 305 ± 0 6 6 6 7 7 8 7 8	0.016. <u>TECN</u> of 2.8. BES2 MRK1	$\psi(23) \rightarrow K^+ K^-$ $K^+ K^-$ $e^+ e^- \rightarrow 3(\pi^+ \pi^-)$ $e^+ e^-$	_π + _π - _π 0 Γ ₆₇ /Γ ψ(2 <i>S</i>) → ΄) Γ ₆₈ /Γ
⁷⁷ Normalized to $\Gamma(3(\pi^+\pi^-))/\Gamma_{}^{}$ 3.5 ±2.0 OUR A 5.45±0.42±0.87 1.5 ±1.0 ⁷⁸ Assuming entir $\Gamma(p\overline{p}\pi^+\pi^-\pi^0)$ <i>VALUE</i> (units 10 ⁻⁴)	$B(\psi(2S) \rightarrow 0.5 \pm 0.5)$ total VERAGE E 671 rely strong dea $/\Gamma_{total}$ EVTS	$J/\psi \pi^+ \pi^-) = 0.3$ $\frac{DOCUMENT ID}{TOT includes scale from ABLIKIM}$ 78 TANENBAUR Cay. DOCUMENT ID	035 ± 0 305 ± 0 5 6 05H VI 78	0.016. <u>TECN</u> of 2.8. BES2 MRK1 <i>TECN</i>	$\begin{array}{c} \varphi(23) \rightarrow \\ K^+ K^- \end{array}$ $\begin{array}{c} \underline{COMMENT} \\ e^+ e^- \rightarrow \\ 3(\pi^+ \pi^- \\ e^+ e^- \end{array}$ $\begin{array}{c} COMMENT \end{array}$	$\pi^+ \pi^- \pi^0$ Γ_{67}/Γ $\psi(2S) \rightarrow$ Γ_{68}/Γ
⁷⁷ Normalized to $\Gamma(3(\pi^+\pi^-))/\Gamma_{-}$ <u>VALUE (units 10⁻⁴)</u> 3.5 ±2.0 OUR A 5.45±0.42±0.87 1.5 ±1.0 ⁷⁸ Assuming entir $\Gamma(p\overline{p}\pi^+\pi^-\pi^0)$ <u>VALUE (units 10⁻⁴)</u> 7.3±0.4±0.6	$B(\psi(2S) \rightarrow \mathbf{total})$ total \underline{EVTS} VERAGE E 671 rely strong dec $\frac{\mathbf{/\Gamma_{total}}}{434.9}$	$J/\psi \pi^+ \pi^-) = 0.3$ $\frac{DOCUMENT \ ID}{ABLIKIM}$ 78 TANENBAUI cay. $\frac{DOCUMENT \ ID}{BRIERE}$	035 ± 0 305 ± 0 5 6 05н 05	0.016. <u>TECN</u> of 2.8. BES2 MRK1 <u>TECN</u> CLEO	$\psi(23) \rightarrow K^+ K^-$ $K^+ K^-$ $e^+ e^- \rightarrow G^-$ $e^+ e^-$ $\frac{COMMENT}{e^+ e^-} \rightarrow G^-$	$\pi^{+}\pi^{-}\pi^{0}$ Γ_{67}/Γ $\psi(2S) \rightarrow$ Γ_{68}/Γ $\psi(2S) \rightarrow$
⁷⁷ Normalized to $\Gamma(3(\pi^+\pi^-))/\Gamma_{}$ 3.5 ±2.0 OUR A 5.45±0.42±0.87 1.5 ±1.0 ⁷⁸ Assuming entir $\Gamma(p\overline{p}\pi^+\pi^-\pi^0)$ VALUE (units 10 ⁻⁴) 7.3±0.4±0.6	B(ψ(2S) → total VERAGE E 671 rely strong dea $/\Gamma_{total}$ <u>EVTS</u> 434.9	$J/\psi \pi^+ \pi^-) = 0.3$ $\frac{DOCUMENT \ IE}{ABLIKIM}$ 78 TANENBAUI cay. $\frac{DOCUMENT \ IE}{BRIERE}$	035 ± 0 305 ± 0 6 6 05н 05	0.016. <u>TECN</u> of 2.8. BES2 MRK1 <u>TECN</u> CLEO	$\psi(23) \rightarrow K^+ K^-$ $\frac{COMMENT}{e^+ e^-}$ $\frac{COMMENT}{e^+ e^-}$ $\frac{COMMENT}{e^+ e^-}$	$\pi^{+} \pi^{-} \pi^{0}$ Γ_{67}/Γ $\psi(2S) \rightarrow$ Γ_{68}/Γ $\psi(2S) \rightarrow$ $-\pi^{0}$
⁷⁷ Normalized to $\Gamma(3(\pi^+\pi^-))/\Gamma_{-}$ 3.5 ±2.0 OUR A 5.45±0.42±0.87 1.5 ±1.0 ⁷⁸ Assuming entir $\Gamma(p\overline{p}\pi^+\pi^-\pi^0)$ <u>VALUE (units 10^-4)</u> 7.3±0.4±0.6 $\Gamma(K^+K^-)/\Gamma_{tot}$	$B(\psi(2S) \rightarrow \mathbf{total})$ total $EVTS$ VERAGE F	$J/\psi \pi^+ \pi^-) = 0.3$ $\frac{DOCUMENT \ ID}{ABLIKIM}$ 78 TANENBAUI cay. $\frac{DOCUMENT \ ID}{BRIERE}$	035 ± 0 6 6 6 6 7 7 7 7 7 7 0 5	0.016. <u>TECN</u> of 2.8. BES2 MRK1 <u>TECN</u> CLEO	$\begin{array}{c} COMMENT\\ e^+e^- \rightarrow \\ 3(\pi^+\pi^-e^+e^- \\ e^+e^- \\ \hline \\ COMMENT\\ e^+e^- \rightarrow \\ p\overline{p}\pi^+\pi^- \end{array}$	$\pi^{+} \pi^{-} \pi^{0}$ Γ_{67}/Γ $\psi(2S) \rightarrow$ Γ_{68}/Γ $\psi(2S) \rightarrow$ $-\pi^{0}$ Γ_{69}/Γ
⁷⁷ Normalized to $\Gamma(3(\pi^+\pi^-))/\Gamma_{-}$ <u>VALUE (units 10⁻⁴)</u> 3.5 ±2.0 OUR A 5.45±0.42±0.87 1.5 ±1.0 ⁷⁸ Assuming entir $\Gamma(p\overline{p}\pi^+\pi^-\pi^0)$ <u>VALUE (units 10⁻⁴)</u> 7.3±0.4±0.6 $\Gamma(K^+K^-)/\Gamma_{tot}$ VALUE (units 10 ⁻⁵)	$B(\psi(2S) \rightarrow total)$ $EVTS$ $VERAGE = 671$ rely strong dec $\int \Gamma_{total}$ $EVTS$ 434.9 tal $CL\%$	$J/\psi \pi^+ \pi^-) = 0.3$ $\frac{DOCUMENT \ IE}{ABLIKIM}$ 78 TANENBAUI cay. $\frac{DOCUMENT \ IE}{BRIERE}$ $DOCUMENT \ IE}$	035 ± 0 305 ± 0 5 6 6 05 05	D.016. <u>TECN</u> of 2.8. BES2 MRK1 <u>TECN</u> CLEO TECN	$\psi(23) \rightarrow K^+ K^-$ $e^+ e^- \rightarrow \pi^-$ $e^+ e^-$ $\frac{COMMENT}{e^+ e^- \rightarrow \pi^-}$ $p\overline{p}\pi^+ \pi^-$ $COMMENT$	$\pi^{+}\pi^{-}\pi^{0}$ Γ_{67}/Γ $\psi(2S) \rightarrow$ Γ_{68}/Γ $\psi(2S) \rightarrow$ $-\pi^{0}$ Γ_{69}/Γ
⁷⁷ Normalized to $\Gamma(3(\pi^+\pi^-))/\Gamma$ 3.5 ±2.0 OUR A 5.45±0.42±0.87 1.5 ±1.0 ⁷⁸ Assuming entir $\Gamma(p\overline{p}\pi^+\pi^-\pi^0)$ <u>VALUE (units 10⁻⁴)</u> 7.3±0.4±0.6 $\Gamma(K^+K^-)/\Gamma_{tot}$ <u>VALUE (units 10⁻⁵)</u> 6.3±0.7 OUR	$B(\psi(2S) \rightarrow total)$ $EVTS$ $Fely strong der F(T_{total}) EVTS 434.9 CL\% AVERAGE$	$J/\psi \pi^+ \pi^-) = 0.3$ $\frac{DOCUMENT IE}{ABLIKIM}$ 78 TANENBAUI cay. $\frac{DOCUMENT IE}{BRIERE}$	035 ± 0 305 ± 0 factor c 05H M 78 05	0.016. <u>TECN</u> of 2.8. BES2 MRK1 <u>TECN</u> <u>TECN</u>	$\psi(23) \rightarrow K^+ K^-$ $e^+ e^- \rightarrow a^-$ $e^+ e^-$ $\frac{COMMENT}{e^+ e^- \rightarrow a^-}$ $p \overline{p} \pi^+ \pi^-$ $COMMENT$	$\pi^{+} \pi^{-} \pi^{0}$ Γ_{67}/Γ $\psi(2S) \rightarrow$ Γ_{68}/Γ $\psi(2S) \rightarrow$ Γ_{69}/Γ
⁷⁷ Normalized to $\Gamma(3(\pi^+\pi^-))/\Gamma_{a}$ 3.5 ±2.0 OUR A 5.45±0.42±0.87 1.5 ±1.0 ⁷⁸ Assuming entir $\Gamma(p\overline{p}\pi^+\pi^-\pi^0)$ <u>VALUE (units 10⁻⁴)</u> 7.3±0.4±0.6 $\Gamma(K^+K^-)/\Gamma_{tot}$ <u>VALUE (units 10⁻⁵)</u> 6.3±0.7 OUR 6.3±0.6±0.3	B(ψ(2S) → total <u>EVTS</u> VERAGE E 671 rely strong dea $/\Gamma_{total}$ <u>EVTS</u> 434.9 tal <u>CL%</u> AVERAGE	$J/\psi \pi^{+} \pi^{-}) = 0.3$ $\frac{DOCUMENT \ IE}{ABLIKIM}$ 78 TANENBAUI cay. $\frac{DOCUMENT \ IE}{BRIERE}$ $\frac{DOCUMENT \ IE}{DOBBS}$	035 ± 0 305 ± 0 5 5 5 6 05 05 05 05 05 06A	0.016. <u>TECN</u> of 2.8. BES2 MRK1 <u>TECN</u> CLEO <u>TECN</u> CLEO	$\psi(23) \rightarrow K^+ K^-$ $e^+ e^- \rightarrow G^+ e^-$ $e^+ e^-$ $\frac{COMMENT}{e^+ e^- \rightarrow F^-} e^+ e^-$ $\frac{COMMENT}{e^+ e^-} e^+ e^-$	$\pi^{+}\pi^{-}\pi^{0}$ Γ_{67}/Γ $\psi(2S) \rightarrow$ Γ_{68}/Γ $\psi(2S) \rightarrow$ Γ_{69}/Γ
⁷⁷ Normalized to $\Gamma(3(\pi^+\pi^-))/\Gamma$ 3.5 ±2.0 OUR A 5.45±0.42±0.87 1.5 ±1.0 ⁷⁸ Assuming entin $\Gamma(p\overline{p}\pi^+\pi^-\pi^0)$ <u>VALUE (units 10⁻⁴)</u> 7.3±0.4±0.6 $\Gamma(K^+K^-)/\Gamma_{tot}$ <u>VALUE (units 10⁻⁵)</u> 6.3±0.7 OUR 6.3±0.6±0.3 10 ±7	$B(\psi(2S) \rightarrow total)$ $EVTS$ WERAGE E 671 rely strong der // Ttotal $EVTS$ 434.9 tal $CL\%$ AVERAGE	$J/\psi \pi^{+} \pi^{-}) = 0.3$ $\frac{DOCUMENT \ IE}{ABLIKIM}$ 78 TANENBAUI cay. $\frac{DOCUMENT \ IE}{BRIERE}$ $DOBBS$ BRANDELIK	035 305 ± 0 5 6 6 05 05 06A 79C	0.016. <u>TECN</u> of 2.8. BES2 MRK1 <u>TECN</u> CLEO <u>TECN</u> CLEO DASP	$\begin{array}{c} COMMENT\\ e^+e^- \rightarrow \\ 3(\pi^+\pi^-e^+e^- \\ e^+e^- \\ \hline \\ \hline \\ COMMENT\\ e^+e^- \rightarrow \\ p\overline{p}\pi^+\pi^- \\ \hline \\ \hline \\ COMMENT\\ e^+e^- \\ e^+e^- \\ e^+e^- \\ e^+e^- \end{array}$	$\pi^{+} \pi^{-} \pi^{0}$ Γ_{67}/Γ $\psi(2S) \rightarrow$ Γ_{68}/Γ $\psi(2S) \rightarrow$ Γ_{69}/Γ
⁷⁷ Normalized to $\Gamma(3(\pi^+\pi^-))/\Gamma$ 3.5 ±2.0 OUR A 5.45±0.42±0.87 1.5 ±1.0 ⁷⁸ Assuming entir $\Gamma(p\overline{p}\pi^+\pi^-\pi^0)$ <u>VALUE (units 10⁻⁴)</u> 7.3±0.4±0.6 $\Gamma(K^+K^-)/\Gamma_{tot}$ <u>6.3±0.7 OUR</u> <u>6.3±0.6±0.3</u> 10 ±7 • • • We do not u	B($\psi(2S) \rightarrow$ total <u>EVTS</u> VERAGE E 671 rely strong der / Γ_{total} <u>EVTS</u> 434.9 tal <u>CL%</u> AVERAGE use the following the followin	$J/\psi \pi^{+} \pi^{-}) = 0.3$ $\frac{DOCUMENT \ IE}{ABLIKIM}$ $78 \ TANENBAUI$ cay. $\frac{DOCUMENT \ IE}{BRIERE}$ $\frac{DOCUMENT \ IE}{BRIERE}$ $DOBBS$ $BRANDELIK$ ing data for averag	05 305 ± 0 5 6 6 7 05 06 79 06 79 06 79 06 79 05	D.016. TECN of 2.8. BES2 MRK1 <u>TECN</u> CLEO DASP limits, o	$\begin{array}{c} (23) \rightarrow \\ K^+ K^- \end{array}$ $\begin{array}{c} \underline{COMMENT} \\ e^+ e^- \rightarrow \\ 3(\pi^+ \pi^- e^+ e^- \\ e^+ e^- \end{array}$ $\begin{array}{c} \underline{COMMENT} \\ e^+ e^- \rightarrow \\ p \overline{p} \pi^+ \pi \end{array}$ $\begin{array}{c} \underline{COMMENT} \\ e^+ e^- \end{array}$	$\pi^{+} \pi^{-} \pi^{0}$ Γ_{67}/Γ $\psi(2S) \rightarrow$ Γ_{68}/Γ $\psi(2S) \rightarrow$ Γ_{69}/Γ

