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Retrieval algorithms for the EOS Microwave Limb
Sounder (MLS)

Nathaniel J. Livesey, W. Van Snyder, William G. Read and Paul A. Wagner

_Abstract—The ‘retrieval’ algorithms for the EOS Microwave  that individual vertical profiles are not useful for scientific
Limb Sounder (MLS) on the Aura spacecraft, launched on 15 study due to their poor precision. For these ‘noisy’ products,
July 2004, are described. These algorithms are used to produce some form of averaging is required to produce data with better

estimates of geophysical parameters such as vertical profiles of . h dail Kl | thi
atmospheric temperature and composition, (‘Level 2’ data) from precision, such as daily or weekly zonal means, or monthly

the calibrated MLS observations of microwave limb radiance global maps. Products such as these, being on regular latitude
(‘Level 1’ data). The MLS algorithms are based on the standard and/or longitude grids, are known as ‘Level 3’ data. While
optimal estimation approach. New aspects include the adaptation these products can be obtained by averaging together large
to a ‘two dimensional’ system, and an approach to the issues o \ymes of Level 2 data, an alternative approach for retrieving

of retrieval ‘phasing’ and error propagation that differs from . . . . .
that taken for previous similar instruments. Important new them directly is described in section IV.

aspects of the software that implements these algorithms are

also described, along with the algorithm configuration for the II. FUNDAMENTALS OF RETRIEVAL THEORY
‘version 1.5’ dataset. Some examples are shown from MLS in- .
orbit observations. A. The retrieval problem

The task of the retrieval algorithms is to determine the
state of the atmosphere that best matches the observed MLS
radiances. This state is represented by the ‘state vextof’

HE EOS Microwave Limb Sounder (MLS) instrumenfength », which in the MLS case, as is typical, represents
[1], [2] is one of four instruments on the Aura spacecraffertical profiles of atmospheric temperature and composition,
that was launched on 15 July 2004. EOS MLS observgfong with selected other parameters described later. A ‘mea-
thermal microwave emission from the Earth’s limb in order tgyrement vectory of lengthm is constructed describing the
measure the composition and temperature of the atmospheigiance observations. forward modelis formulated that
in the region from~8km to ~90 km. describes the radiances that MLS would expect to see, were the

This paper describes the ‘retrieval’ algorithms used in thﬁmosphere in a state represented by the value adcording
ground data processing for MLS. The task of these algorithms

is to convert calibrated measurements of microwave radiances y = £(x). (1)

(known as Level 1B data) into estimates of atmospheric

temperature and composition. The approach chosen is fHese predicted radiancgsare compared with the observed

standard ‘optimal estimation’ method [3], [4]. The retrievaMLS radiancesy and the minimum is sought of g statistic

process divides into two main parts: the forward and inver§€fined as

models. The forward model computes estimates of radiances 2 _ T a—1

that would be observed by MLS, were the atmosphere in a X =y — £ Sy Iy —£)), @

given state. The task of the inverse model, as its name implied)ere S, is the matrix describing the error covariance of

is to ‘invert’ this calculation and deduce an atmospheric statiee measurements. The MLS algorithms invoke the standard

from a given set of MLS radiance observations. Details @auss-Newton approach to the minimization which iteratively

the forward models used in the MLS retrieval algorithms amarives at a value ok that minimizesy? by invoking

given in other papers in this issue [5], [6]. This paper reviews 1

the general retrieval approach and details the implementatio?i(qﬂ) =x@ 4+ [KTS; K] KTSs.! [y - f(X(q))} )

of the i_nverse m_odel. More detailed inform_ation on the%hereq is the iteration counter and

calculations are included in the ‘MLS Retrieval processes

Algorithm Theoretical Basis Document’ (ATBD) [7]. K - XX @
Most of the MLS data retrieved by these algorithms describe 0X |4 x(@

vertical profiles of geophysical parameters along the MeasUernown as the matrix of ‘weighting functions’ or ‘Jacobians'.
ment track of the instrument. Such products are known Ta—1 . - . -
fiY most cases th& S, K matrix to be inverted in (3) is

Level 2 .data. Th.e tﬁSk of.prodl,!cmg ;hﬁ‘,c’e is called I‘evels%ngular, indicating that there are aspects of the state vector
processing, and is the main .SUbJeCt oft IS paper. Sqme M'aﬁout which the measurements have yielded no information.
data products have a sufficiently poor signal to noise ralighis is remedied by adding additional vectors describing

All authors are at the Jet Propulsion Laboratory, California Institute c;Virt_uaI measurements’. Often (and in the ca_lse_ of Fhe MLS
Technology. retrieval system), these take the form of amriori estimate

I. INTRODUCTION
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of the state vectoa with covarianceS,. The forward model information is available. The later phases involve large state
for these virtual measurements is an identity operation, leadiagd measurement vectors, and therefore significant forward
to a weighting function matrix that is simply thex n identity model effort. Reducing the number of iterations required for

matrix. The iteration then becomes such expensive phases is clearly an important goal. As the pa-
) S -1 rameters targeted by the early phases (such as temperature and
x (@t — x(@ [K Sy K+S; } tangent pressure) are typically the most non-linear, performing

[KTS_l (y _ f(x(q))) L8t (a _ X(q)):| . (5) several iterations of the simpler earlieri phases should leave the
Y @ state vector close to the ‘correct’ solution for these parameters

This is similar to the actual iteration used in the MLS case, thie the later phases, reducing the number of iterations likely to

next section will detail additional constraints on the smootipe required. The task of the early phases can be regarded as

ness of the retrieved profiles, and the use of a Levenbetigat of obtaining a good ‘starting point’ for the later phases.

