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Retrieval algorithms for the EOS Microwave Limb
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Abstract— The ‘retrieval’ algorithms for the EOS Microwave
Limb Sounder (MLS) on the Aura spacecraft, launched on 15
July 2004, are described. These algorithms are used to produce
estimates of geophysical parameters such as vertical profiles of
atmospheric temperature and composition, (‘Level 2’ data) from
the calibrated MLS observations of microwave limb radiance
(‘Level 1’ data). The MLS algorithms are based on the standard
optimal estimation approach. New aspects include the adaptation
to a ‘two dimensional’ system, and an approach to the issues
of retrieval ‘phasing’ and error propagation that differs from
that taken for previous similar instruments. Important new
aspects of the software that implements these algorithms are
also described, along with the algorithm configuration for the
‘version 1.5’ dataset. Some examples are shown from MLS in-
orbit observations.

I. I NTRODUCTION

T HE EOS Microwave Limb Sounder (MLS) instrument
[1], [2] is one of four instruments on the Aura spacecraft

that was launched on 15 July 2004. EOS MLS observes
thermal microwave emission from the Earth’s limb in order to
measure the composition and temperature of the atmosphere
in the region from∼8 km to∼90 km.

This paper describes the ‘retrieval’ algorithms used in the
ground data processing for MLS. The task of these algorithms
is to convert calibrated measurements of microwave radiances
(known as Level 1B data) into estimates of atmospheric
temperature and composition. The approach chosen is the
standard ‘optimal estimation’ method [3], [4]. The retrieval
process divides into two main parts: the forward and inverse
models. The forward model computes estimates of radiances
that would be observed by MLS, were the atmosphere in a
given state. The task of the inverse model, as its name implies,
is to ‘invert’ this calculation and deduce an atmospheric state
from a given set of MLS radiance observations. Details of
the forward models used in the MLS retrieval algorithms are
given in other papers in this issue [5], [6]. This paper reviews
the general retrieval approach and details the implementation
of the inverse model. More detailed information on these
calculations are included in the ‘MLS Retrieval processes
Algorithm Theoretical Basis Document’ (ATBD) [7].

Most of the MLS data retrieved by these algorithms describe
vertical profiles of geophysical parameters along the measure-
ment track of the instrument. Such products are known as
Level 2 data. The task of producing these is called Level 2
processing, and is the main subject of this paper. Some MLS
data products have a sufficiently poor signal to noise ratio
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that individual vertical profiles are not useful for scientific
study due to their poor precision. For these ‘noisy’ products,
some form of averaging is required to produce data with better
precision, such as daily or weekly zonal means, or monthly
global maps. Products such as these, being on regular latitude
and/or longitude grids, are known as ‘Level 3’ data. While
these products can be obtained by averaging together large
volumes of Level 2 data, an alternative approach for retrieving
them directly is described in section IV.

II. FUNDAMENTALS OF RETRIEVAL THEORY

A. The retrieval problem

The task of the retrieval algorithms is to determine the
state of the atmosphere that best matches the observed MLS
radiances. This state is represented by the ‘state vector’x of
length n, which in the MLS case, as is typical, represents
vertical profiles of atmospheric temperature and composition,
along with selected other parameters described later. A ‘mea-
surement vector’y of lengthm is constructed describing the
radiance observations. Aforward model is formulated that
describes the radiances that MLS would expect to see, were the
atmosphere in a state represented by the value ofx according
to

ŷ = f(x). (1)

These predicted radiancesŷ are compared with the observed
MLS radiancesy and the minimum is sought of aχ2 statistic
defined as

χ2 = [y − f(x)]T S−1
y [y − f(x)] , (2)

where Sy is the matrix describing the error covariance of
the measurements. The MLS algorithms invoke the standard
Gauss-Newton approach to the minimization which iteratively
arrives at a value ofx that minimizesχ2 by invoking

x(q+1) = x(q) +
[
KTS−1

y K
]−1

KTS−1
y

[
y − f(x(q))

]
, (3)

whereq is the iteration counter and

K =
∂f(x)
∂x

∣∣∣∣
x=x(q)