 $\Gamma(\rho(770)\pi \rightarrow \pi^+\pi^-\pi^0)/\Gamma_{\text{total}}$ Γ_{73}/Γ VALUE (units 10^{-4}) CL% EVTS DOCUMENT ID TECN COMMENT 0.32±0.12 OUR AVERAGE Error includes scale factor of 1.8. ⁸² ABLIKIM $0.51 \!\pm\! 0.07 \!\pm\! 0.11$ 05J BES2 $\psi(2S) \rightarrow \rho(770) \pi \rightarrow$ $\pi + \pi - \pi^{0}$ $0.24^{+0.08}_{-0.07}\!\pm\!0.02$ 05 CLEO $e^+e^- \rightarrow \psi(2S)$ 22 ADAM • • • We do not use the following data for averages, fits, limits, etc. • • • < 0.83 90 1 FRANKLIN 83 MRK2 e^+e^- 76 CNTR e^+e^- BARTEL <10 90 ⁸³ ABRAMS 75 MRK1 e^+e^- <10 90 ⁸² From a PW analysis of $\psi(2S) \rightarrow \pi^+ \pi^- \pi^0$. ⁸³ Final state $\rho^0 \pi^0$. $\Gamma(\pi^+\pi^-)/\Gamma_{\rm total}$ Γ_{74}/Γ VALUE (units 10^{-5}) DOCUMENT ID TECN COMMENT CL% BRANDELIK 79C DASP e^+e^- 8 ±5 • • We do not use the following data for averages, fits, limits, etc. • • • 06A CLEO $e^+e^- \rightarrow \psi(2S)$ <2.1 90 DOBBS 77 MRK1 e^+e^- <5 90 FELDMAN $\Gamma(K_1(1400)^{\pm}K^{\mp})/\Gamma_{\text{total}}$ Γ₇₅/Γ VALUE (units 10^{-4}) DOCUMENT ID CL% TECN COMMENT ⁸⁴ BAI 90 e⁺ e⁻ <3.1 99C BES ⁸⁴ Assuming B($K_1(1400) \rightarrow K^* \pi$)=0.94 ± 0.06 $\Gamma(K^+K^-\pi^0)/\Gamma_{\rm total}$ Γ_{76}/Γ VALUE (units 10^{-5}) CL% EVTS DOCUMENT ID TECN COMMENT 83 MRK2 $e^+e^- \rightarrow$ hadrons <2.96 90 1 FRANKLIN $\Gamma(K^+\overline{K}^*(892)^-+c.c.)/\Gamma_{total}$ Γ₇₇/Γ <u>VALUE (units 10^{-5})</u> <u>CL%</u> <u>EVTS</u> DOCUMENT ID TECN COMMENT $1.7^{+0.8}_{-0.7}$ OUR AVERAGE $2.9^{+1.3}_{-1.7}\pm0.4$ 051 BES2 $e^+e^- \rightarrow \psi(2S)$ 9.6 ± 4.2 ABLIKIM $1.3^{+1.0}_{0.7} \pm 0.3$ 05 CLEO $e^+e^- \rightarrow \psi(2S)$ 7 ADAM • • • We do not use the following data for averages, fits, limits, etc. • • • 83 MRK2 $e^+e^- \rightarrow$ hadrons < 5.4 90 FRANKLIN $\Gamma(K^*(892)^0\overline{K}^0+\text{c.c.})/\Gamma_{\text{total}}$ Γ₇₈/Γ VALUE (units 10^{-5}) **EVTS** DOCUMENT ID TECN COMMENT 10.9 ± 2.0 OUR AVERAGE $13.3^{+2.4}_{-2.8}\pm 1.7$ 051 BES2 $e^+e^- \rightarrow \psi(2S)$ 65.6 ± 9.0 ABLIKIM $9.2^{+2.7}_{-2.2}\pm0.9$ 05 CLEO $e^+e^- \rightarrow \psi(2S)$ ADAM 25 HTTP://PDG.LBL.GOV Page 30 Created: 7/17/2008 18:14

$\Gamma(K^+\overline{K}^*(892)^-+\text{c.c.})/$	′Γ(<i>K</i> *(892) ⁰ <i>K</i> ⁰ +c.c.)	Г ₇₇ /Г ₇₈
VALUE	DOCUMENT ID	TECN COMMENT
$0.16 \pm 0.06 \text{ OUR AVERAGE}$		
0.22 + 0.10 -0.14	ABLIKIM 05i	$BES2 e^+ e^- \to \ \psi(2S)$
$0.14 \substack{+0.08 \\ -0.06}$	ADAM 05	CLEO $e^+e^- \rightarrow \psi(2S)$
$\Gamma(\phi\pi^+\pi^-)/\Gamma_{ ext{total}}$		Г ₇₉ /Г
$\frac{VALUE \text{ (units } 10^{-4})}{111140000} EVTS$	DOCUMENT ID T	ECN COMMENT
	85.86 AUDEDT	$10.6 + 10^{-1}$
$2.39 \pm 0.94 \pm 0.04$ 10 ± 4	AUBERI UTAK B	ABR 10.6 $e^+ e^- \rightarrow \pi^+ \pi^- K^+ K^- \gamma$
$0.9 \pm 0.2 \pm 0.1$ 47.6	BRIERE 05 C	$ LEO e^+ e^- \to \psi(2S) \xrightarrow{'} \\ \kappa^+ \kappa^- \pi^+ \pi^- $
$1.5\ \pm 0.2\ \pm 0.2\ 51.5\pm 8.3$	⁸⁷ BAI 03B B	ES $\psi(2S) \rightarrow K^+ K^- \pi^+ \pi^-$
⁸⁵ AUBERT 07AK reports [0.22 ± 0.04)×10 ⁻³ keV. keV. Our first error is the from using our best value ⁸⁶ Using B($\phi \rightarrow K^+K^-$) ⁸⁷ Normalized to B($\psi(2S)$ -	$B(\psi(2S) \rightarrow \phi\pi^{+}\pi^{-})] \times [$ We divide by our best value Γ ir experiment's error and our set e. $= (49.3 \pm 0.6)\%.$ $\rightarrow J/\psi\pi^{+}\pi^{-}) = 0.305 \pm 0.000$	$\Gamma(\psi(2S) \rightarrow e^+ e^-)] = (0.57 \pm (\psi(2S) \rightarrow e^+ e^-)) = 2.38 \pm 0.04$ second error is the systematic error 0.016.
$\Gamma(\phi f_0(980) \rightarrow \pi^+\pi^-)/l$	Testal	Гал/Г
VALUE (units 10^{-4}) EVTS	DOCUMENT ID T	ECN COMMENT
0.68±0.24 OUR AVERAGE	Error includes scale factor o	of 1.1.
$1.43 {\pm} 0.69 {\pm} 0.02 \qquad 6 {\pm} 3$	^{88,89} AUBERT 07AK B	ABR 10.6 $e^+e^- \rightarrow$
$0.6 \pm 0.2 \pm 0.1 18.4 \pm 6.4$	90 RAI 03R B	$\pi^{+}\pi^{-}K^{+}K^{-}\gamma^{+}\pi^{-}$
88 ALIDEDT 07414 reports []		$\psi(2S) \rightarrow K K \pi \pi$
$= (0.34 \pm 0.16 \pm 0.04) \times = 2.38 \pm 0.04 \text{ keV. Our} \times = 2.38 \pm 0.04 \text{ keV. Our} \times = 3000 \text{ systematic error from usi} \times = 3000 \text{ systematic error from usi} \times = 30000000000000000000000000000000000$	$\varphi(23) \rightarrow \varphi_{10}(980) \rightarrow \pi$ × 10 ⁻³ keV. We divide by out first error is their experiment' ng our best value. = (49.3 ± 0.6)%. $\rightarrow J/\psi \pi^+ \pi^-$) = 0.305 ± 0	ir best value $\Gamma(\psi(2S) \rightarrow e^+e^-)$ is error and our second error is the 0.016.
$\Gamma(2(K^+K^-))/\Gamma_{\text{total}}$		Г ₈₁ /Г
VALUE (units 10^{-4}) EV7	S DOCUMENT ID	TECN COMMENT
0.6±0.1 ±0.1 59.	2 BRIERE 05	$ \overline{\text{CLEO}} \overline{e^+e^- \rightarrow \psi(2S)} \rightarrow 2(K^+K^-) $
$\Gamma(\phi K^+ K^-) / \Gamma_{\text{total}}$		Гя2/Г
VALUE (units 10^{-4}) EVTS	DOCUMENT ID	TECN COMMENT
0.70±0.16 OUR AVERAGE		
$0.8 \pm 0.2 \pm 0.1$ 36.8	BRIERE 05	CLEO $e^+e^- \rightarrow \psi(2S) \rightarrow 2(\kappa^+\kappa^-)$
$0.6 \pm 0.2 \pm 0.1$ 16.1 ± 10.1	5.0 ⁹¹ BAI 03E	BES $\psi(2S) \rightarrow 2(K^+K^-)$
91 Normalized to B($\psi(2S)$ -	$\rightarrow J/\psi \pi^+ \pi^-) = 0.305 \pm 0.305$	0.016.