Marquardt parameter to aid convergence. More details on the specific implementation of this approach

This algorithm also gives an estimate of the uncertainty @re given in section VI.
the state vector according to

Sx = [KTS, 'K + 5;1]‘1, (6) C. Characterizing retrieval results

1) Estimated precisionCare should always be taken when
B. Retrieval ‘phasing’ and constrained quantities interpreting results obtained from retrieval algorithms such as

Most retrieval algorithms are implemented as a series %}ose_used in the N_“‘S Level2_proces§ing, a_md attention_should
phases. Typically an initial retrieval of temperature and pregg paid to several important diagnostics. Firstly, the estimated

sure information is performed using observations of radianfESC1SION of the retrleyed p.roducts'sh'ould be considered. In the
emitted by a molecule whose abundance is well known2S MLS case (as is typical), this is reported as the square
(usually CQ in the infrared and @ in the microwave) root of the diagonal elements of the solution covariance matrix

Later phases of the retrieval process use this temperature E{H
pressure information in retrievals of species abundances s
as ozone and water vapor. Many previous retrieval approac
such as the UARS MLS version 5 algorithms [8] fix thé o e . .
temperature and pressure at the previously retrieved val ertainties, it implies that the instrument has contributed

in these later phases. When doing retrievals in this mannétﬁe additional information on these elements Of. the_sta_tt_a
it is often important to budget for the uncertainty in theskector, and that they should probably not be used in scientific

‘constrained’ quantities by inflating the errors on the radiancé dy. 9 . . ) "
used to retrieve the species abundances according to 2) x“° statistics: In addition to the estimated precision, the
value ofy? obtained at the solution should also be considered.

S, — Sy + KScKT, @) Splutions whe.ra<2 >m-—n should_ be avoided as a poor
fit to the radiances has been achieved. In the MLS case,
where K. represents the derivative of the species radiance$ quantities are reported in a normalized manner, being
with respect to the constrained quantitiesetrieved earlier divided by the number of measurements considered. Under
(e.g., temperature and pressure) #hdis the uncertainty in these circumstanceg® should be about unity at the solution,
these quantities as reported by (6) in the earlier phase. and results corresponding to significantly larger values are
While for many instruments (including EOS MLS) theflagged as suspicious.
original S, matrix is diagonal (or can be assumed to be so 3) Averaging kernelsAnother important quantity in diag-
to a reasonable level of accuracy), the addition of errors @osing retrieval performance is the ‘Averaging Kernel’ matrix,
constrained quantities typically results in a fully populategiven by
matrix. As this matrix is required to be inverted in (5) 5
this represents a significant increase in computational effort. A= oxX _ [KTS;lK + S;I}‘l KTS;IK. (8)
Indeed, in the case whera > n (as with EOS MLS) Ox
this computation becomes by far the most intensive aspécir the purposes of this equatigris the unknown true state of
of the retrieval computation. Clearly it is desirable to retainthe atmosphere (so far as it can be represented in state vector
diagonal form forS, if possible. form) and x is the retrieved estimate from the iteration in
The solution to this issue adopted by the MLS algorithms {§). Each row of this matrix describes how the corresponding
to continue to retrieve the previously estimated quantities (telement of the retrieved state vector has been influenced by
perature, pressure etc.) in the later retrieval phases, includalgthe elements of the true vector. Each column of the matrix
the same radiance information as used to retrieve them in tiepresents the influence of a delta function perturbation of the
earlier phases. Continuing to include these quantities in therresponding element of the true state vector on the retrieved
state vector retains the efficient diagonal form 8y. This vector.
begs the question as to what purpose is served by the earliein the case where the state vector represents vertical profiles
phases — if the same parameters are to be retrieved in tieatmospheric temperature and composition, measures such
later phases, with arguably better quality, as more radiarae the full width at half maximum of the averaging kernels

(6). Careful comparison should be made between this
the uncertainty quoted for tlagpriori information by the
matrix. If little difference is observed between elements
the estimated precision and the correspondingriori
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are often used as a measure of the vertical resolution of thel'he state vector is broken down infé subvectors; each

measurement system. of length n consisting of a vertical profile of temperature,
4) Profile representation issuedn the particular case of composition etc., along with possible additional terms de-

the MLS retrieval system, the state vector represents vertisaribed byx® which are constant throughout the chunk (such

profiles of atmospheric species in a ‘piecewise linear’ mannas instrument calibration or spectroscopy terms).

The only exception is water vapor where the representation is N

piecewise linear inlog(vmr). This contrasts with the com- x
mon alternative approach which considers the state vector to X1
represent ‘layer means’. Special consideration of the MLS x=| % (11)
interpretation of the state vector needs to be made when :
comparing retrieved MLS data to other datasets. XN

Consider a simple MLS state vectioarse representing
a single temperature profile on fixed pressure surfaces,
another vectorsne describing a temperature measurement gn

a finer vertical grid (such as from a radiosonde, or GP ﬁ_f_r;‘e xd;vﬁtlijfl ?Cr?rlis.nm ik describes th nsitivity of
It transpires [5] that to compare the two measurements, jn € weighting function ma escribes the sensitivity 0

addition to applying the averaging kernels, one needs eMradian_ce scans to each ofthkpro_file sets. This matrix
transfer the higher resolution profile into the MLS grid b)\/N'" have a significant amount of sparsﬂy as, for ex_ample, the
applying the transformation ;tate of the atmosphere for profile 'number 10 will havg no
influence on the radiances observed in scan number 1. This can

be described by a sparsity parametemdicating the number

of profiles influencing a single vertical scan. The weighting
where then matrix describes a linear interpolation convertfunction matrix K will be of a ‘singly bordered block band

ing the low resolution MLS representation to that of theiagonal’ form as illustrated for the case wheéYe= M = 6,

The measurement vector can be similarly broken down into
sets of measuremenys (each of lengthm) corresponding

-1
Zcoarse™ [TITTI} TITZfine; )

radiosonde p=3.
Xfine = X 10
ine T1Xcoarse ( ) X X X O O 0 0
X X X x 0 0 0
I11. APPLICATION TOMLS RETRIEVALS x 0 x x x 0 0
K — , 12
A. The ‘two dimensional’ approach to the retrieval problem X0 0 e e 0 4
Figure 1 shows the viewing geometry for the EOS MLS i 8 8 8 S i i

instrument. It can be seen that the limb observations from
consecutive scans cover significantly overlapping regions where 0 denotes a block in the matrix that has zero for all
the atmosphere. The MLS Level 2 software retrieves individuglements, andx denotes a block with one or more non-
vertical profiles at approximately the same horizontal spaciagros. The block rows oK correspond to thé/ individual
as the individual limb scans (known as major frames). Tiseans, the first block column indicates the sensitivity of those
overlap in the limb observations is such that the radiances frans to thex® term while the other columns indicate the
each limb scan are influenced by several consecutive retriegemsitivity to thex; subvectors. The value ¢f is determined
profiles. If the retrieval algorithm is to be accurate, it mudily the geometry of the MLS measurements. However, for
take this influence into account. computational efficiency it can be useful to limit to a
The approach taken in the EOS MLS Level 2 software is tnaller value (such as 5), leading to sparser formsKor
divide the data into ‘chunks’, typically consisting of a®1$pan This is achieved by assuming horizontal homogeneity beyond
of great circle angle’s worth of observations (about 10 vertictiie regionp/2 + 1 profiles away from each scan.
scans). Retrievals are performed for each of these chunkén the case wher8, is diagonal, theKTS;1K matrix of
independently. The state vector consists\ofsets of vertical (5) has the form
profiles (V temperature profilesy ozone profiles etc.), with - A