(4)

is known as the matrix of ‘weighting functions’ or ‘Jacobians’.
In most cases theKTS−1

y K matrix to be inverted in (3) is
singular, indicating that there are aspects of the state vector
about which the measurements have yielded no information.
This is remedied by adding additional vectors describing
‘virtual measurements’. Often (and in the case of the MLS
retrieval system), these take the form of ana priori estimate
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of the state vectora with covarianceSa. The forward model
for these virtual measurements is an identity operation, leading
to a weighting function matrix that is simply then×n identity
matrix. The iteration then becomes

x(q+1) = x(q) +
[
KTS−1

y K + S−1
a

]−1[
KTS−1

y

(
y − f(x(q))

)
+ S−1

a

(
a − x(q)

)]
. (5)

This is similar to the actual iteration used in the MLS case, the
next section will detail additional constraints on the smooth-
ness of the retrieved profiles, and the use of a Levenberg-
Marquardt parameter to aid convergence.

This algorithm also gives an estimate of the uncertainty in
the state vector according to

Sx =
[
KTS−1

y K + S−1
a

]−1
. (6)

B. Retrieval ‘phasing’ and constrained quantities

Most retrieval algorithms are implemented as a series of
phases. Typically an initial retrieval of temperature and pres-
sure information is performed using observations of radiance
emitted by a molecule whose abundance is well known
(usually CO2 in the infrared and O2 in the microwave).
Later phases of the retrieval process use this temperature and
pressure information in retrievals of species abundances such
as ozone and water vapor. Many previous retrieval approaches,
such as the UARS MLS version 5 algorithms [8] fix the
temperature and pressure at the previously retrieved values
in these later phases. When doing retrievals in this manner,
it is often important to budget for the uncertainty in these
‘constrained’ quantities by inflating the errors on the radiances
used to retrieve the species abundances according to

Sy → Sy + KcScKT
c , (7)

whereKc represents the derivative of the species radiances
with respect to the constrained quantitiesc retrieved earlier
(e.g., temperature and pressure) andSc is the uncertainty in
these quantities as reported by (6) in the earlier phase.

While for many instruments (including EOS MLS) the
original Sy matrix is diagonal (or can be assumed to be so
to a reasonable level of accuracy), the addition of errors on
constrained quantities typically results in a fully populated
matrix. As this matrix is required to be inverted in (5)
this represents a significant increase in computational effort.
Indeed, in the case wherem � n (as with EOS MLS)
this computation becomes by far the most intensive aspect
of the retrieval computation. Clearly it is desirable to retain a
diagonal form forSy if possible.

The solution to this issue adopted by the MLS algorithms is
to continue to retrieve the previously estimated quantities (tem-
perature, pressure etc.) in the later retrieval phases, including
the same radiance information as used to retrieve them in the
earlier phases. Continuing to include these quantities in the
state vector retains the efficient diagonal form forSy. This
begs the question as to what purpose is served by the earlier
phases — if the same parameters are to be retrieved in the
later phases, with arguably better quality, as more radiance

information is available. The later phases involve large state
and measurement vectors, and therefore significant forward
model effort. Reducing the number of iterations required for
such expensive phases is clearly an important goal. As the pa-
rameters targeted by the early phases (such as temperature and
tangent pressure) are typically the most non-linear, performing
several iterations of the simpler earlier phases should leave the
state vector close to the ‘correct’ solution for these parameters
in the later phases, reducing the number of iterations likely to
be required. The task of the early phases can be regarded as
that of obtaining a good ‘starting point’ for the later phases.
More details on the specific implementation of this approach
are given in section VI.

C. Characterizing retrieval results

1) Estimated precision:Care should always be taken when
interpreting results obtained from retrieval algorithms such as
those used in the MLS Level 2 processing, and attention should
be paid to several important diagnostics. Firstly, the estimated
precision of the retrieved products should be considered. In the
EOS MLS case (as is typical), this is reported as the square
root of the diagonal elements of the solution covariance matrix
from (6). Careful comparison should be made between this
and the uncertainty quoted for thea priori information by the
Sa matrix. If little difference is observed between elements
of the estimated precision and the correspondinga priori
uncertainties, it implies that the instrument has contributed
little additional information on these elements of the state
vector, and that they should probably not be used in scientific
study.