$\Gamma(2(K^+K^-)\pi^0)/$	Γ _{total}					Г ₈₃ /Г
VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT	
$1.1 \pm 0.2 \pm 0.2$	44.7	BRIERE	05	CLEO	$e^+e^- \to \psi(2)$ $2(K^+K^-)$	$(2S) \rightarrow \pi^0$
$\Gamma(\phi\eta)/\Gamma_{ m total}$						Г ₈₄ /Г
VALUE (units 10^{-5})	EVTS	DOCUMENT ID		TECN	COMMENT	
$2.8^{+1.0}_{-0.8}$ our aver	AGE					
$2.0^{+1.5}_{-1.1}\pm0.4$	6	ADAM	05	CLEO	$e^+e^- \rightarrow \psi(2)$	25)
$3.3 \pm 1.1 \pm 0.5$	17	ABLIKIM	04K	BES	$e^+e^- \rightarrow \psi(2)$	25)
$\Gamma(\phi\eta')/\Gamma_{ ext{total}}$						Г ₈₅ /Г
VALUE (units 10^{-5})	EVTS	DOCUMENT ID		TECN	COMMENT	
3.1±1.4±0.7	8	⁹² ABLIKIM	04K	BES	$e^+e^- ightarrow \psi(2)$	25)
⁹² Calculated combi	ning $\eta' \rightarrow \gamma$	$ ho$ and $\eta\pi^+\pi^-$ c	hannel	s.		
$\Gamma(\omega \eta') / \Gamma_{ ext{total}}$						Г ₈₆ /Г
VALUE (units 10^{-5})	EVTS	DOCUMENT ID		TECN	COMMENT	
$3.2^{+2.4}_{-2.0}\pm0.7$	4	⁹³ ABLIKIM	04K	BES	$e^+e^- \rightarrow \psi(2)$	25)
⁹³ Calculated combi	ning $\eta' \rightarrow \gamma$	$ ho$ and $\eta\pi^+\pi^-$ c	hannel	s.		
$\Gamma(\omega \pi^0) / \Gamma_{ ext{total}}$						Г ₈₇ /Г
VALUE (units 10^{-5})	EVTS	DOCUMENT ID		TECN	COMMENT	
2.1 \pm 0.6 OUR AVE	ERAGE					
$2.5 \ +1.2 \ \pm 0.2$	14	ADAM	05	CLEO	$e^+e^- \rightarrow \psi(2)$	25)
$1.87^{+0.68}_{-0.62}{\pm}0.28$	14	ABLIKIM	04L	BES	$e^+e^- \rightarrow \psi(2)$	25)
$\Gamma(ho\eta')/\Gamma_{ ext{total}}$						Г ₈₈ /Г
VALUE (units 10^{-5})	EVTS	DOCUMENT ID		TECN	COMMENT	
$1.87^{+1.64}_{-1.11}\pm0.33$	2	ABLIKIM	04L	BES	$e^+e^- \rightarrow \psi(2)$	25)
$\Gamma(\rho\eta)/\Gamma_{total}$						Г ₈₉ /Г
VALUE (units 10^{-5})	<u>EVTS</u>	DOCUMENT ID		TECN	COMMENT	
2.2 ± 0.6 OUR AVE	ERAGE Erro	or includes scale fa	actor o	f 1.1.		
$3.0 + 0.9 \pm 0.2$	18	ADAM	05	CLEO	$e^+e^- \rightarrow \psi(2)$	25)
$1.78 + 0.07 \pm 0.17$	13	ABLIKIM	04L	BES	$e^+e^- \rightarrow \psi(2)$	25)
$\Gamma(\omega\eta)/\Gamma_{ ext{total}}$						Г ₉₀ /Г
VALUE (units 10^{-5})	CL%	DOCUMENT ID		TECN		
<1.1	90	ADAM	05	CLEO	$e^+e^- \rightarrow \psi(2)$	25)
 vve do not use 		A DI UZINA	5, TIES,	DEC	a^+a^-	25)
< 3.1	90	ABLIKIM	U4K	BE2	$e \cdot e \rightarrow \psi(2)$	23)
HTTP://PDG.LB	L.GOV	Page 32		Creat	ed: 7/17/200	8 18:14