. . . . X X X X X X X
retrievals being performed using measurements fidnnadi-
L - X X x x 0 0 0
ance scans. The results from the individual chunks are joined
X X X x x 0 0
together to produce a complete set of output for the day. The  ro_1
. . , . K'S;)K=] x x x x x x 0 (13)
chunks overlap slightly to reduce ‘edge effects’ (horizontal y
oo . x 0 X X X X X
homogeneity is assumed in the forward model beyond the 0 0 x x x x
first and last profiles, introducing inaccuracies). The spacing <« 0 0 0 x x x

of the retrieved profiles is typically chosen to match that of L -
the scans, so thaVv ~ M. Occasional differences betweerilhis is a ‘doubly bordered block band diagonal matrix’ having
N and M arise as the relationship between the scans (whiahblock-bandwidth of2p — 1. The formation of this matrix,
are approximately evenly spaced in time) and the retrievedich, becausen > n is the most time consuming aspect
profiles (evenly spaced in great circle angle) wanders duedbthe inverse model, scales a&*n?m (neglecting thex®
orbit eccentricity and earth oblateness. terms). The key point to note is that it scales linearlyNn
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Fig. 1. The top plot shows the viewing geometry of EOS MLS, which observes limb radiances in the forward direction. The lower plot is an expansion of

the boxed region in the upper plot. Here, 12 of the 120 limb ray paths for five scans are shown by the nearly horizontal lines. The loci of the gemimetrical i

ray tangent points are shown by the thin, angled lines. The kinks in these lines are due to a change of vertical scan rate (the instrument spends more time

observing the troposphere and lower stratosphere than the upper regions of the atmosphere in order to improve the information yield from tieng)wer reg
The thicker ‘curved’ lines show the loci of the refracted (i.e. true) tangent points. The ‘vertical’ lines represent the location of the retriespdestm
profiles.

so, the same amount of CPU time is required to retrieve f@opotential height. Including a full geopotential height profile
chunks of 10 profiles each as to retrieve a single 100 profiould lead to redundancy in the state vector and consequent

chunk, excluding the consideration of overlap regions. instability in the retrieval system.
Significant efficiency of storage can be gained by recogniz-Further parameters are required in the state vector in order
ing that for the forward model to accurately predict the radiances that
S M S would be observed by MLS. The most critical of these are the
K'S;'K =) KIS;'K, (14)  tangent pressures for the mid-point in time of each individual
=1 limb integration period (known as minor fram¢ for both

where K, represents theth of the M block rows of K the GHz and THz vertical scans. These are defined as the
andSy, similarly for S,,. Similar simplifications are possibleatmospheric pressure at the tangent point of the limb ray

with the KTSJ! [y — £(x(?))] terms. This means that each(taking into account refraction effects). Figure 2 shows an

iteration can be accomplished needing storage for only oeeample of how the radiances change as a function of pressure.
block row of K rather than the entire matrix, a significanfAs most of the MLS radiances signals are strongly determined

saving. TheKTS;lK matrix still needs to be stored in itsby pressure broadening, the tangent pressure is clearly an
entirety. However this matrix is significantly smaller thkh important coordinate by which to define the observations (as

asm > n, and, being sparse, its storage can be efficient. opposed to for example tangent height).

B. Major components of the MLS state vector C. Continuum emission and ‘baseline’

The ‘standard products’ for the MLS data processing are Most of the MLS products are derived from observations of
vertical profiles of temperature and species abundances $pectral contrast. The frequency resolution of the instrument
selected molecules on fixed pressure levels. For most of ikesuch that it can resolve individual spectral lines of the target
MLS products, there are six surfaces per decade changelecules over most of the vertical retrieval range. It is the
in pressure, starting from 1000hPa, with the grid spaciddLS observations of the shape of these lines, as captured in
coarsening to three surfaces per decade for pressures thsgadiance differences from channel to channel, that yield the
than 0.1hPa. Of course the true vertical resolution of thetrieved estimate of the geophysical parameters, rather than
information obtained by the retrieval algorithms is oftethe absolute radiance values themselves.
poorer than the spacing of this ‘reporting grid’. In addition Our knowledge and understanding of absolute radiance is
to these abundances and temperatures, the geopotential hajgherally poorer than that of their spectral shape, due both
of a fixed pressure surface (typically 100hPa) is includeth instrumental effects (such as thermal emission from the
A full vertical profile for geopotential height is not requiredVILS antenna and other reflectors or spectrally broad variations
(or indeed desired). This is because, through considerationinstrument gain), and forward model limitations (such
of hydrostatic balance, the geopotential height profile cas uncertainties in continuum spectroscopy). Although the
be computed from the temperature profile and the singépectral signatures of the target species are largely orthogonal
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their impact on the MLS radiance signals will not necessarily
be spectrally flat. For example, the impact of the extinction
at 100hPa on radiance observations having 100 hPa tangent
pressures will be significant in ‘transparent’ channels, and
negligible for channels where the stratosphere is optically
thick. Unfortunately, this parameter has a highly non-linear
impact on the measurement system, most notably when it is
invoked to reduce radiances (i.e., negative mixing ratios of the
extinction ‘molecule’ are required). This can lead to significant
instability in the retrieval, particularly in cases where cloud
scattering can lead to radiance suppression. Therefore, in the
v1.5 algorithms (producing the first publicly released dataset,
as described later), only the baseline term is considered in the
retrievals.