2) χ2 statistics: In addition to the estimated precision, the
value ofχ2 obtained at the solution should also be considered.
Solutions whereχ2 � m − n should be avoided as a poor
fit to the radiances has been achieved. In the MLS case,
χ2 quantities are reported in a normalized manner, being
divided by the number of measurements considered. Under
these circumstancesχ2 should be about unity at the solution,
and results corresponding to significantly larger values are
flagged as suspicious.

3) Averaging kernels:Another important quantity in diag-
nosing retrieval performance is the ‘Averaging Kernel’ matrix,
given by

A =
∂x̂
∂x

=
[
KTS−1

y K + S−1
a

]−1
KTS−1

y K. (8)

For the purposes of this equationx is the unknown true state of
the atmosphere (so far as it can be represented in state vector
form) and x̂ is the retrieved estimate from the iteration in
(5). Each row of this matrix describes how the corresponding
element of the retrieved state vector has been influenced by
all the elements of the true vector. Each column of the matrix
represents the influence of a delta function perturbation of the
corresponding element of the true state vector on the retrieved
vector.

In the case where the state vector represents vertical profiles
of atmospheric temperature and composition, measures such
as the full width at half maximum of the averaging kernels
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are often used as a measure of the vertical resolution of the
measurement system.

4) Profile representation issues:In the particular case of
the MLS retrieval system, the state vector represents vertical
profiles of atmospheric species in a ‘piecewise linear’ manner.
The only exception is water vapor where the representation is
piecewise linear inlog(vmr). This contrasts with the com-
mon alternative approach which considers the state vector to
represent ‘layer means’. Special consideration of the MLS
interpretation of the state vector needs to be made when
comparing retrieved MLS data to other datasets.

Consider a simple MLS state vectorxcoarse representing
a single temperature profile on fixed pressure surfaces, and
another vectorzfine describing a temperature measurement on
a finer vertical grid (such as from a radiosonde, or GPS).
It transpires [5] that to compare the two measurements, in
addition to applying the averaging kernels, one needs to
transfer the higher resolution profile into the MLS grid by
applying the transformation

zcoarse=
[
ηTη

]−1
ηTzfine, (9)

where theη matrix describes a linear interpolation convert-
ing the low resolution MLS representation to that of the
radiosonde

xfine = ηxcoarse. (10)

III. A PPLICATION TO MLS RETRIEVALS

A. The ‘two dimensional’ approach to the retrieval problem

Figure 1 shows the viewing geometry for the EOS MLS
instrument. It can be seen that the limb observations from
consecutive scans cover significantly overlapping regions of
the atmosphere. The MLS Level 2 software retrieves individual
vertical profiles at approximately the same horizontal spacing
as the individual limb scans (known as major frames). The
overlap in the limb observations is such that the radiances for
each limb scan are influenced by several consecutive retrieved
profiles. If the retrieval algorithm is to be accurate, it must
take this influence into account.

The approach taken in the EOS MLS Level 2 software is to
divide the data into ‘chunks’, typically consisting of a 15◦ span
of great circle angle’s worth of observations (about 10 vertical
scans). Retrievals are performed for each of these chunks
independently. The state vector consists ofN sets of vertical
profiles (N temperature profiles,N ozone profiles etc.), with
retrievals being performed using measurements fromM radi-
ance scans. The results from the individual chunks are joined
together to produce a complete set of output for the day. The
chunks overlap slightly to reduce ‘edge effects’ (horizontal
homogeneity is assumed in the forward model beyond the
first and last profiles, introducing inaccuracies). The spacing
of the retrieved profiles is typically chosen to match that of
the scans, so thatN ' M . Occasional differences between
N andM arise as the relationship between the scans (which
are approximately evenly spaced in time) and the retrieved
profiles (evenly spaced in great circle angle) wanders due to
orbit eccentricity and earth oblateness.

The state vector is broken down intoN subvectorsxi each
of length n consisting of a vertical profile of temperature,
composition etc., along with possible additional terms de-
scribed byx� which are constant throughout the chunk (such
as instrument calibration or spectroscopy terms).

x =




x�

x1

x2

...
xN


 (11)

The measurement vector can be similarly broken down into
M sets of measurementsyi (each of lengthm) corresponding
to the individual scans.