$(ALLE (unity 10^{-5}))$	CL 0/	DOCUMENT ID	`	TECN	COMMENT	51/
	<u> </u>		0.414			
<u.4 • • We do not us</u.4 	90 se the following	ABLIKIM a data for averag	04K	BES limits	$e \cdot e \rightarrow$	$\psi(25)$
<07	90		05	CLEO	$e^+e^- \rightarrow$	<i>w</i> (25)
-	_			0120		φ(-0)
$\left[\left(\eta_{c}\pi^{+}\pi^{-}\pi^{0}\right)\right]$	total					Г <u>92</u> /Г
/ALUE (units 10 ⁻³)	<u>CL%</u>	DOCUMENT ID)	TECN	COMMENT	
<1.0	90	PEDLAR	07	CLEO	$e^+e^- \rightarrow$	$\psi(2S)$
Γ(<i>p</i> p <i>K</i> ⁺ <i>K</i> ⁻)/Γ	total					Г ₉₃ /Г
/ALUE (units 10 ⁻⁵)	EVTS	DOCUMENT ID)	TECN	COMMENT	
2.7±0.6±0.4	30.1	BRIERE	05	CLEO	$e^+e^- \rightarrow$	$\psi(2S) \rightarrow$
					р р К ⁺ И	ζ^{-}
$(\overline{\Lambda} n K_{c}^{0} + c.c.))$	Γ _{total}					Г94/І
/ALUE (units 10 ⁻⁴)	EVTS	DOCUMENT ID)	TECN	<u>COMMENT</u>	5.7
$0.81 \pm 0.11 \pm 0.14$	50	94 ABLIKIM	08 C	BES2	$e^+e^- \rightarrow$	J/ψ
⁹⁴ Using $B(\overline{\Lambda} \rightarrow \overline{7}$	$(\pi^+) = 63.9\%$	6 and B($K^0_{\Sigma} \rightarrow$	$\pi^{+}\pi^{-}$) = 69.2	2%.	, ,
00g 2 () 00107) 001	_ / 0 ·	
$\left(\phi f_2'(1525)\right)/\Gamma$	total					Г ₉₅ /I
				TECN	COMMENT	
/ALUE (units 10 *) (EVIS	DOCUMENT	īD	TLCN	COMMENT	
/ <i>ALUE</i> (units 10 [−]) ().44±0.12±0.11	$\frac{21\%}{20 \pm 6}$	<u>DOCUMENT</u> BAI	04	C	$\psi(2S) \rightarrow$	$2(K^+K^-)$
ALUE (units 10 ⁻⁴) (0.44±0.12±0.11 ● ● ● We do not us	$\frac{20 \pm 6}{20 \pm 6}$	<u>DOCUMENT</u> BAI g data for averag	04 es, fits,	C limits, o	$\psi(2S) \rightarrow \psi(2S) = 0$	2(K ⁺ K ⁻)
0.44\pm0.12\pm0.11 • • • We do not us <0.45	$\frac{21\%}{20 \pm 6}$ se the following	<u>DOCUMENT</u> BAI g data for averag BAI	04 es, fits, 98	C limits, d J BES	$\frac{\psi(2S)}{\psi(2S)} \rightarrow e^+ e^- \rightarrow e^+ e^- \rightarrow e^+ e^- \rightarrow e^+ e^- \rightarrow e^- e^- e^- \rightarrow e^+ e^- \rightarrow e^- e^- e^- e^- e^- e^- e^- e^- e^- e^-$	$2(K^+K^-)$ $2(K^+K^-)$
$24LUE (units 10^{+}) (0.44 \pm 0.12 \pm 0.11) = 0.44 \pm 0.12 \pm 0.11 = 0.45 $	$\frac{21\%}{20 \pm 6}$ se the following $\frac{20}{20 \pm 6}$	BAI g data for averag BAI	04 es, fits, 98	C limits, d J BES	$\frac{\psi(25)}{\psi(25)} \rightarrow$ etc. • • • $e^+e^- \rightarrow$	$\frac{2(K^+K^-)}{2(K^+K^-)}$
$\frac{ALUE (units 10^{-4})}{0.44 \pm 0.12 \pm 0.11}$ ••• We do not us <0.45 $(\Theta(1540)\overline{\Theta}(15))$	$\frac{21\%}{20 \pm 6}$ se the following $\frac{40}{6} \rightarrow K_{S}^{0} p$	BAI g data for averag BAI K ⁻ n + c.c.)/I	04 es, fits, 98 total	C limits, o J BES	$\frac{\psi(2S)}{\psi(2S)} \rightarrow e^+ e^- \rightarrow e^- e^- \rightarrow e^- e^- e^- e^- e^- e^- e^- e^- e^- e^-$	2(K ⁺ K ⁻) 2(K ⁺ K ⁻) Γ₉₆/Ι
$\frac{ALUE (units 10^{-4})}{0.44 \pm 0.12 \pm 0.11}$ ••• We do not us <0.45 ••($\Theta(1540)\overline{\Theta}(15$ $\frac{ALUE (units 10^{-5})}{0.99}$	$\frac{2L\%}{20 \pm 6}$ se the following $\frac{40}{20} \rightarrow K^0_{S} p$ $\frac{CL\%}{20}$	BAI g data for averag BAI K⁻ 77 + c.c.)/I <u>DOCUMENT ID</u>	04 es, fits, 98 total	C limits, G J BES <u>TECN</u>	$\frac{COMMENT}{\psi(25)} \rightarrow$ etc. • • • $e^+e^- \rightarrow$ $\frac{COMMENT}{e^+e^-}$	2(K ⁺ K ⁻) 2(K ⁺ K ⁻) Γ₉₆/Ι
$\frac{ALUE (units 10^{-4})}{0.44 \pm 0.12 \pm 0.11}$ $\bullet \bullet We do not us$ $< 0.45 \qquad \qquad$	$\frac{20 \pm 6}{20 \pm 6}$ se the following $\frac{40}{6} \rightarrow K_{S}^{0} p$ $\frac{CL\%}{90}$	BAI BAI BAI BAI K⁻ 77 + c.c.)/I <u>DOCUMENT ID</u> BAI	04 es, fits, 98 total	C limits, o J BES <u>TECN</u> BES2	$\frac{COMMENT}{\psi(2S)} \rightarrow$ etc. • • • $e^+e^- \rightarrow$ $\frac{COMMENT}{e^+e^-}$	2(<i>K</i> ⁺ <i>K</i> ⁻) 2(<i>K</i> ⁺ <i>K</i> ⁻) Γ₉₆/Ι
$\frac{ALUE (units 10^{-4})}{(0.44 \pm 0.12 \pm 0.11)}$ $(0.45 \times 0.45 \times 0.45)$ $T(\Theta(1540)\overline{\Theta}(15))$ (0.88) $T(\Theta(1540)K^{-}\overline{n})$	$\frac{2L\%}{20 \pm 6}$ Solve the following 20 $40) \rightarrow K_{S}^{0}p$ $\frac{CL\%}{90}$ $\rightarrow K_{S}^{0}pK^{-}$	BAI BAI BAI K⁻π+c.c.)/I <u>DOCUMENT ID</u> BAI	04 es, fits, 98 [total 04G	C limits, o J BES <u>TECN</u> BES2	$\frac{COMMENT}{\psi(2S)} \rightarrow$ etc. • • • $e^+e^- \rightarrow$ $\frac{COMMENT}{e^+e^-}$	2(K ⁺ K ⁻) 2(K ⁺ K ⁻) Γ ₉₆ /Ι
$\frac{ALUE (units 10^{-5})}{(ALUE (units 10^{-5}))} = \frac{10}{(O(1540)} = \frac{10}{O}$ $\frac{ALUE (units 10^{-5})}{(O(1540) K^{-7})}$ $\frac{ALUE (units 10^{-5})}{(ALUE (units 10^{-5}))}$	$\frac{2L\%}{20 \pm 6}$ se the following $\frac{40}{0} \rightarrow K_{S}^{0} p$ $\frac{CL\%}{90}$ $\rightarrow K_{S}^{0} p K^{-}$ $\frac{CL\%}{20}$	BAI BAI BAI K⁻π+c.c.)/I <u>DOCUMENT ID</u> BAI <u>DOCUMENT ID</u> <u>DOCUMENT ID</u>	04 es, fits, 98 total 04G	C limits, o J BES <u>TECN</u> BES2	$\frac{COMMENT}{\psi(2S)} \rightarrow$ etc. • • • $e^+e^- \rightarrow$ $\frac{COMMENT}{e^+e^-}$	2(Κ ⁺ Κ ⁻) 2(Κ ⁺ Κ ⁻) Γ ₉₆ /Ι Γ ₉₇ /Ι
$\frac{ALUE (units 10^{-5})}{(ALUE (units 10^{-5}))} = \frac{1}{2}$ $\frac{ALUE (units 10^{-5})}{(O(1540)\overline{\Theta}(15))} = \frac{1}{2}$ $\frac{ALUE (units 10^{-5})}{(ALUE (units 10^{-5}))} = \frac{1}{2}$	$\frac{21\%}{20 \pm 6}$ Solve the following $\frac{40}{90} \rightarrow K_{S}^{0} p$ $\frac{CL\%}{90}$ $\frac{CL\%}{90}$ $\frac{CL\%}{90}$	BAI BAI BAI Kπ+c.c.)/I <u>DOCUMENT ID</u> BAI <u>DOCUMENT ID</u> BAI BAI	04 es, fits, 98 Ftotal 04G	C limits, o J BES <u>TECN</u> BES2 <u>TECN</u> BES2	$\frac{COMMENT}{\psi(2S)} \rightarrow \\ e^+ e^- \rightarrow \\ \frac{COMMENT}{e^+ e^-} \\ \frac{COMAT}{e^+ e^-} \\ $	2(K ⁺ K ⁻) 2(K ⁺ K ⁻) Γ ₉₆ /Ι Γ ₉₇ /Ι
$\frac{ALUE (units 10^{-4})}{(2000)} = \frac{1}{2}$ $\frac{ALUE (units 10^{-5})}{(2000)} = \frac{1}{2}$ $\frac{ALUE (units 10^{-5})}{(2000)} = \frac{1}{2}$ $\frac{ALUE (units 10^{-5})}{(2000)} = \frac{1}{2}$	$\frac{2L\%}{20 \pm 6}$ se the following $\frac{40}{90} \rightarrow K_{S}^{0}p$ $\frac{CL\%}{90}$ $\rightarrow K_{S}^{0}pK^{-}$ $\frac{CL\%}{90}$ $(L\%)^{0} = K^{0} + K^{0}$	$\frac{DOCUMENT}{BAI}$ g data for averag BAI $K^{-}\overline{n} + c.c.)/I$ $\frac{DOCUMENT ID}{BAI}$ $\overline{n}/\Gamma_{total}$ BAI $\frac{DOCUMENT ID}{BAI}$ BAI	04 es, fits, 98 [total 04G	C limits, o J BES <u>TECN</u> BES2 <u>TECN</u> BES2	$\frac{COMMENT}{\psi(2S)} \rightarrow$ etc. • • • $e^+ e^- \rightarrow$ $\frac{COMMENT}{e^+ e^-}$ $\frac{COMMENT}{e^+ e^-}$	2(K ⁺ K ⁻) 2(K ⁺ K ⁻) Γ ₉₆ /Γ Γ ₉₇ /Γ
$\frac{ALUE (units 10^{-5})}{(0.44 \pm 0.12 \pm 0.11)}$ $0.44 \pm 0.12 \pm 0.11$ 0.45 < 0.45 $C(\Theta(1540)\overline{\Theta}(15))$ < 0.88 $C(\Theta(1540)K^{-}\overline{n})$ < 1.0 $C(\Theta(1540)K^{0}\overline{p})$ $= 0.000$	$\frac{21\%}{20 \pm 6}$ See the following $\frac{40}{90} \rightarrow K_{S}^{0} p$ $\frac{CL\%}{90}$ $\rightarrow K_{S}^{0} p K^{-}$ $\frac{CL\%}{90}$ $\rightarrow K_{S}^{0} \overline{p} K^{+}$	$\frac{DOCUMENT}{BAI}$ g data for averag BAI $K^{-}\overline{n} + c.c.)/I$ $\frac{DOCUMENT ID}{BAI}$ $\overline{n}/\Gamma_{total}$ BAI $\overline{n}/\Gamma_{total}$ BAI	04 es, fits, 98 ftotal 04G	C limits, o J BES <u>TECN</u> BES2 <u>TECN</u> BES2	$\frac{COMMENT}{\psi(2S)} \rightarrow \\ e^+ e^- \rightarrow \\ \frac{COMMENT}{e^+ e^-} \\ \frac{COMENT}{e^+ e^-} \\ $	2(K ⁺ K ⁻) 2(K ⁺ K ⁻) Γ ₉₆ /Γ Γ ₉₇ /Γ
$\frac{ALUE (units 10^{-5})}{(ALUE (units 10^{-5}))} = \frac{1}{2}$ $\frac{ALUE (units 10^{-5})}{(O(1540) O(15))} = \frac{1}{2}$ $\frac{ALUE (units 10^{-5})}{(O(1540) K^{-7})} = \frac{1}{2}$	$\frac{2L\%}{20 \pm 6}$ se the following $\frac{40}{0} \rightarrow K_{S}^{0}p$ $\frac{CL\%}{90}$ $\rightarrow K_{S}^{0}pK^{-}$ $\frac{CL\%}{90}$ $\rightarrow K_{S}^{0}\overline{p}K^{+}$ $\frac{CL\%}{90}$	$\frac{DOCUMENT}{BAI}$ g data for averag BAI $\mathcal{K}^{-}\overline{n} + c.c.)/I$ $\frac{DOCUMENT ID}{BAI}$ $\overline{n}/\Gamma_{total}$ DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID DOCUMENT ID	04 es, fits, 98 [total 04G 04G	TECN C J BES <u>TECN</u> BES2 <u>TECN</u> BES2	$\frac{COMMENT}{\psi(2S)} \rightarrow \\ e^+ e^- \rightarrow \\ \frac{COMMENT}{e^+ e^-} \\ \frac{COMAT}{e^+ e^-} \\ \frac{COMMENT}{e^+ e^-} \\ \frac{COMAT}{e^+ e^-} \\ \frac{COMAT}{e$	2(Κ ⁺ Κ ⁻) 2(Κ ⁺ Κ ⁻) Γ ₉₆ /Γ Γ ₉₇ /Γ