0.001
0.010
0.100}

1.000

Tangent pressure/ hPa

10.000§

100.000f
i D. Minor components of the ‘state vector’
1000.000£ . 3 There is a distinction drawn in retrieval algorithms between
0 100 200 300 Parameters passed to the forward model for which solutions
Radiance/ K are sought (such as the quantities described above), and other
guantities required by the forward model for whiahpriori
- - knowledge is sufficient. The latter quantities include such
1 3 5 7 9 1 13 things as the spacecraft velocity, used for determining Doppler
Channel shift effects, and knowledge of the microwave background
space radiance. Although not retrieved, such quantities are
Fig. 2. Sample MLS radiances as a function of tangent pressure. The differgiften loosely referred to as being ‘in the state vector’ in the
lines represent different MLS spectral channel observations of emissign g algorithms. In addition, the forward model also requires

from 118 GHz Q line. High altitude observations typically correspond to . . . . . . )
measurements of an optically thin atmosphere, leading to small radiarfdetailed spectroscopic and instrument calibration information

signatures. As the instrument looks lower down, radiances increase as [thg
atmosphere thickens. Toward the bottom of the scan the radiances ‘saturaté’
(the ‘knee’ on the radiance curves). Here the atmosphere is sufficiently

optically thick that the instrument does not see all the way to the tangent polat, The use of tangent height information
instead the bulk of the signal emanates from a region higher up, closer to the . . .
instrument. Channel 1 is furthest from the line and so in a region where the [N addition to the MLS radiance observations, the tangent

atmosphere is optically thin down to around 10hPa. Channel 13 is centefsdint altitude information obtained from the MLS antenna
e o e o eyascipstion encoder and Aura atttude determination system can
tangent point pressure is clearly non-linear in nature. These data are tak@nsidered to be indirect measurements of the state vector.
from the average of the first 100 scans taken by MLS on 30th August 20@jven the state vector description of the atmospheric temper-

ature profile, the estimated pressures at the tangent points,

and the geopotential height of a reference pressure surface,
to these spectrally flat effects, some residual impact can &eforward model estimate of the Level 1 tangent heights
seen on the MLS products if the spectrally flat terms are ngan be constructed based on considerations of refraction and
considered in the retrieval algorithm. hydrostatic balance [5].

The MLS state vector includes terms designed to account forTypically the MLS radiance observations convey informa-
such spectrally flat phenomena, and these are retrieved altiog on tangent pressure over a somewhat limited vertical
with the target species. These terms fall into two categorigmge of limb tangents. Near the top and bottom of the scans
known as ‘extinction’ and ‘baseline’. Typically only one ofthe spectral contrast in the MLS radiances is not strongly
these is retrieved, as the signatures of the two are highlgpendent on tangent point pressure, as shown in figure 2.
correlated and thus hard for the retrieval to appropriatefhe inclusion of the tangent point height information in
distinguish. Baseline terms are spectrally flat radiances thia¢ retrieval system can extend knowledge of tangent point
can be uniformly added to each radiance observation inpgessure into these regions.
radiometer. The software allows these to be described eitheThe inclusion of this height information has made the need
as a set of vertical profiles as a function of tangent pressufe; an a priori constraint for tangent pressure unnecessary,
or as an independent value for each minor frame of radiarmed indeed undesirable. Any such estimate would have to
observation. This is useful for capturing most spectrally flafe taken from the same tangent point altitude information
artifacts that have an instrumental origin. given in the measurement vector. Thus, includingaapriori

Alternatively, the ‘extinction’ parameter is better suitederm for tangent pressure would amount to using the same
to capturing spectrally flat features due to problems withformation twice. This is implemented in the retrieval by
modeling of atmospheric transmittance. While these havesatting the appropriate rows and columns of 81" matrix
spectrally flat impact on a ‘local’ scale in the atmospher& zero. Although the absence of these virtual measurements
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can in principal lead to the matrix inversions in (5) bein@. Numerical stability concerns and scaling

singular, it can be shown that the inclusion of the tangentthe physical disparity of the MLS state vector (temperatures
height information guarantees successful inversion. have typical values of 150—-300K, while BrO mixing ratios
have values of ordern0~!!'vmr) gives rise to numerical
stability concerns for the algorithm. As it transpires, however,
the measurement vector does not present a concern in the
In retrievals from remote sounding instruments, there }gLS case, as it contains either radiances in the 0-300K
often some trade off to be made between the precision arghge or scan residuals of order300m. In addition the
resolution (typically vertical, but horizontal is also relevantyltiplication byS; ! effectively scales the measurements into
of the retrieved product. This trade off can be controlled by dimensionless space in any case.
adding constraints on the ‘smoothness’ of the results in theThis large dynamic range within the state vector leads to
retrievals. Often, such as in the UARS MLS version 5 datasgkge variations from column to column in the valueskf
[8], these constraints are implemented by adding off diagorméspite this, the formation of thK™ S 'K matrix is actually
terms to the estimated error covariance matrix foratiori  numerically stable in our case whe®, is diagonal. The
terms Ga). matrix product is essentially the results of a set of dot products
For the EOS MLS retrievals however, an alternative ajpf every column ofK with every other column oK. The
proach is implemented using a second order Tikhonov cagrms summed together to form one of these dot products are
straint. This amounts to placing a ‘soft’ constraint (i.e., addall related to the same pair of state vector elements, so they all
tional term inx?) on the magnitude of the second derivativeave the same physical units. Thus, no special care need be
(vertically and horizontally) in the retrieved profiles, by introtaken of ‘small’ numbers that might get lost in the summation,
ducing virtual measurements with weighting function matricegnall terms are by their nature insignificant.
based on binomial coefficients similar to the—2) x n matrix However, the matrix inversion in (16) is a concern. The
matrix to be inverted contains a wild range of numbers (being

F. The Tikhonov smoothing constraint

_% _% _% _g 8 8 8 8 related to the square of the state vector), which need to
4 2 4 be combined in a series of multiply / addition operations.
K ~ : : : S : : : : To alleviate this concern, an element-by-element scaling is
0 0 0 0 ... _i 1 0 applied to the state vector before the inversion such that the
0 0 0 0 0 _é % L diagonal elements of the matrix all become unity. Once the