The weighting function matrixK describes the sensitivity of
theM radiance scans to each of theN profile sets. This matrix
will have a significant amount of sparsity as, for example, the
state of the atmosphere for profile number 10 will have no
influence on the radiances observed in scan number 1. This can
be described by a sparsity parameterp, indicating the number
of profiles influencing a single vertical scan. The weighting
function matrixK will be of a ‘singly bordered block band
diagonal’ form as illustrated for the case whereN = M = 6,
p = 3.

K =




× × × 0 0 0 0
× × × × 0 0 0
× 0 × × × 0 0
× 0 0 × × × 0
× 0 0 0 × × ×
× 0 0 0 0 × ×




, (12)

where0 denotes a block in the matrix that has zero for all
elements, and× denotes a block with one or more non-
zeros. The block rows ofK correspond to theM individual
scans, the first block column indicates the sensitivity of those
scans to thex� term while the other columns indicate the
sensitivity to thexi subvectors. The value ofp is determined
by the geometry of the MLS measurements. However, for
computational efficiency it can be useful to limitp to a
smaller value (such as 5), leading to sparser forms forK.
This is achieved by assuming horizontal homogeneity beyond
the regionp/2 + 1 profiles away from each scan.

In the case whereSy is diagonal, theKTS−1
y K matrix of

(5) has the form

KTS−1
y K =




× × × × × × ×
× × × × 0 0 0
× × × × × 0 0
× × × × × × 0
× 0 × × × × ×
× 0 0 × × × ×
× 0 0 0 × × ×




. (13)

This is a ‘doubly bordered block band diagonal matrix’ having
a block-bandwidth of2p − 1. The formation of this matrix,
which, becausem � n is the most time consuming aspect
of the inverse model, scales asNp2n2m (neglecting thex�

terms). The key point to note is that it scales linearly inN,
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Fig. 1. The top plot shows the viewing geometry of EOS MLS, which observes limb radiances in the forward direction. The lower plot is an expansion of
the boxed region in the upper plot. Here, 12 of the 120 limb ray paths for five scans are shown by the nearly horizontal lines. The loci of the geometrical limb
ray tangent points are shown by the thin, angled lines. The kinks in these lines are due to a change of vertical scan rate (the instrument spends more time
observing the troposphere and lower stratosphere than the upper regions of the atmosphere in order to improve the information yield from the lower regions).
The thicker ‘curved’ lines show the loci of the refracted (i.e. true) tangent points. The ‘vertical’ lines represent the location of the retrieved atmospheric
profiles.

so, the same amount of CPU time is required to retrieve 10
chunks of 10 profiles each as to retrieve a single 100 profile
chunk, excluding the consideration of overlap regions.

Significant efficiency of storage can be gained by recogniz-
ing that

KTS−1
y K =

M∑
i=1

KT
i S−1

yi
Ki, (14)

where Ki represents theith of the M block rows of K
andSyi similarly for Sy. Similar simplifications are possible
with the KTS−1

y

[
y − f(x(q))

]
terms. This means that each

iteration can be accomplished needing storage for only one
block row of K rather than the entire matrix, a significant
saving. TheKTS−1

y K matrix still needs to be stored in its
entirety. However this matrix is significantly smaller thanK
asm � n, and, being sparse, its storage can be efficient.

B. Major components of the MLS state vector

The ‘standard products’ for the MLS data processing are
vertical profiles of temperature and species abundances for
selected molecules on fixed pressure levels. For most of the
MLS products, there are six surfaces per decade change
in pressure, starting from 1000 hPa, with the grid spacing
coarsening to three surfaces per decade for pressures less
than 0.1 hPa. Of course the true vertical resolution of the
information obtained by the retrieval algorithms is often
poorer than the spacing of this ‘reporting grid’. In addition
to these abundances and temperatures, the geopotential height
of a fixed pressure surface (typically 100 hPa) is included.
A full vertical profile for geopotential height is not required
(or indeed desired). This is because, through consideration
of hydrostatic balance, the geopotential height profile can
be computed from the temperature profile and the single

geopotential height. Including a full geopotential height profile
would lead to redundancy in the state vector and consequent
instability in the retrieval system.