$\frac{ALUE (units 10^{-5})}{(ALUE (units 10^{-5}))} = 0.44 \pm 0.12 \pm 0.11$ $($	$\frac{21\%}{20 \pm 6}$ Solve the following 20 ± 6 Solve the following 20 $40) \rightarrow K_{S}^{0}p$ $\frac{CL\%}{90}$ $\rightarrow K_{S}^{0}pK^{-}$ $\frac{CL\%}{90}$ $\rightarrow K_{S}^{0}pK^{+}$ $\frac{CL\%}{90}$	$\frac{DOCUMENT}{BAI}$ g data for averag BAI $K^{-}\overline{n} + c.c.)/I$ $\frac{DOCUMENT ID}{BAI}$ $\overline{n}/\Gamma_{total}$ $\frac{DOCUMENT ID}{BAI}$ $\overline{n}/\Gamma_{total}$ \overline{AI}	04 es, fits, 98 ftotal 04G 04G	C limits, o J BES <u>TECN</u> BES2 <u>TECN</u> BES2	$\psi(2S) \rightarrow$ etc. • • • $e^+e^- \rightarrow$ $\frac{COMMENT}{e^+e^-}$ $\frac{COMMENT}{e^+e^-}$ $\frac{COMMENT}{e^+e^-}$	2(K ⁺ K ⁻) 2(K ⁺ K ⁻) Γ ₉₆ /Γ Γ ₉₇ /Γ
$\frac{ALUE (units 10^{-5})}{(ALUE (units 10^{-5}))} = 0.44 \pm 0.12 \pm 0.11$ $($	$\frac{2L\%}{20 \pm 6}$ See the following $\frac{40}{90} \rightarrow K_{S}^{0} p$ $\frac{CL\%}{90}$ $\frac{CL\%}{90}$ $\frac{CL\%}{90}$ $\frac{CL\%}{90}$ $\frac{CL\%}{90}$ $\frac{CL\%}{90}$ $\frac{CL\%}{90}$ $\frac{CL\%}{90}$	$\frac{DOCUMENT}{BAI}$ BAI BAI $K^{-} \overline{n} + c.c.)/I$ $\frac{DOCUMENT ID}{BAI}$ BAI $\overline{n}/\Gamma_{total}$ BAI $\frac{DOCUMENT ID}{BAI}$ BAI $\overline{n}/\Gamma_{total}$ BAI $\overline{n}/\Gamma_{total}$ BAI $\overline{n}/\Gamma_{total}$ BAI	04 es, fits, 98 [total 04G 04G	C limits, o J BES <u>TECN</u> BES2 <u>TECN</u> BES2 <u>TECN</u> BES2	$\psi(2S) \rightarrow$ etc. • • • $e^+e^- \rightarrow$ $\frac{COMMENT}{e^+e^-}$ $\frac{COMMENT}{e^+e^-}$ $\frac{COMMENT}{e^+e^-}$	2(K ⁺ K ⁻) 2(K ⁺ K ⁻) Γ96/Γ Γ97/Γ Γ98/Γ
$\frac{ALUE (units 10^{-5})}{(ALUE (units 10^{-5}))} = 0.44 \pm 0.12 \pm 0.11$ $($	$\frac{2L\%}{20 \pm 6}$ See the following $\frac{40}{90} \rightarrow K_{S}^{0} p$ $\frac{CL\%}{90}$ $\frac{CL\%}{90}$ $\frac{CL\%}{90}$ $\frac{CL\%}{90}$ $\frac{CL\%}{90}$ $\frac{CL\%}{90}$ $\frac{CL\%}{90}$ $\frac{CL\%}{90}$	$\frac{DOCUMENT}{BAI}$ g data for averag BAI $K^{-}\overline{n} + c.c.)/I$ $\frac{DOCUMENT ID}{BAI}$ $\overline{n}/\Gamma_{total}$ $\frac{DOCUMENT ID}{BAI}$ $\overline{n}/\Gamma_{total}$ $\overline{n}/\Gamma_{total}$ $\overline{DOCUMENT ID}$ $\overline{DOCUMENT ID}$ $\overline{DOCUMENT ID}$	04 es, fits, 98 ftotal 04G 04G	C limits, o J BES <u>TECN</u> BES2 <u>TECN</u> BES2 <u>TECN</u>	$\psi(2S) \rightarrow$ etc. • • • $e^+e^- \rightarrow$ $\frac{COMMENT}{e^+e^-}$ $\frac{COMMENT}{e^+e^-}$ $\frac{COMMENT}{e^+e^-}$ $\frac{COMMENT}{e^+e^-}$	2(K ⁺ K ⁻) 2(K ⁺ K ⁻) Γ ₉₆ /Γ Γ ₉₇ /Γ Γ ₉₈ /Γ
$\frac{ALUE (units 10^{-5})}{(ALUE (units 10^{-5}))} = 0.44 \pm 0.12 \pm 0.11$ 0.44 ± 0.12 ± 0.11 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.70 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	$\frac{2L\%}{20 \pm 6}$ See the following $\frac{40}{90} \rightarrow K_{S}^{0} p$ $\frac{CL\%}{90}$ $\frac{CL\%}{90}$ $\frac{CL\%}{90}$ $\frac{CL\%}{90}$ $\frac{CL\%}{90}$ $\frac{CL\%}{90}$ $\frac{CL\%}{90}$ $\frac{CL\%}{90}$	$\frac{DOCUMENT}{BAI}$ g data for averag BAI $K^{-}\overline{n} + c.c.)/I$ $\frac{DOCUMENT ID}{BAI}$ $\overline{n}/\Gamma_{total}$ $\frac{DOCUMENT ID}{BAI}$ $\overline{n}/\Gamma_{total}$ $\frac{DOCUMENT ID}{BAI}$ $\overline{n}/\Gamma_{total}$ $\overline{n}/\Gamma_{total}$	04 98 [total 04G 04G 04G	C limits, o J BES <u>TECN</u> BES2 <u>TECN</u> BES2 <u>TECN</u> BES2	$\psi(2S) \rightarrow$ etc. • • • $e^+e^- \rightarrow$ $\frac{COMMENT}{e^+e^-}$ $\frac{COMMENT}{e^+e^-}$ $\frac{COMMENT}{e^+e^-}$ $\frac{COMMENT}{e^+e^-}$	2(K ⁺ K ⁻) 2(K ⁺ K ⁻) Γ96/Γ Γ97/Γ Γ98/Γ
$\frac{ALUE (units 10^{-5})}{(ALUE (units 10^{-5}))} = 0.44 \pm 0.12 \pm 0.11$ ••• We do not us $<0.45 = 9$ $\frac{(\Theta(1540)\overline{\Theta}(15)}{(ALUE (units 10^{-5}))} < 0.88$ $\frac{(\Theta(1540)K^{-}\overline{n})}{(ALUE (units 10^{-5}))} < 1.0$ $\frac{(\Theta(1540)K^{0}\overline{p})}{(ALUE (units 10^{-5}))} < 0.70$ $\frac{(\Theta(1540)K^{+}n)}{(ALUE (units 10^{-5}))} < 2.6$	$\frac{LVN}{20 \pm 6}$ See the following $\frac{40}{90} \rightarrow K_{S}^{0} p K^{-}$ $\frac{CL\%}{90}$ $\rightarrow K_{S}^{0} p K^{-}$ $\frac{CL\%}{90}$ $\rightarrow K_{S}^{0} p K^{+}$ $\frac{CL\%}{90}$ $\rightarrow K_{S}^{0} p K^{+}$ $\frac{CL\%}{90}$ $(LK)^{0} p K^{-}$	$\frac{DOCUMENT}{BAI}$ BAI g data for averag BAI $\mathcal{K}^{-}\overline{n} + c.c.)/I$ $\frac{DOCUMENT ID}{BAI}$ $\overline{n}/\Gamma_{total}$ $\frac{DOCUMENT ID}{BAI}$ $\overline{n}/\Gamma_{total}$ $\frac{DOCUMENT ID}{BAI}$ $\overline{n}/\Gamma_{total}$ $\overline{DOCUMENT ID}$ \overline{BAI}	04 98 f total 04G 04G 04G	C limits, o J BES <u>TECN</u> BES2 <u>TECN</u> BES2 <u>TECN</u> BES2	$\psi(2S) \rightarrow$ etc. • • • $e^+e^- \rightarrow$ $\frac{COMMENT}{e^+e^-}$ $\frac{COMMENT}{e^+e^-}$ $\frac{COMMENT}{e^+e^-}$ $\frac{COMMENT}{e^+e^-}$	2(K ⁺ K ⁻) 2(K ⁺ K ⁻) Γ96/Γ Γ97/Γ Γ98/Γ
$\frac{ALUE (units 10^{-5})}{(ALUE (units 10^{-5}))} = 0.44 \pm 0.12 \pm 0.11$ ••• We do not us <0.45 \square $(\Theta(1540)\overline{\Theta}(15))$ $(\Theta(1540)\overline{K}^{-}\overline{n})$ $(ALUE (units 10^{-5}))$ <1.0 $\Gamma(\Theta(1540)\overline{K}^{0}_{S}\overline{p})$ $(ALUE (units 10^{-5}))$ <0.70 $\Gamma(\overline{\Theta}(1540)\overline{K}^{+}n)$ $(ALUE (units 10^{-5}))$ <2.6 $\Gamma(\overline{\Theta}(1540)\overline{K}^{0}_{S}p)$	$\frac{2L\%}{20 \pm 6}$ See the following $\frac{40}{90} \rightarrow K_{S}^{0} p K^{-}$ $\frac{CL\%}{90}$ $\rightarrow K_{S}^{0} \overline{p} K^{+}$ $\frac{CL\%}{90}$ $\rightarrow K_{S}^{0} \overline{p} K^{+}$ $\frac{CL\%}{90}$ $\rightarrow K_{S}^{0} \overline{p} K^{+}$ $\frac{CL\%}{90}$ $\rightarrow K_{S}^{0} \overline{p} K^{-}$	$\frac{DOCUMENT}{BAI}$ g data for averag BAI $\mathcal{K}^{-}\overline{n} + c.c.)/I$ $\frac{DOCUMENT ID}{BAI}$ $\overline{n})/\Gamma_{total}$ $\frac{DOCUMENT ID}{BAI}$ $\overline{n})/\Gamma_{total}$ $\frac{DOCUMENT ID}{BAI}$ $\overline{n})/\Gamma_{total}$ $\overline{n})/\Gamma_{total}$	04 es, fits, 98 ftotal 04G 04G 04G	C limits, o J BES <u>TECN</u> BES2 <u>TECN</u> BES2 <u>TECN</u> BES2	$\psi(2S) \rightarrow$ etc. • • • $e^+ e^- \rightarrow$ $\frac{COMMENT}{e^+ e^-}$ $\frac{COMMENT}{e^+ e^-}$ $\frac{COMMENT}{e^+ e^-}$ $\frac{COMMENT}{e^+ e^-}$	2(K ⁺ K ⁻) 2(K ⁺ K ⁻) Γ96/Γ Γ97/Γ Γ98/Γ Γ99/Γ
$\frac{ALUE (units 10^{-5})}{(ALUE (units 10^{-5}))} = 0.44 \pm 0.12 \pm 0.11$ ••• We do not us $<0.45 \qquad \qquad$	$\frac{LVN}{20 \pm 6}$ See the following $\frac{20 \pm 6}{20 \pm 6}$ See the following $\frac{40}{90} \rightarrow K_{S}^{0} p K^{-}$ $\frac{CL\%}{90}$ $\rightarrow K_{S}^{0} \overline{p} K^{+}$ $\frac{CL\%}{90}$ $\rightarrow K_{S}^{0} \overline{p} K^{+}$ $\frac{CL\%}{90}$ $\rightarrow K_{S}^{0} \overline{p} K^{-}$ $\frac{CL\%}{90}$	$\frac{DOCUMENT}{BAI}$ g data for averag BAI $K^{-}\overline{n} + c.c.)/I$ $\frac{DOCUMENT ID}{BAI}$ $\overline{n}/\Gamma_{total}$ $\frac{DOCUMENT ID}{BAI}$ $\overline{n}/\Gamma_{total}$ $\frac{DOCUMENT ID}{BAI}$ $\overline{n}/\Gamma_{total}$ $\frac{DOCUMENT ID}{BAI}$ $\overline{n}/\Gamma_{total}$	04 es, fits, 98 ftotal 04G 04G 04G 04G	C limits, o J BES <u>TECN</u> BES2 <u>TECN</u> BES2 <u>TECN</u> BES2 <u>TECN</u> BES2	$\psi(2S) \rightarrow$ etc. • • • $e^+e^- \rightarrow$ $\frac{COMMENT}{e^+e^-}$ $\frac{COMMENT}{e^+e^-}$ $\frac{COMMENT}{e^+e^-}$ $\frac{COMMENT}{e^+e^-}$ $\frac{COMMENT}{e^+e^-}$	2(K ⁺ K ⁻) 2(K ⁺ K ⁻) Γ96/Γ Γ97/Γ Γ98/Γ Γ99/Γ