%15) inversion and the rest of the computation is completed, the
Constraints on higher order derivatives can be achievegbulting state vector and covariance matrices are returned to
by using higher order binomial coefficients. The actual forieir original units.
of the K matrices used is more complicated, partly because
we introduce one set of virtual measurements to describe Non-linearity and convergence issues
horizontal smoothing and another for vertical, and partly While the Gauss-Newton minimization technique is excel-
because we wish to provide a height dependent weighting fent for linear and moderately non-linear systems, its under-
the smoothing terms [7]. lying assumption of linearity can lead it to take inappropriate
The horizontal and vertical smoothing terms, scaled ateps in more seriously non-linear situations. For these sit-
described above are combined in a maRixgiving a modified uations, the Levenberg-Marquardt [9], [10] stabilization is a

Gauss-Newton iteration according to: common solution. This involves simply adding a matkik to
the matrix to be inverted in (16), whereis a scalar chosen
-1 each iteration, andl is then x n identity matrix. This term is
x@H) — x(@ 4+ |81 + RTR + ZK;FSi_lKi] added to the matrix after the scaling described in the previous
g subsection is applied. When small values\adre chosen, the

step taken is clearly close to that which would be taken by
S, [a - X(Q)} +R'R [a - X(Q)} + a regular Gauss-Newton iteration. Larger values\ofesult
in a smaller step, closer to the more conservative ‘steepest
descent’ iteration. The value of chosen for the first iteration
ZKiTs;l [yi - ﬁ(x(@)} (16) is a ‘user input’, chosen based on the degree of non-linearity
i anticipated. In later iterations the value bfis chosen based
on the progress made to that point.

The choice of weighting for the smoothing parameter is Before each iterative step is taken in the minimization of
largely made on scientific grounds according to the desirgd i (16) with the additional\I term above, it is possible
precision and/or resolution for each product. Typically thgy compute the value of2 we would find at the destination,
smoothing constraint is turned off at the higher reaches @kre the system truly linear. This is done by substituting the

the retrieved profiles, where the inherent resolution of thgye ofx from (16) into (2) and recognizing that in the linear
measurement (i.e., that it would have were no smoothipggime

constraint applied) is already poorer than about 6 km in the
vertical. f (X(q“)) =f (x(‘”) +K [x(‘”” - x(‘”} : (17)
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In addition, it is similarly possible to compute the value w& = a) case, this reduces to
would expecty? to take at the minimum, again assuming
linearity. For the case of Gauss-Newton iteration (where the
Levenberg-Marquardt parametkiis zero) these are of course
the same location.

These two pieces of information can be useful in deter-
mining iteration strategy. Comparison of the value ot )
found at the destination with that which was expected yiel@W for the case of the noisy products, taketo be a
information on the amount of non-linearity in the system. ThigPecific component of an averaged dataset (e.g., a single profile
can be considered when choosing the value\ab use in corresponding to one latitude in a monthly zonal mean re-

the next iteration. Alternatively, in the case where particularfji€val). Consider the measurement vectorso represent each
poor reduction (or even increase) i? is observed, the individual scan in the relevant spectral band that contributes to
algorithm may choose to retreat and select a diffeiefar the this component (e.g., all the scans in the latitude range under

current step. More details of this decision process are givepnsideration that month.) The forward models for each scan
in Appendix C of [7]. use the previously retrieved values for the other molecules

and parameters that affect the radiance measurements (O

9 . - .
The yalue (.)f.X estimated .to be at the true minimum IS[emperature, tangent pressure etc.) as constrained quantities.
useful in deciding when satisfactory convergence has beer), ;¢ possible to take this method further by defining

&blfgirted' ::gr e>f<amp|e,_ for the first post Iaungh vg;s_iog(;f ”%1% the value of the product retrieved by the standard Level 2
evel 2 software, iterations cease whehis within 2% processing. Let the vectdr contain all the other aspects of the

of the value that is predicted to exist at the minimum. state retrieved by the Level 2 algorithms (ozone, temperature
etc.).
It is clear therefore that

yi —fi(a,b) =y — [fi (x0,b) + Ki(a—x0)]  (19)

—1
x=a+ [S;' +R"TR+ > K/S/'K;

STKIS Hy: —fi(a)]. (18)

i

IV. AN ALTERNATIVE APPROACH FOR'NOISY’ PRODUCTS
The retrieval calculation (18) then reduces to:

Some of the molecules EOS MLS is designed to observe
have particularly small mixing ratios, and weak emission x
lines. The corresponding radiance observations thus have pqor
signal to noise ratios, leading to noisy retrievals. For thes KiTSfl ly: — £i (x0,b)] — KIS7'K; [a_XO]] . (20)
products, more useful scientific information can be obtainegt= ! o

by considering averaged products, such as daily zonal meaRSCOrdingly, by having the Level 2 software gather appropriate

or monthly maps. There are several ways in which to compute ¢ theK TS K, matrices and th& TS [y — £; (xo)|
such quantities. i i i i

vectors, the ‘noisy products’ algorithm need not invoke any

One approach is simply to retrieve the products in the samgward model calculations. All that is required is that values
manner as all the others, and then use whatever averagifighe above matrix and vector are collated together appropri-
technique is appropriate afterwards. The disadvantage of tg{gy, including the correction teriK;rSi‘qu; [a — xo] where
method is that, unless special care is taken, aheriori x is taken from the standard Level 2 product, and the final
information can significantly bias the results, as it is includegtate computed as the result of (20).
in each separate retrieval. This is the approach taken forextending this to allow it to follow from a full two dimen-
the version 1.5 of the MLS data processing software (usiRghnal Level 2 calculation is achieved by definirgo be the
appropriately large values for thepriori uncertainty for the mean of all or several profiles in the chunk and collapsing
species of interest). together the appropriate block columns of the matrices.

A second approach is to average the radiances from fhee issue of errors on constrained quantities has not been
relevant bands in whatever manner is appropriate, and therc@msidered for this problem. It is possible that these should
perform retrievals on the averaged radiances. This method hasconsidered, and a non-diagonal form fr used. This
a problem however when the lines of interest are contaminat&duld make it harder for the ‘noisy products’ algorithm to
by strong emission from other, highly variable molecules. Thivoid invoking forward model calculations. The issue will be
is the case for example with some of the MLS BrO radiandevestigated when these algorithms are developed.
observations which are close to a strong liDe.

