TPF Review

Pupil Mapping (aka PIAA) Sensitivity Analysis

Robert J. Vanderbei

September 28, 2006

JPL/Cal Tech

Work supported by ONR and NASA/JPL
http://www.princeton.edu/ ~rvdb

- Linear unitary operator defining a coronagraph depends on λ.
- Coronagraphs for which λ dependence is small (just scaling) are preferred.
- Conjecture: "Ideal" PIAA is optimal among "achromatic" coronagraphs.
- The linear unitary operator depends on the optical model: Fresnel, Huygen's wavelets, Rayleigh-Sommerfeld, better-than-Fresnel, vector vs. scalar propagation, etc.
- "Real" PIAA is more chromatic than "ideal" PIAA.
- Hybrid apodized-PIAA design mitigates chromatic effects.
- Remaining issue: can the complicated real system be manufactured to theoretical specs.

Reference:

Diffraction-Based Sensitivity Analysis of Apodized Pupil Mapping Systems, Astrophysical Journal, 2006. To appear.
http://orfe.princeton.edu/~rvdb/tex/piaaSensitivity/ms.pdf

The Pupil-Mapping Concept

High-Contrast Amplitude Profile

Full Pupil-Mapping System

Diffraction Analysis of Apodized Pupil-Mapping

On-Axis PSF at 1st and 2nd Focus

Off-Axis PSFs

Cross-Sectional Plot

Throughput vs. Angle

Sensitivity to Zernikes

Pupil Mapping

Sensitivity to Zernikes
Concentric Rings

Sensitivity to Zernikes

Radial Profiles

Shaklan Plots

$(1,1)$

-	Concentric rings, $4 \lambda / D$
$-*$	Concentric rings, $8 \lambda / D$
$-\bigcirc$ Pupil mapping, $2 \lambda / D$	
$-\bigcirc$ Pupil mapping, $4 \lambda / D$	
$-\bigcirc$ Pupil mapping, $8 \lambda / D$	

$(2,0)$