Citation: C. Amsler et al. (Particle Data Group), PL B667, 1 (2008) (URL: http://pdg.lbl.gov)

$\Gamma(K_{S}^{0}K_{S}^{0})/\Gamma_{\text{total}}$								Г ₁₀₁ /Г
VALUE (units 10 ⁻⁴)			DOCUMENT ID		TECN	COMMENT		
<0.046		95	BAI	04 D	BES	e^+e^-		
⁹⁵ Forbidden by <i>CP</i> .								
-		RAD		CAYS	; —			
$\Gamma(\gamma \chi_{c0}(1P))/\Gamma_{tota}$	h							Г ₁₀₂ /Г
VALUE (units 10^{-2})	EVTS	<u>-</u>	DOCUMENT ID		TECN	COMMENT		
9.4 \pm 0.4 OUR FIT								
9.2 \pm 0.4 OUR AVER	72600		ΛΤΠΛΟ	04		a+ a-	~ Y	
$9.22 \pm 0.11 \pm 0.40$	72000	96		04 96		$e + e \rightarrow$	$\gamma \wedge$	
$9.9 \pm 0.3 \pm 0.0$		96		00 77		$e + e \rightarrow$	$\gamma \land$	
7.2 ⊥2.3 7.5 ⊥2.6		96		76		$e^+e^- \rightarrow$	γΛ	
96 ∧ n mulan diatuihutia		20)		10	WINNE	ee		
Angular distributio	$n(1+\cos \theta)$	- <i>0</i>) as	sumed.					
$\Gamma(\gamma \chi_{c1}(1P))/\Gamma_{tota}$	h							Г ₁₀₃ /Г
VALUE (units 10^{-2})	EVTS	4	DOCUMENT ID		TECN	COMMENT		
8.8 \pm 0.4 OUR FIT								
0.9 ± 0.3 COR AVEN	76700		ΛΤΠΛΟ	04		a+ a- x	~ Y	
$9.07 \pm 0.11 \pm 0.54$	10100	97		04 86		$e^+e^- \rightarrow$	$\gamma \mathbf{A}$	
$7.0 \pm 0.3 \pm 0.7$		98		77			$\sim \mathbf{X}$	
97	(1 0 1)	20	200		CIVITA		, ,	
⁹⁸ Valid for isotropic	n (1–0.10 distributio	on of t	$(-\theta)$ assumed.					
	alotilbatic							- /-
$(\gamma \chi_{c2}(1P))/(tota)$	h							l 104/l
VALUE (units 10^{-2})	EVTS	<u>4</u>	DOCUMENT ID		TECN	COMMENT		
5.3 ± 0.4 OUR FII			aludaa aaala fa		£ 1 1			
0.0 ± 0.5 UCK AVER		rror in		Ctor o		a+ a-	×	
$9.33 \pm 0.14 \pm 0.01$	79300	99		04		$e \cdot e \rightarrow$	$\gamma \wedge$	
$5.0 \pm 0.3 \pm 0.7$		100		77		$e^+e^- \rightarrow$	$\gamma \wedge$	
99	(1 0 0)	-0		11	CNTR	$e \cdot e \rightarrow$	γΛ	
100 Volid for isotropic	n (1–0.05 distributio	52 cos	(θ) assumed.					
valid for isotropic	aistributio		the photon.					
$\left[\Gamma(\gamma \chi_{c0}(1P)) + \Gamma(\gamma \chi_{c0}(1P))\right]$	$(\gamma \chi_{c1})$. P)) -	+ $\Gamma(\gamma \chi_{c2}(1/$	₽))]/	Γ _{total}	$(\Gamma_{102} + \Gamma_{10})$	₀₃ +Г	₁₀₄)/Г
VALUE	•		DOCUMENT ID	.,	TECN	COMMENT		
• • • We do not use t	he followi	ing da	ta for averages	s, fits,	limits, e	etc. • • •		
$27.6 \pm 0.3 \pm 2.0$		101	ATHAR	04	CLEO	$e^+e^- \rightarrow$	γX	
101 Not independent fr	om ATH	4R 04	measurement	s of B	$(\gamma \gamma \tau)$		/	
			medsurement.	5 01 0	$(\uparrow \lambda_C J)$			
$\Gamma(\gamma \chi_{c0}(1P))/\Gamma(\gamma)$	$\chi_{c1}(1P)$)					Г ₁₀	2/F ₁₀₃
VALUE		4	DOCUMENT ID		<u>TECN</u>	<u>COMMENT</u>		
• • • We do not use t	he followi	ing da	ta for averages	s, fits,	limits, e	etc. • • •		
$1.02\!\pm\!0.01\!\pm\!0.07$		102	ATHAR	04	CLEO	$e^+e^- \rightarrow$	γX	
¹⁰² Not independent fr	om ATH	AR 04	measurement	s of B	$(\gamma \chi_{c.I}).$			
					C		0000	101
HIP://PDG.LBL	.GOV		Page 34		Creat	:ea: //1//	2008	5 18:14

Citation: C. Amsler et al. (Particle Data Group), PL B667, 1 (2008) (URL: http://pdg.lbl.gov)

$\Gamma(\gamma \chi_{c2}(1P))/\Gamma(\gamma \chi_{c1}(1P))$)				$\Gamma_{104}/\Gamma_{103}$
VALUE	DOCUMENT ID		TECN	<u>COMMENT</u>	
\bullet \bullet \bullet We do not use the followi	ng data for average	s, fits,	limits, e	etc. • • •	
$1.03\!\pm\!0.02\!\pm\!0.03$	¹⁰³ ATHAR	04	CLEO	$e^+e^- \rightarrow$	γX
$^{103}\mathrm{Not}$ independent from ATHA	AR 04 measurement	s of B	$(\gamma \chi_{cJ})$		
$\Gamma(\gamma \chi_{c0}(1P))/\Gamma(\gamma \chi_{c2}(1P))$)				$\Gamma_{102}/\Gamma_{104}$
VALUE	DOCUMENT ID		TECN	<u>COMMENT</u>	
\bullet \bullet \bullet We do not use the followi	ng data for average	s, fits,	limits, e	etc. • • •	

 $0.99 \pm 0.02 \pm 0.08$ 104 ATHAR 04 CLEO $e^+ e^- \rightarrow \gamma X$

 $^{104}\,\mathrm{Not}$ independent from ATHAR 04 measurements of B($\gamma\,\chi_{c,I}).$

$\Gamma(\gamma \eta_c(1S))/\Gamma_{\text{total}}$

						. 102/.
VALUE (units 10^{-2})	EVTS	DOCUMENT ID)	TECN	COMMENT	
0.30±0.05 OUR AVER	AGE					
$0.32\!\pm\!0.04\!\pm\!0.06$	2560	¹⁰⁵ ATHAR	04	CLEO	$e^+e^- \rightarrow \gamma X$	
0.28 ± 0.06		¹⁰⁶ GAISER	86	CBAL	$e^+e^- \rightarrow \gamma X$	
$^{105}\mathrm{ATHAR}$ 04 used F_{η}	(1S) =	24.8 \pm 4.9 MeV t	o obtai	n this re	sult.	
106 GAISER 86 used Γ_{η}	(1S) =	\pm 11.5 \pm 4.5 MeV t	to obta	in this re	esult.	

$\Gamma(\gamma \eta_c(2S))/\Gamma_{\text{total}}$

Γ₁₀₆/Γ

VALUE (units 10^{-2})	CL%	DOCUMENT ID		TECN	COMMENT
<0.20	90	ATHAR	04	CLEO	$e^+e^- \rightarrow \gamma X$
\bullet \bullet \bullet We do not use the	following d	ata for averages	, fits,	limits, e	tc. • • •
0.2 to 1.3	95	EDWARDS	82C	CBAL	$e^+e^- \rightarrow \gamma X$

$\Gamma(\gamma \pi^0) / \Gamma_{\text{total}}$

 Γ_{107}/Γ

						101/
VALUE (units 10 ⁻⁴)	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
< 54	95 10	⁷ LIBERMAN	75	SPEC	e ⁺ e ⁻	
\bullet \bullet \bullet We do not use the	following	data for averages	s, fits,	limits, e	etc. • • •	
<100	90	WIIK	75	DASP	e^+e^-	
$^{107}\mathrm{Restated}$ by us using	Β(ψ(2 <i>S</i>) -	$\rightarrow \mu^+ \mu^-) = 0.$	0077.			

$\Gamma(\gamma \eta'(958))/\Gamma_{\text{total}}$

Γ₁₀₈/Γ

<u>VALUE (units 10^{-4})</u> <u>CL%</u> <u>EVTS</u> DOCUMENT ID TECN COMMENT 1.36 ± 0.24 OUR AVERAGE 06R BES2 $e^+e^- \rightarrow \psi(2S)$ $1.24\!\pm\!0.27\!\pm\!0.15$ ABLIKIM 23 $\psi(2S) \rightarrow \pi^+ \pi^- 2\gamma$, 98F BES BAI $1.54\!\pm\!0.31\!\pm\!0.20$ ~ 43 $\pi^+\pi^-3\gamma$ • • • We do not use the following data for averages, fits, limits, etc. • • • ¹⁰⁸ BRAUNSCH... 77 DASP e^+e^- < 60 90 ¹⁰⁹ BARTEL 90 76 CNTR e^+e^- < 11 $^{108}\,\mathrm{Restated}$ by us using total decay width 228 keV.