Further parameters are required in the state vector in order
for the forward model to accurately predict the radiances that
would be observed by MLS. The most critical of these are the
tangent pressures for the mid-point in time of each individual
limb integration period (known as aminor frame) for both
the GHz and THz vertical scans. These are defined as the
atmospheric pressure at the tangent point of the limb ray
(taking into account refraction effects). Figure 2 shows an
example of how the radiances change as a function of pressure.
As most of the MLS radiances signals are strongly determined
by pressure broadening, the tangent pressure is clearly an
important coordinate by which to define the observations (as
opposed to for example tangent height).

C. Continuum emission and ‘baseline’

Most of the MLS products are derived from observations of
spectral contrast. The frequency resolution of the instrument
is such that it can resolve individual spectral lines of the target
molecules over most of the vertical retrieval range. It is the
MLS observations of the shape of these lines, as captured in
the radiance differences from channel to channel, that yield the
retrieved estimate of the geophysical parameters, rather than
the absolute radiance values themselves.

Our knowledge and understanding of absolute radiance is
generally poorer than that of their spectral shape, due both
to instrumental effects (such as thermal emission from the
MLS antenna and other reflectors or spectrally broad variations
in instrument gain), and forward model limitations (such
as uncertainties in continuum spectroscopy). Although the
spectral signatures of the target species are largely orthogonal
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Fig. 2. Sample MLS radiances as a function of tangent pressure. The different
lines represent different MLS spectral channel observations of emission
from 118 GHz O2 line. High altitude observations typically correspond to
measurements of an optically thin atmosphere, leading to small radiance
signatures. As the instrument looks lower down, radiances increase as the
atmosphere thickens. Toward the bottom of the scan the radiances ‘saturate’
(the ‘knee’ on the radiance curves). Here the atmosphere is sufficiently
optically thick that the instrument does not see all the way to the tangent point,
instead the bulk of the signal emanates from a region higher up, closer to the
instrument. Channel 1 is furthest from the line and so in a region where the
atmosphere is optically thin down to around 10 hPa. Channel 13 is centered
on the line and so the atmosphere is optically thick in this spectral region
even when looking in the lower mesosphere. The dependence of radiance on
tangent point pressure is clearly non-linear in nature. These data are taken
from the average of the first 100 scans taken by MLS on 30th August 2004.

to these spectrally flat effects, some residual impact can be
seen on the MLS products if the spectrally flat terms are not
considered in the retrieval algorithm.

The MLS state vector includes terms designed to account for
such spectrally flat phenomena, and these are retrieved along
with the target species. These terms fall into two categories
known as ‘extinction’ and ‘baseline’. Typically only one of
these is retrieved, as the signatures of the two are highly
correlated and thus hard for the retrieval to appropriately
distinguish. Baseline terms are spectrally flat radiances that
can be uniformly added to each radiance observation in a
radiometer. The software allows these to be described either
as a set of vertical profiles as a function of tangent pressure,
or as an independent value for each minor frame of radiance
observation. This is useful for capturing most spectrally flat
artifacts that have an instrumental origin.

Alternatively, the ‘extinction’ parameter is better suited
to capturing spectrally flat features due to problems with
modeling of atmospheric transmittance. While these have a
spectrally flat impact on a ‘local’ scale in the atmosphere,

their impact on the MLS radiance signals will not necessarily
be spectrally flat. For example, the impact of the extinction
at 100 hPa on radiance observations having 100 hPa tangent
pressures will be significant in ‘transparent’ channels, and
negligible for channels where the stratosphere is optically
thick. Unfortunately, this parameter has a highly non-linear
impact on the measurement system, most notably when it is
invoked to reduce radiances (i.e., negative mixing ratios of the
extinction ‘molecule’ are required). This can lead to significant
instability in the retrieval, particularly in cases where cloud
scattering can lead to radiance suppression. Therefore, in the
v1.5 algorithms (producing the first publicly released dataset,
as described later), only the baseline term is considered in the
retrievals.

D. Minor components of the ‘state vector’

There is a distinction drawn in retrieval algorithms between
parameters passed to the forward model for which solutions
are sought (such as the quantities described above), and other
quantities required by the forward model for whicha priori
knowledge is sufficient. The latter quantities include such
things as the spacecraft velocity, used for determining Doppler
shift effects, and knowledge of the microwave background
space radiance. Although not retrieved, such quantities are
often loosely referred to as being ‘in the state vector’ in the
MLS algorithms. In addition, the forward model also requires
detailed spectroscopic and instrument calibration information
[5].

