Deep Nulling in with Broadband Visible Light

Kent Wallace¹, Rocco Samuele², Mike Shao¹, Shanti Rao¹, Edouard Schmidtlin¹

1 JPL 2 NGST

Experimental Goals

- 10⁻¹⁰ scattered light level implies ~10⁻⁷ suppression of starlight per mode
 - This assumes a 1000 element single mode fiber array and
 - Residual leakage from any fiber in the array is incoherent with the other fibers in the array
- Our goal is to demonstrate a null of 10⁻⁷ over a 20% BW centered at 675 nm.

Quick Nulling Interferometry Review

Nulling Interferometer

Fringe Pattern from Nulling Interferometer

Achromatic!

$$I(\Delta x) = \frac{Io}{2} \left[1 + Cos(\frac{2\pi}{\lambda} \Delta x + \pi) \right]$$

 $\varphi(\lambda) = \sum_{i} \frac{2\pi}{\lambda} n_i(\lambda) t_i = \pi$

Fringe Pattern from Nulling Interferometer

Experiment Layout

Input singlemode fiber

Coarse and fine travel stages

Experiment Hardware

Error Budget

-	Ea	sy	Мо	Moderate		
Source Null	Pupil Rotation	Intensity Mismatch	OPD Fluctuations	Birefringence	Dispersion	
Value	θ	ΔΙ, %	∆OPD	$\Delta OPD,_{pol}$	$\Delta OPD,_{\lambda}$	
Null Limit	$\Theta^{2}/4$	ΔI ² /4	$(2\pi \Delta OPD/\lambda)^2/4$	(2π Δ OPD , _{pol} /λ)²/16	$(2\pi \Delta OPD, \lambda / \lambda)^2/4$	
Net Null:	$\Sigma = \Theta^2/4 + \Delta$	PD, _λ / λ) ² /4				
% Contribution	$\Theta^2/4/\Sigma$	$\Delta I^{2}/4/\Sigma$	(2π Δ OPD/ λ)²/4/ Σ	$(2\pi \Delta OPD,_{pol}/\lambda)^2/16/\Sigma$	$(2\pi \Delta OPD, \lambda / \lambda)^2/4/\Sigma$	

Pupil Rotation

- Strictly a geometric effect:
 - Out of plane folds create slight pupil rotations.
 - Causes a small component of one polarization to 'leak' into the other polarization.
- Corrected by a very careful initial alignment of the interferometer
 - Use an interferometer to align an interferometer

Error Budget: Pupil Rotation

	Ea	sy	Mo	Moderate		
Source Null	Pupil Rotation	Intensity Mismatch	OPD Fluctuations	Birefringence	Dispersion	
Value	0.01 Deg					
Null Limit	7.6E-9					
Net Null:	7.6E-9 (132	2M:1)				
% Contribution	100 %					

Intensity Balance

- Accomplished with a wire that slightly occults the beam in one arm.
- Each arm is averaged over 3 seconds, allowing for heat dissipation.
- This set yields an imbalance of 0.009% and 0.008%
- Maintaining this level of balance is a challenge

Error Budget:

Pupil Rotation Intensity Balance

	Ea	sy	Мо	Moderate		
Source Null	Pupil Rotation	Intensity Mismatch	OPD Fluctuations	Birefringence	Dispersion	
Value	0.01 Deg	0.03%				
Null Limit	7.6E-9	2.25E-8				
Net Null:	3.01E-8 (3	3M:1)				
% Contribution	25.3%	74.7%				

Pathlength Control

Midfringe – Set 11 – 2khz

8/2/2006 - conditions: new focus detector, sampling at 2Khz, Edouard's potentiometer for fine voltage adjustment of the pzt is connected to the analog in. the chamber has been closed at least overnight

Data recorded 1 day after slide 1's midfringe

Similar, but the noise level has decreased.