 109 The value is normalized to the branching ratio for $\Gamma(J/\psi(1S)\eta)/\Gamma_{ ext{total}}$.

$\Gamma(\gamma f_2(1270))/\Gamma_{to}$	tal					Г ₁₀₉ /Г
VALUE (units 10^{-4})	EVTS	DOCUMEN	T ID	TECN	COMMENT	
$2.12 {\pm} 0.19 {\pm} 0.32$	11	^{0,111} BAI	C	3C BES	$\psi(2S) ightarrow$	$\gamma \pi \pi$
• • • We do not use	the following o	lata for average	s, fits,	limits, et	tc. • • •	
$2.08\!\pm\!0.19\!\pm\!0.33$	200.6 ± 18.8	¹¹⁰ BAI	C	3C BES	$\psi(2S) ightarrow$	$\gamma \pi^+ \pi^-$
$2.90\!\pm\!1.08\!\pm\!1.07$	29.9 ± 11.1	¹¹⁰ BAI	C	3C BES	$\psi(2S) ightarrow$	$\gamma \pi^0 \pi^0$
¹¹⁰ Normalized to B($\psi(2S) \rightarrow J/\psi$	$\pi^+\pi^-) = 0.30$	$05 \pm 0.$	016.		
¹¹¹ Combining the re	sults from π^+	π^- and $\pi^0 \pi^0$ d	lecay m	odes.		
$\Gamma(\gamma f_0(1710) \rightarrow \gamma$	$\pi\pi)/\Gamma_{total}$					Г ₁₁₁ /Г
VALUE (units 10^{-4})	EVTS	DOCUMEN	T ID	TECN	COMMENT	
$0.301 \pm 0.041 \pm 0.124$	35.6 ± 4.8	¹¹² BAI	C	3C BES	$\psi(2S) \rightarrow$	$\gamma \pi^+ \pi^-$
¹¹² Normalized to B($\psi(2S) \rightarrow J/\psi$	$(\pi^+\pi^-) = 0.30$	$05 \pm 0.$	016.		
F(f(1710)		,				F /F
$(\gamma r_0(1/10) \rightarrow \gamma)$	((K / / I total					1112/1
VALUE (units 10 ⁻⁴)	<u> </u>	<u>5 DOCUM</u>	ENT ID	TECN	COMMENT	
$0.604 \pm 0.090 \pm 0.132$	39.6±5.	9 ^{13,114} BAI	03	BC BES	$\psi(2S) ightarrow \psi$	$\gamma K^+ K^-$
• • • We do not use	the following o	lata for average	s, fits,	limits, et	tc. ● ● ●	0 0
< 1.56	90 $6.8 \pm 3.$	±13,114 BAI	03	BC BES	$\psi(2S) \rightarrow \phi$	$\gamma K_S^0 K_S^0$
¹¹³ Includes unknown	n branching fra	ctions to K^+K	- or h	$\kappa_{S}^{0} \kappa_{S}^{0}$.	We have mul	tiplied the
K^+K^- result by	a factor of 2 a	nd the $K^0_{S} K^0_{S}$	result b	y a facto	or of 4 to obtai	in the $K\overline{K}$
result.						
¹¹ Normalized to B($\psi(2S) \rightarrow J/\psi$	$(\pi^+ \pi^-) = 0.30$	$05 \pm 0.$	016.		
$\Gamma(\gamma\eta)/\Gamma_{total}$						Г ₁₁₄ /Г
VALUE (units 10^{-4})	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
<0.9	90	BAI	98F	BES	$\psi(2S) \rightarrow \pi^+$	$\pi^{-}3\gamma$
• • • We do not use	the following o	lata for average	s, fits,	limits, et	tc. • • •	
<2	90	YAMADA	77	DASP	$e^+e^- \rightarrow 3\gamma$	
$\Gamma(\gamma\eta\pi^+\pi^-)/\Gamma_{tot}$	al					Г ₁₁₅ /Г
VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT	
8.71±1.25±1.64	418	ABLIKIM	06R	BES2	$\psi(2S) \rightarrow \gamma \eta$	$\pi^+\pi^-$
$\Gamma(\gamma\eta(1405) \rightarrow \gamma)$	$(\overline{K}\pi)/\Gamma_{total}$					Г ₁₁₇ /Г
VALUE (units 10^{-4}) C	CL% DOCUN	IENT ID	TECN	COMMEI	VT	
<0.9 9	0 ABLIK	IM 06R	BES2	$\psi(2S)$ -	$\rightarrow \gamma K_{c}^{0} K^{+} \pi$	· ⁻ + c.c.
• • • We do not use	the following o	lata for average	s, fits,	limits, et	tc. ● ● ●	
<1.3 9	0 ABLIK	IM 06r I	BES2	$\psi(25)$ -	$\rightarrow \gamma K^+ K^- \tau$	_т 0
<1.2 9	0 ¹¹⁵ SCHA	RRE 80 1	MRK1	e ⁺ e ⁻	,,	
¹¹⁵ Includes unknowr	n branching frac	tion $\eta(1405)$ —	$\rightarrow K\overline{K}$	τ.		
$\Gamma(\gamma\eta(1405) \rightarrow \eta\eta)$	$(\pi^+\pi^-)/\Gamma_{tota}$	I				Г ₁₁₈ /Г

• (/ / (±+05) / / / /	" //'to	tal			• 118/ •
VALUE (units 10^{-4})	EVTS	DOCUMENT ID		TECN	COMMENT
$0.36 {\pm} 0.25 {\pm} 0.05$	10	ABLIKIM	06 R	BES2	$\psi(2S) \rightarrow \gamma \eta \pi^+ \pi^-$
HTTP://PDG.LBL	GOV	Page 36		Creat	ted: 7/17/2008 18:14

$\Gamma(\gamma \eta(1475) \rightarrow$	$K\overline{K}\pi)/\Gamma_{\rm total}$					Г ₁₂₀ /Г
VALUE (units 10^{-4})	<u>CL%</u> <u>DOCUN</u>	IENT ID T	ECN	СОММЕ	NT	
<1.4	90 ABLIK	(IM 06r E	ES2	ψ (25)	$\rightarrow \gamma K^+ K^-$	$-\pi^0$
$\bullet \bullet \bullet$ We do not	use the following	data for average	s, fits,	limits,	etc. ● ● ●	
<1.5	90 ABLIK	(IM 06r E	ES2	$\psi(2S)$	$\rightarrow \gamma K^0_S K^-$	π^+ + c.c.
$\Gamma(\gamma \eta (1475) \rightarrow$	$\eta \pi^+ \pi^-)/\Gamma_{\rm tot}$	al				Г ₁₂₁ /Г
VALUE (units 10^{-4})	CL%	DOCUMENT ID		TECN	COMMENT	
<0.88	90	ABLIKIM	06 R	BES2	$\psi(2S) ightarrow$	$\gamma\eta\pi^+\pi^-$
$\Gamma(\gamma 2(\pi^+\pi^-)))$	/Γ _{total}					Γ ₁₂₂ /Γ
VALUE (units 10^{-5})	EVTS	DOCUMENT ID		TECN	COMMENT	
39.6±2.8±5.0	583	ABLIKIM	07 D	BES2	$e^+e^- \rightarrow$	$\psi(2S)$
$\Gamma(\gamma K^{*0}K^+\pi^-$	$+ c.c.)/\Gamma_{total}$					Г ₁₂₃ /Г
VALUE (units 10^{-5})	EVTS	DOCUMENT ID		TECN	COMMENT	
37.0±6.1±7.2	237	ABLIKIM	07 D	BES2	$e^+e^- \rightarrow$	$\psi(2S)$
$\Gamma(\gamma K^{*0} \overline{K}^{*0})/l$	total					Г ₁₂₄ /Г
VALUE (units 10^{-5})	EVTS	DOCUMENT ID		TECN	COMMENT	
$24.0 \pm 4.5 \pm 5.0$	41	ABLIKIM	07 D	BES2	$e^+e^- \rightarrow$	$\psi(2S)$
$\Gamma(\gamma K^0_S K^+ \pi^-)$	+ c.c.)/Γ _{total}					Г ₁₂₅ /Г
VALUE (units 10^{-5})	EVTS	DOCUMENT ID		TECN	COMMENT	
25.6±3.6±3.6	115	ABLIKIM	07 D	BES2	$e^+e^- \rightarrow$	$\psi(2S)$
$\Gamma(\gamma K^+ K^- \pi^+)$	$\pi^{-})/\Gamma_{total}$					Г ₁₂₆ /Г
VALUE (units 10^{-5})	EVTS	DOCUMENT ID		TECN	COMMENT	
19.1±2.7±4.3	132	ABLIKIM	07 D	BES2	$e^+e^- \rightarrow$	$\psi(2S)$
$\Gamma(\gamma p \overline{p}) / \Gamma_{\text{total}}$						Г ₁₂₇ /Г
VALUE (units 10^{-5})	EVTS	DOCUMENT ID		TECN	COMMENT	
2.9±0.4±0.4	142	ABLIKIM	07 D	BES2	$e^+e^- \rightarrow$	$\psi(2S)$
$\Gamma(\gamma \pi^+ \pi^- \rho \overline{\rho})$	/Γ _{total}					Г ₁₂₈ /Г
VALUE (units 10^{-5})	EVTS	DOCUMENT ID		TECN	COMMENT	
$2.8 \pm 1.2 \pm 0.7$	17	ABLIKIM	07 D	BES2	$e^+e^- \rightarrow$	$\psi(2S)$
$\Gamma(\gamma 2(\pi^+\pi^-)K)$	$(+ \kappa^{-}) / \Gamma_{\text{total}}$					Г ₁₂₉ /Г
VALUE (units 10^{-5})	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
<22	90	ABLIKIM	07 D	BES2	$e^+e^- \rightarrow$	$\psi(2S)$
$\Gamma(\gamma 3(\pi^+\pi^-)))$	/Γ _{total}					Г ₁₃₀ /Г
VALUE (units 10^{-5})	<u></u>	DOCUMENT ID		TECN	COMMENT	
<17	90	ABLIKIM	07 D	BES2	$e^+e^- \rightarrow$	$\psi(2S)$
HTTP://PDG.	LBL.GOV	Page 37		Crea	ted: 7/17/	2008 18:14

$\Gamma(\gamma K^+ K^- K^+ K^-)$	⁻)/Γ _{total}					Г ₁₃₁ /Г
VALUE (units 10^{-5})	<u>CL%</u>	DOCUMENT ID		TECN	COMMENT	
<4	90	ABLIKIM	07 D	BES2	$e^+e^- \rightarrow \psi(2)$	<i>S</i>)

$\psi(2S)$ CROSS-PARTICLE BRANCHING RATIOS

For measurements involving $B(\psi(2S) \rightarrow \gamma \chi_{cJ}(1P)) \times B(\chi_{cJ}(1P) \rightarrow X)$ see the corresponding entries in the $\chi_{cJ}(1P)$ sections.