The best approach to this problem is to retrieve the averaged V. IMPLEMENTATION IN SOFTWARE
products as a separate task, after the main processing haghe algorithms described in section Il have all been im-
occured. Rather than using averaged radiances as ab@emented in a single ‘MLS Level 2 software program’ in
however, the full radiance data set for the relevant bandtle Fortran 95 programing language, chosen because of its
considered. Consider the iterative retrieval expression givgreat suitability to handling the complex matrix and vector
in (16). In the linear (i.e. single iteration, with initial guessentities involved. The program was designed to be as flexible

—1
=a+ |S;'+R™R+ > KiTSilKZ—]

(2
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as possible, and is controlled by a ‘Level 2 Configuration Filé\. ‘Standard’ products, and ‘Diagnostic’ products
(L2CF) that is effectively a high level programming language. the geophysical products from the MLS retrieval algorithms

The L2CF controls all aspects of the software, definingan be divided into two categories. Each of the ‘standard’ MLS
the contents of state and measurement vectors, defining ge@physical products are output in separate files with a daily
configurations of the various forward models available, readigganularity. The ‘standard’ products are the science team’s
appropriatea priori, spectroscopic and calibration data, perpest’ estimate of that product from the MLS observations.
forming retrievals, doing forward model runs for simulationgypically they are taken from the MLS observation of that
or off-line analysis, post-processing results, computing diagpecies in a particular frequency region. For example, in the
nostics and outputting results in appropriate files. In ‘produgersion 1.5 processing, the standard product for ozone is the
tion’ mode, the software operates in a parallel form, with ongzone as retrieved from the 240 GHz radiance information.
instance of the program acting as a ‘master’, coordinating thein later versions, it is intended that the standard products
work of multiple ‘slave’ instances on a cluster of computersgr many species will be formed from some optimal combi-
each computing the results for individual ‘chunks’ of data asation of the information obtained from all the relevant MLS
described in section llI-A. The software can also be run ‘oRadiances (ideally from one ‘comprehensive’ retrieval phase).
line’ for single chunks or simple one dimensional retrievalgowever, changes in instrument configuration, such as the
of individual profiles. The on-line mode is enhanced by ﬂ’[@mporary power down of one radiometer, or the changing
ability of the software to communicate with a separate progragh the MLS switch network [1] will impact these products,
(written in the IDL language from Research Systems Inc.) thag they change the whole MLS measurement system. Such
presents a graphical interface into the algorithm, allowing thetrieval schemes have not yet been implemented, pending
user to see the current state and measurement vectors igfstovements in computer resources, and in understanding of
many diagnostics, and to monitor the progress of retrievalfy systematic differences seen between the estimates obtained
(effectively acting as a graphical ‘debugger’). in the different MLS radiance signals.

In addition to the ability to do conventional retrieval calcu- For analyses such as trend studies, it may be more ap-
lations, producing Level 2 Geophysical Product (L2GP) outpptopriate to consider the ‘diagnostic’ MLS products. These
files from input L1B radiance data, the software can alsge simply the products retrieved from each retrieval phase
produce L1B files of simulated radiances based on a staidependently. Being based on only a single radiometer (plus
vector formed from a set of L2GP files taken as input. Thtee 118 GHz signal used in the retrieval temperature and
capability was used extensively prior to launch for generatingngent pressure in all phases), these may be less sensitive
radiance fields corresponding to known atmospheric statés.any changes in instrument configuration. As an example,
Developing a different program to perform that essential tasbnsider nitrous oxide, for which there are two diagnostic
would entail the duplication of all the relevant code foproducts: N20-190, and N20-640, corresponding to retrievals
initializing the forward model and constructing the state vectarsing 190 and 640 GHz radiance observations respectively. Of
Combining both the retrieval and simulation tasks in a singthese N20-640 is generally considered superior, and so the
piece of software makes it far easier to ensure that identicdhndard product for dD is currently simply a copy of the
forward model algorithms and parameters are used for bddR20O-640 product. Table | details how each of the standard
tasks, and dramatically reduces the complexity of the cogeoducts is derived from the diagnostic products in v1.5.
maintenance effort.

In addition to these tasks, the Level 2 software has provgd The Core, Core+Rn approach

flexible enough to have been used for a large variety of other. . . . . .

. The phasing approach described in section II-B has been im-
tasks, from those as mundane as translating MLS Level 2 da gmented i1 what is known as the ‘Core. Core+Rn’ approach
files from an older version of their format (based on HDF-EO n what | W ' pp

verson ) 0 nowerone (HDF-EOS version ), o ascomp1 .S 000 e o phase o e ene
as doing a retrieval using monthly zonal mean radiances oF Y b P !

pre-computing tables to be used in the linear forward mo'c{j(glr the tangent pressure, temperature, and upper tropospheric
[5] umidity aspects of the state vector. These are obtained from

the R1A 118 GHz observations of emission from @nainly

for temperature and pressure) and selected channels from the

R2 190 GHz observations (mainly for upper tropospheric water
VI. RETRIEVAL APPROACH FOR VERSIONL.5 vapor). This is followed by phases such as ‘Core+R2A and

‘Core+R2B’ where, in addition to temperature and pressure,

To this point, this paper has described the EOS ML&her species such as water vapor, ozone and nitric acid are

retrieval algorithms in a fairly general sense. In this sectioetrieved.
we will describe the particular configuration of the software Section II-B described how the ‘cumulative’ approach to
used to generate the version 1.5 (v1.5 hereafter) EOS Mkt@&rieval phasing was preferable to performing constrained
Level 2 data, the first publicly released MLS dataset. Thguantity error propagation. However, in pre-launch testing, it
section should be regarded as a ‘snapshot’ of the current cams decided that this approach was not universally appropriate.
figuration, as future versions of the data processing algorithingparticular, it was found that retrievals including tropospheric
are planned. water, a species whose impact on the MLS radiances is very
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TABLE |
THE ORIGIN OF EACH OF THE' STANDARD PRODUCTS FROM V1.5

Product Origin

BrO Core+R4 (640 GHz)
CHsCN Core+R2B (190 GHz)
ClO Core+R4 (640 GHz)
CO Core+R3 (240 GHz)
H,O Core+R2A (190 GHz)
HCI Core+R4 (640 GHz)
HCN Core+R2B (190 GHz)

Core+R3 (240 GHz) for 10 hPa or greater, Core+R2

HNO; (190 GHz) for lesser pressures
HO, Core+R4 (640 GHz)

HOCI Core+R4 (640 GHz)