~9 Million limit

Error Budget:

Pupil Rotation Intensity Balance Pathlength Control

	Ea	sy	Mo	Challenging	
Source Null	Pupil Rotation	Intensity Mismatch	OPD Fluctuations	Birefringence	Dispersion
Value	0.01 Deg	0.03%	0.06 nm, rms		
Null Limit	7.6E-9	2.25E-8	8.73E-8		
Net Null:	1.17E-7 (8.				
% Contribution	6.5%	19.2%	74.3%		

Evidence of Birefringence

Phase Plates In

Null = 520K:1

Error Budget:

Pupil Rotation Intensity Balance Pathlength Fluctuations Birefringence

	Ea	sy	Mo	Challenging	
Source Null	Pupil Rotation	Intensity Mismatch	OPD Fluctuations	Birefringence	Dispersion
Value	0.01 Deg	0.03%	0.06 nm, rms	0.04 nm	
Null Limit	7.6E-9	2.25E-8	8.73E-8	9.7E-9	
Net Null:	1.27E-7 (7.9M:1)				
% Contribution	6.0%	17.7%	68.7%	7.6%	

Deep Nulling of Laser Light

• 9M:1 over 3 seconds and 8M:1 over 10 secs

Error Budget:

Pupil Rotation Intensity Balance Pathlength Fluctuations Birefringence

	Easy	ý	Мо	Challenging		
Source	Pupil Rotation	Intensity Mismatch	OPD Fluctuations	Birefringence	Dispersion	
Value	0.01 Deg	0.03%	0.06 nm, rms	0.04 nm	??	
Null Limit	7.6E-9	2.25E-8	8.73E-8	9.7E-9	??	
Net Null:	1.27E-7 (7.	9M:1)				
% Contribution	6.0%	17.7%	68.7%	7.6%		

Nulling with Phase Plates: Differential BK7, Fused Silica and Air

Residual Dispersion vs Bandwidth

Bandwidth = 14-15%

Residual Dispersion vs Bandwidth

Error Budget:

Pupil Rotation Intensity Balance Pathlength Fluctuations Birefringence Dispersion

	Ea	sy	Мо	Challenging	
Source	Pupil Rotation	Intensity Mismatch	OPD Fluctuations	Birefringence	Dispersion
Value	0.01 Deg	0.03%	0.06 nm, rms	0.04 nm	0.014 nm
Null Limit	7.62E-9	2.25E-8	8.73E-8	9.70E-9	4.89E-9
Net Null:	1.32E-7 (7.6M:1)				
% Contribution	5.8%	17.0%	66.1% 7.4%		3.7%

Broadband Results

1.05E-6 over 3 seconds

Why the disconnect?

Modified Error Budget:

Pupil Rotation Intensity Balance Pathlength Fluctuations

Birefringence **Dispersion**

	Ea	sy	Мо	Challenging		
Source Null	Pupil Rotation	Intensity Mismatch	OPD Fluctuations	Birefringence	Dispersion	
Value	0.01 Deg	0.1%	0.1 nm, rms	0.04 nm	0.15 nm	
Null Limit	7.62E-9	2.5E-7	2.42E-7	9.70E-9	4.89E-9	
Net Null:	1.06E-6 (95					
% Contribution	1%	24%	23%	1%	51%	

Is this the answer?

It's going to take some more measurements to know.

Summary of results

- We have a very accurate error budget that predicts (pretty well) our nulling performance and guides our experimental efforts.
- We have demonstrated dispersion control to nulling levels of at least 1E-6 over 15% BW for a single mode.
- Path length fluctuations will limit us to about 1E-7 per single mode.
 - With a 1000 element single mode fiber array used as a pupil filter, this equivalent to 1E-10 per air spot.

Back Up Slides

Null Space (High Resolution)

Null Space (Low Resolution)

Null Space (Mixed Resolution)

Null Space

- Histograms of Null Depth
- Vs. Temperature

Principle of Nulling with Phase Plates: Differential Fused Silica and Air

Polarization Induced Amplitude Mismatch

BK7	Nom T	Angle of Incidence	Effective Thickness	Delta T	Тр	Ts	lp	Delta I	
1	10.16	1.816 Deg.	10.162						
2	10.16	24.26 Deg.	10.643	0.393					
Fused Silica									
2	10.16	1.816 Deg.	10.162						
2	10.16	25.725 Deg.	10.643	0.480					