$\psi(2S)$ REFERENCES

ABLIKIM ABLIKIM ABLIKIM ABLIKIM ABLIKIM ANASHIN	08B 08C 07C 07D 07H 07H	PL B659 74 PL B659 789 PL B648 149 PRL 99 011802 PR D76 092003 JETPL 85 347 Translated from ZETER 9	M. Ablikim <i>et al.</i> M. Ablikim <i>et al.</i> M. Ablikim <i>et al.</i> M. Ablikim <i>et al.</i> M. Ablikim <i>et al.</i> V.V. Anashin <i>et al.</i>	(BES Collab.) (BES Collab.) (BES Collab.) (BES Collab.) (BES Collab.) (KEDR Collab.)
ANDREOTTI	07	PL B654 74	M. Andreotti <i>et al.</i>	(Femilab E835 Collab.)
AUBERT	07AK	PR D76 012008	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	07AU	PR D76 092005	B. Aubert <i>et al.</i>	(BABAR Collab.)
AUBERT	07BD	PR D76 092006	B. Aubert <i>et al.</i>	(BABAR Collab.)
PEDLAR	07	PR D75 011102R	T.K. Pedlar <i>et al.</i>	(CLEO Collab.)
ABLIKIM	06G	PR D73 052004	M. Ablikim <i>et al.</i>	(BES Collab.)
ABLIKIM	06I	PR D74 012004	M. Ablikim <i>et al.</i>	(BES Collab.)
ABLIKIM	06L	PRL 97 121801	M. Ablikim <i>et al.</i>	(BES Collab.)
ABLIKIM	06R	PR D74 072001	M. Ablikim <i>et al.</i>	(BES Collab.)
ABLIKIM	06W	PR D74 112003	M. Ablikim <i>et al.</i>	(BES Collab.)
ADAM	06	PRL 96 082004	N.E. Adam <i>et al.</i>	(CLEO Collab.)
AUBERT AUBERT,BE DOBBS ABLIKIM	06B 06D 06D 06A 05E	PR D73 012005 PR D73 052003 PR D74 091103R PR D74 011105R PR D71 072006	 B. Aubert <i>et al.</i> B. Aubert <i>et al.</i> B. Aubert <i>et al.</i> S. Dobbs <i>et al.</i> M. Ablikim <i>et al.</i> 	(BABAR Collab.) (BABAR Collab.) (BABAR Collab.) (CLEO Collab.) (BES Collab.)
ABLIKIM ABLIKIM ABLIKIM ABLIKIM	05H 05I 05J 05O	PR D72 012002 PL B614 37 PL B619 247 PL B630 21	M. Ablikim <i>et al.</i> M. Ablikim <i>et al.</i> M. Ablikim <i>et al.</i> M. Ablikim <i>et al.</i>	(BES Collab.) (BES Collab.) (BES Collab.) (BES Collab.) (BES Collab.)
ADAM	05	PRL 94 012005	N.E. Adam <i>et al.</i>	(CLEO Collab.)
ADAM	05A	PRL 94 232002	N.E. Adam <i>et al.</i>	(CLEO Collab.)
ANDREOTTI	05	PR D71 032006	M. Andreotti <i>et al.</i>	(FNAL E835 Collab.)
AUBERT	05D	PR D71 052001	B. Aubert <i>et al.</i>	(BABAR Collab.)
BRIERE	05	PRL 95 062001	R.A. Briere <i>et al.</i>	(CLEO Collab.)
PEDLAR ABLIKIM ABLIKIM ABLIKIM	05 04B 04K 04L	PR D72 051108R PR D70 012003 PR D70 112003 PR D70 112007 D70 112007	T.K. Pedlar <i>et al.</i> M. Ablikim <i>et al.</i> M. Ablikim <i>et al.</i> M. Ablikim <i>et al.</i>	(CLEO Collab.) (BES Collab.) (BES Collab.) (BES Collab.)
ATHAR	04	PR D70 112002	S.B. Athar et al.	(CLEO Collab.)
BAI	04B	PRL 92 052001	J.Z. Bai et al.	(BES Collab.)
BAI	04C	PR D69 072001	J.Z. Bai et al.	(BES Collab.)
BAI	04D	PL B589 7	J.Z. Bai et al.	(BES Collab.)
BAI	04G	PR D70 012004	J.Z. Bai et al.	(BES Collab.)
BAI	04I	PR D70 012006	J.Z. Bai <i>et al.</i>	(BES Collab.)
PDG	04	PL B592 1	S. Eidelman <i>et al.</i>	
SETH	04	PR D69 097503	K.K. Seth	
AULCHENKO	03	PL B573 63	V.M. Aulchenko <i>et al.</i>	
BAI BAI AUBERT BAI BAI BAI BAI	03B 03C 02B 02 02B 02C 02C	PR D67 052002 PR D67 032004 PR D65 031101R PR D65 052004 PL B550 24 PRL 88 101802 PR D66 010001	J.Z. Bai et al. J.Z. Bai et al.	(BES Collab.) (BES Collab.) (BaBar Collab.) (BES Collab.) (BES Collab.) (BES Collab.)
BAI	01	PR D63 032002	J.Z. Bai <i>et al.</i>	(BES Collab.)
AMBROGIANI	00A	PR D62 032004	M. Ambrogiani <i>et al.</i>	(FNAL E835 Collab.)

HTTP://PDG.LBL.GOV

Page 38

Created: 7/17/2008 18:14

ARTAMONOV	00	PL B474 427	A.S. Artamonov <i>et al.</i>	
BAI	00	PRL 84 594	J.Z. Bai <i>et al.</i>	(BES Collab.)
BAI	99C	PRL 83 1918	J.Z. Bai <i>et al.</i>	(BES_Collab.)
BAI	98E	PR D57 3854	J.Z. Bai <i>et al.</i>	(BES_Collab.)
BAI	98F	PR D58 097101	J.Z. Bai <i>et al.</i>	(BES Collab.)
BAI	98J	PRL 81 5080	J.Z. Bai <i>et al.</i>	(BES Collab.)
ARMSTRONG	97	PR D55 1153	T.A. Armstrong et al.	(E760 Collab.)
GRIBUSHIN	96	PR D53 4723	A. Gribushin <i>et al.</i>	(E672 Collab., E706 Collab.)
ARMSTRONG	93B	PR D47 772	T.A. Armstrong <i>et al.</i>	(FNAL E760 Collab.)
ALEXANDER	89	NP B320 45	I P Alexander <i>et al</i>	(IBI MICH SLAC)
COHEN	87	RMP 59 1121	E.R. Cohen. B.N. Tavlor	(RISC. NBS)
GAISER	86	PR D34 711	J. Gaiser <i>et al.</i>	(Crystal Ball Collab.)
KURAEV	85	SJNP 41 466	E.A. Kuraev, V.S. Fadin	(NOVO)
		Translated from YAF 41	733.	()
FRANKLIN	83	PRL 51 963	M.E.B. Franklin <i>et al.</i>	(LBL, SLAC)
EDWARDS	82C	PRL 48 70	C. Edwards <i>et al.</i>	(CIT, HARV, PRIN+)
LEMOIGNE	82	PL 113B 509	Y. Lemoigne <i>et al.</i>	(SACL, LOIC, SHMP+)
HIMEL	80	PRL 44 920	T. Himel <i>et al.</i>	` (LBL, SLAC)
OREGLIA	80	PRL 45 959	M.J. Oreglia <i>et al.</i>	(SLAC, CIT, HARV+)
SCHARRE	80	PL 97B 329	D.L. Scharre <i>et al.</i>	SLAC, LBL)
ZHOLENTZ	80	PL 96B 214	A.A. Zholents <i>et al.</i>	(NOVO)
Also		SJNP 34 814	A.A. Zholents <i>et al.</i>	(NOVO)
		Translated from YAF 34	1471.	
BRANDELIK	79B	NP B160 426	R. Brandelik <i>et al.</i>	(DASP Collab.)
BRANDELIK	79C	ZPHY C1 233	R. Brandelik <i>et al.</i>	(DASP Collab.)
BARTEL	78B	PL 79B 492	W. Bartel <i>et al.</i>	(DESY, HEIDP)
TANENBAUM	78	PR D17 1731	W.M. Tanenbaum <i>et al.</i>	(SLAC, LBL)
BIDDICK	77	PRL 38 1324	C.J. Biddick <i>et al.</i>	(UCSD, UMD, PAVI+)
BRAUNSCH	77	PL 67B 249	W. Braunschweig <i>et al.</i>	(DASP Collab.)
BURMESTER	77	PL 66B 395	J. Burmester <i>et al.</i>	(DESY, HAMB, SIEG+)
FELDMAN	77	PRPL 33C 285	G.J. Feldman, M.L. Perl	(LBL, SLAC)
YAMADA	77	Hamburg Conf. 69	S. Yamada	(DASP Collab.)
BARTEL	76	PL 64B 483	W. Bartel <i>et al.</i>	(DESY, HEIDP)
TANENBAUM	76	PRL 36 402	W.M. Tanenbaum <i>et al.</i>	(SLAC, LBL) IG
WHITAKER	76	PRL 37 1596	J.S. Whitaker <i>et al.</i>	(SLAC, LBL)
ABRAMS	75	Stanford Symp. 25	G.S. Abrams	(LBL)
ABRAMS	75B	PRL 34 1181	G.S. Abrams <i>et al.</i>	(LBL, SLAC)
BOYARSKI	75C	Palermo Conf. 54	A.M. Boyarski <i>et al.</i>	(SLAC, LBL)
HILGER	75	PRL 35 625	E. Hilger <i>et al.</i>	(STAN, PENN)
LIBERMAN	75	Stanford Symp. 55	A.D. Liberman	(STAN)
LUTH	75	PRL 35 1124	V. Luth <i>et al.</i>	(SLAC, LBL) JPC
WIIK	75	Stantord Symp. 69	B.H. Wiik	(DESY)

- OTHER RELATED PAPERS -

AUBERT,BE	06F	PR D74 111103R	B. Aubert <i>et al.</i>	(BABAR Collab.)
AMBROGIANI	05	PL B610 177	M. Ambrogiani <i>et al.</i>	(FNÀL E853 Collab.)
GUO	05	NP A761 269	FK. Guo <i>et al.</i>	
VOLOSHIN	05	PR D71 114003	M.B. Voloshin	
ABLIKIM	04I	PR D70 092004	M. Ablikim <i>et al.</i>	(BES Collab.)
ABLIKIM	04J	PRL 93 112002	M. Ablikim <i>et al.</i>	(BES Collab.)
LIU	04B	PR D70 094001	KY. Liu, KT. Chao	
WANG	04C	PR D70 077505	P. Wang, X.H. Mo, C.Z. Y	luan
BAI	00E	PR D62 032002	J. Bai <i>et al.</i>	(BES Collab.)
CHEN	98	PRL 80 5060	Y.Q. Chen, E. Braaten	
SUZUKI	98	PR D57 5717	M. Suzuki	
BARATE	83	PL 121B 449	R. Barate <i>et al.</i>	(SACL, LOIC, SHMP, IND)
AUBERT	75B	PRL 33 1624	J.J. Aubert <i>et al.</i>	(MIT, BNL)
BRAUNSCH	75B	PL 57B 407	W. Braunschweig <i>et al.</i>	(DASP Collab.)
CAMERINI	75	PRL 35 483	U. Camerini <i>et al.</i>	(WISC, SLAC)
FELDMAN	75B	PRL 35 821	G.J. Feldman <i>et al.</i>	(LBL, SLAC)
GRECO	75	PL 56B 367	M. Greco, G. Pancheri-Sriv	astava, Y. Srivastava
JACKSON	75	NIM 128 13	J.D. Jackson, D.L. Scharre	(LBL)
SIMPSON	75	PRL 35 699	J.W. Simpson <i>et al.</i>	(STAN, PENN)
ABRAMS	74	PRL 33 1453	G.S. Abrams <i>et al.</i>	(LBL, SLAC)

HTTP://PDG.LBL.GOV Page 39