N2O Core+R4 (640 GHz)

O3 Core+R3 (240 GHz)

OH Core+R5 (2.5THz)

Temperature  Core for pressures of 1hPa or greater, Core+R2 for lesser pressures.

nonlinear, were prone to instability. Accordingly, once atimb observations are frequency dependent and become more
appropriate estimate for this is obtained (in the Core+R2%evere as the radiances get closer to saturation. For example,
phase), it is constrained in later phases. No propagation of tneloud at 100 hPa will affect channels where the atmosphere
errors associated with constraining water vapor is performedoptically thin enough to allow MLS see down to that level.

in the later phases. Investigation showed that the error involviddwever, channels that do not see down to 100 hPa will be
in neglecting this propagation is insignificant, mainly becausmaffected.

the impact of upper tropospheric water vapor on most of theThe MLS Level 2 software therefore takes steps to avoid
MLS radiances is fairly spectrally flat and largely orthogongbnsidering radiances that are thought to be strongly affected
to the signatures of other species. by cloud effects, and/or report an increased uncertainty on
Other minor deviations from the strict implementation ofhem. These impacted radiances are identified by comparing
the planned scheme have been chosen. In particular, in {ig MLS radiance observations in selected optically thin
‘Core+R4B’ phase, targeting 0 from the 640GHz ra- channels (most suited to cloud detection) in each radiometer
diometer, the ozone abundance, rather than being retrievggh those predicted from forward model calculations. The
is constrained to previously retrieved values with no errgfas phase retrievals are instructed to ignore or downplay
propagation. Knowledge of the ozone signature in th®N radiances where large differences between observation and
spectral region is somewhat uncertain, and this approach Wggdel are observed. This activity is performed at three distinct

found to produce generally preferable results foON points during the v1.5 algorithms. The first two are during the
Core group of phases where the ‘current best’ temperature
C. Flagging the presence of clouds in v1.5 and tangent pressure information from MLS are used in a

While microwave signals are far less sensitive to the preward model, in conjunction with a water vapor profile
ence of clouds in the atmosphere than shorter waveleng@presenting 110% relative humidity with respect to ice, to
signals, very thick clouds can have an impact large enoughtai” a reasonable upper limit for clear sky radiances. Finally,
to affect MLS measurements of gas phase composition. TRer the Core+R2B phase, once the best information on
Level 2 software needs to be able to identify such radianc&ater vapor has been obtained from MLS, a new forward
and deal with them appropriately. In addition, the cloufnodel estimate is computed using the MLS retrieved water
signatures can be used to measure cloud properties [11]. observations in order to re-flag cloud contaminated radiances

The mechanism whereby clouds affect the MLS radianct all radiometers to be used in later phases.
is mainly scattering of microwave radiation. The details of the Appropriate thresholds for cloud contamination have been
impact vary both from channel to channel and as a functi@mpirically determined for each radiometer, based on simula-
of limb ray tangent height. Optically thin observations in @ions. The thresholds have been chosen to maximize the use of
channel (those that are less than about 50% of the radiamadiances consistent with not severely affecting the retrieved
at saturation) can be affected by both scattering and emissgpecies. Flagged radiances are either not used (in the case of
from clouds which lead to an unexpected enhancement in raitie 240 GHz and some 118 GHz radiances), or weighted less
ance. Radiance observations lower down, where the radianiteshe retrievals (190 GHz radiances). To give one example,
are close to or beyond saturation, can be affected by scatterihg software ignores MLS 240 GHz radiance observations in
from clouds, which leads to suppression of the radiance signedses where the observed radiances are more than 5K greater
While the cloud scattering and emission effects are spectratly30 K smaller than those predicted by the forward model for
broad in nature, the impact of these effects on the ML& selected optically thin channel in the 240 GHz radiometer.
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TABLE Il
THE PHASES THAT FORM THE \1.5RETRIEVAL ALGORITHMS.

Phase Target speciés Measurements Comment

Init-pTan T, pTan (GHz), GPH R1A (118 GHz) Very quick forward model
Update-pTan T, pTan (GHz), GPH R1A (118 GHz) Slower more accurate model
Init-UTH U.T. H,0 R2 (190 GHz)

H50O retrieved down to

316 hPa, other species to 215
R1A (118 GHz), R2 (190 GHz) or 100 hPa, usespcostly full

forward model.

Main H,O radiances excluded,

roducts retrieved down to
2|8Tg ((Hsg,fl)' gfb'é'NbD' HNGs: R1A (118 GHz), R2 (190 GHz) Eetween 316 and 100 hPa.
T ' Fast linear forward model

used.
Used for flagging clouds in
Core+R3 and later phases, in
addition to forming basis for
cloud water products.

T, pTan (GHz), GPH, KO, N,O,

Core+R2A HNO3, Os

Core+R2B

High-Cloud Baseline terms as proxy for cloud

e e R2 (190 GHz), R3 (240 GHz)
contamination

Core+R3 T, pTan (GHz), GPH, @ CO, HNO; R1A (118 GHz), R3 (240 GHz) Retrievals down to 316 hPa
T, pTan (GHz), GPH, CIO, BrO,

Core+R4A HO,, HOCI, HCI, G;, HNO;3, R1A (118 GHz), R4 (640 GHz) Retrievals down to 147 hPa
CH3CN

Core+R4B T, pTan (GHz), GPH, MO R1A (118 GHz), R4 (640 GHz) Retrievals down to 147 hPa

Core+R5 T, pTan (GHz, THz), GPH, OH, © (R215A_|_(|}é$GHZ), RSH and RSV Retrievals down to 68 hPa

aTangent pressure and Geopotential height have been abbreviated to pTan (GHz/THz) and GPH respectively. Minor state vector components such as
‘baseline’ have been omitted.

D. A note on correlated noise E. Some selected results from v1.5

The MLS radiances measured by the 640 GHz radiome IAfull discussion of the results from the v1.5 algorithms and
Lﬁle discussion of its performance are beyond the scope of this

show an unexpected signature of correlated noise in th r A detailed di ion of dat lity will b lied
observations of limb radiance. The noise signature is Iargé?é?‘pe : ctailed discussion of dala quality € suppiie

consistent from channel to channel across the whole of thethOse wishing to use MLS data [12]. Figure 3 gives as an

640GHz band. This behavior is inconsistent with the pr ample a pair of retrieved stratospherigONprofiles on 10th

launch understanding of the behavior of the 640 GHz recei Enuary 2005, one at the equatar, one at high northem latiudes

formed from ground based calibration studies. The recei\)grthe winter polar vortex. Other examples of retrieved MLS

has had this property since construction, but it was not reccﬁjpduas are given in [13].

nized in the pre-launch calibration data because of differences _
between the calibration and limb observation regimes. Tire Plans for future versions
2.5THz receivers show a smaller manifestation of the sameThe main goal for the next version of the Level 2 algorithm

phenomenon. is to retrieve a water vapor product with a higher vertical
The Level 1B algorithms report two estimates of the noigesolution of twelve surfaces per decade change in pressure in
on individual radiances. The first noise is the spectrally varyinlge tropopause region, compared to the typical six per decade.
component for each channel in each radiometer. The sec&uth a product, while having greater vertical resolution than
componentis that which is spectrally flat. The observed behdhe ‘standard’ water vapor product, will necessarily have a
ior in the 640 GHz receiver results in a larger than anticipatgaborer precision.
spectrally flat component to the noise. Prior to launch, it Significant improvements in forward model efficiency (with
had been understood that the spectrally flat component woaldlight penalty in accuracy) are anticipated in future versions,
be sufficiently small that it could be essentially ignored ithrough the optional use of a ‘pre-frequency averaging’ ap-
Level 2. The baseline terms, represented by a fairly coamm@ximation. This will allow for the use of the ‘full’ non-linear
vertical profile on pressure surfaces, would be sufficient forward model in cases where up to now its use has involved
account for unexplained radiances. However, the obseneagrohibitive amount of computational effort (such as for most
large amounts of spectrally flat noise which vary rapidly frorof the 640 GHz radiances).
minor frame to minor frame dictate a switch to having an Increase in knowledge of the spectroscopic parameters
independent baseline for each minor frame. It was decided fofluencing the MLS radiance signals will undoubtedly lead
consistency to switch to this representation not just for the improvements in many MLS products. While most of the
640 GHz, but all the receivers. spectral lines ‘targetted’ by MLS are well characterized, some
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Retrieved N,O at the equator N,O radiances at the equator
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Fig. 3. An example of some results from the v1.5 algorithms for measurements made on 10th January 2005. The case shown is two reg@vals of N
abundance from the 640 GHz radiances. The left hand plots show retrieM@dvith the error bars indicating the estimated precision. The right hand plots
show the measured (symbols) radiances in channels 4, 10, 11, 12 and 13 of the 64QGHm®mMN (red, green, blue, orange, magenta respectively). The
widths of the symbols denote the reported noise (spectrally varying component) on the measurements. The solid lines show the fitted radiattéry estimat
the forward model, corresponding to the retrievegONprofile. These are shown only for the radiances used in the retrieval, hence the absence of the solid
lines below~17 km.

measurements are influenced by emission from other lingsrforming well on incoming MLS data, and yielding results
whose parameters are currently more poorly known. In adavhose quality is broadly in line with pre-launch expectations.
tion, further (probably minor) improvements to our knowledge

of the calibration of the MLS instrument are anticipated which APPENDIX
will have an impact on the MLS data quality. THE CALCULATION OF COLUMN ABUNDANCES
In addition to retrieving profiles of atmospheric temperature
VIl. SUMMARY and composition, the MLS Level 2 software also computes

column abundances above the tropopause for most species.
This paper has reviewed the retrieval algorithms impl@ropopause pressure is derived from the MLS temperature
mented for the EOS MLS instrument. In conjunction with itprofiles, according to the standard World Meteorological Orga-
companion papers, this should serve as a useful referencerfization definition, adapted appropriately for use with pressure
those wishing to better understand the EOS MLS measuremgather than altitude coordinates.
system, and as possible guidance for those implementingGiven a retrieved abundance profjlefor a linear represen-
retrieval schemes for other instruments. The algorithms dedion basis (see section II-C.4) on a set of pressure surfaces
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above a pressure levét* is given by

1
C=—
mg

fnF.
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n, the column abundance (number per’dm [7] N.J. Livesey and W. V. Snyder, “EOS MLS retrieval processes algorithm

theoretical basis,” Jet Propulsion Laboratory, Tech. Rep., 2004, D-16159,
available on the MLS web sitbttp://mls.jpl.nasa.gov

N. J. Livesey, W. G. Read, L. Froidevaux, J. Waters, H. Pumphrey,
D. Wu, M. Santee, Z. Shippony, and R. Jarnot, “The UARS Mi-

crowave Limb Sounder version 5 dataset: Theory, characterization

and validation,”J. Geophys. Resvol. 108, no. D13, p. 4378, 2003,

doi:10.1029/2002JD002273.

+Z

In10

C ¢ ) Py — B [9] K. Levenberg, “A method for the solution of certain nonlinear problems
i+l 7 6b in least squares,Quart. Appl. Math, vol. 2, p. 164, 1944.

[10] D.W. Marquardt, “An algorithm for least-squares estimation of nonlinear

P. - P

parameters,J. Soc. Ind. App. Mathvol. 11, pp. 431-441, 1963.

—I—Z {Po (Ce —Cim1) + — PA¢G ] [11] D. L. Wu, J. H. Jiang, and C. P. Davis, “Aura MLS cloud ice
AQ— 1 10 measurements and cloudy-sky radiative transfer modBEE Trans.
Geosci. Remote Sensol. This issue.
[12] N. J. Livesey, “Data quality document for the EOS MLS version 1.5
+ f1 (Pd - Pl) , (21) level 2 dataset,” Jet Propulsion Laboratory, Tech. Rep., 2005.
[13] L. Froidevauxet al., “Initial validation of EOS MLS observations|EEE
Trans. Geosci. Remote Senl. This issue.

where(, = —logy(Py),

Ca =max (Cn, (),

G =min [max (¢;, ¢*) , Git1]

e =min [max ((;—1,¢") , Gl ,

Ca =min (¢1,¢"),
A¢G = (iv1 — ¢, m is the molecular mass of dry air and
g is a nominal value of the earth’s gravitational field. Using

mg = 0.789 DU ppmv~' hPa! gives the column in milli-
atm-cm (Dobson units) for pressure in hPa and concentrations

fi in ppmv.
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