E. The use of tangent height information

In addition to the MLS radiance observations, the tangent
point altitude information obtained from the MLS antenna
position encoder and Aura attitude determination system can
considered to be indirect measurements of the state vector.
Given the state vector description of the atmospheric temper-
ature profile, the estimated pressures at the tangent points,
and the geopotential height of a reference pressure surface,
a forward model estimate of the Level 1 tangent heights
can be constructed based on considerations of refraction and
hydrostatic balance [5].

Typically the MLS radiance observations convey informa-
tion on tangent pressure over a somewhat limited vertical
range of limb tangents. Near the top and bottom of the scans
the spectral contrast in the MLS radiances is not strongly
dependent on tangent point pressure, as shown in figure 2.
The inclusion of the tangent point height information in
the retrieval system can extend knowledge of tangent point
pressure into these regions.

The inclusion of this height information has made the need
for an a priori constraint for tangent pressure unnecessary,
and indeed undesirable. Any such estimate would have to
be taken from the same tangent point altitude information
given in the measurement vector. Thus, including ana priori
term for tangent pressure would amount to using the same
information twice. This is implemented in the retrieval by
setting the appropriate rows and columns of theS−1

a matrix
to zero. Although the absence of these virtual measurements
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can in principal lead to the matrix inversions in (5) being
singular, it can be shown that the inclusion of the tangent
height information guarantees successful inversion.

F. The Tikhonov smoothing constraint

In retrievals from remote sounding instruments, there is
often some trade off to be made between the precision and
resolution (typically vertical, but horizontal is also relevant)
of the retrieved product. This trade off can be controlled by
adding constraints on the ‘smoothness’ of the results in the
retrievals. Often, such as in the UARS MLS version 5 dataset
[8], these constraints are implemented by adding off diagonal
terms to the estimated error covariance matrix for thea priori
terms (Sa).

For the EOS MLS retrievals however, an alternative ap-
proach is implemented using a second order Tikhonov con-
straint. This amounts to placing a ‘soft’ constraint (i.e., addi-
tional term inχ2) on the magnitude of the second derivative
(vertically and horizontally) in the retrieved profiles, by intro-
ducing virtual measurements with weighting function matrices
based on binomial coefficients similar to the(n−2)×n matrix

K '




− 1
4

1
2 − 1

4 0 . . . 0 0 0 0
0 − 1

4
1
2 − 1

4 . . . 0 0 0 0
...

...
...

...
. . .

...
...

...
...

0 0 0 0 . . . − 1
4

1
2 − 1

4 0
0 0 0 0 . . . 0 − 1

4
1
2 − 1

4




(15)
Constraints on higher order derivatives can be achieved

by using higher order binomial coefficients. The actual form
of the K matrices used is more complicated, partly because
we introduce one set of virtual measurements to describe
horizontal smoothing and another for vertical, and partly
because we wish to provide a height dependent weighting for
the smoothing terms [7].

The horizontal and vertical smoothing terms, scaled as
described above are combined in a matrixR, giving a modified
Gauss-Newton iteration according to:

x(q+1) = x(q) +

[
S−1

a + RTR +
∑

i

KT
i S−1

i Ki

]−1


S−1

a

[
a − x(q)

]
+ RTR

[
a − x(q)

]
+

∑
i

KT
i S−1

i

[
yi − fi(x(q))

]
 (16)

The choice of weighting for the smoothing parameter is
largely made on scientific grounds according to the desired
precision and/or resolution for each product. Typically the
smoothing constraint is turned off at the higher reaches of
the retrieved profiles, where the inherent resolution of the
measurement (i.e., that it would have were no smoothing
constraint applied) is already poorer than about 6 km in the
vertical.

G. Numerical stability concerns and scaling

The physical disparity of the MLS state vector (temperatures
have typical values of 150–300K, while BrO mixing ratios
have values of order10−11 vmr) gives rise to numerical
stability concerns for the algorithm. As it transpires, however,
the measurement vector does not present a concern in the
MLS case, as it contains either radiances in the 0–300K
range or scan residuals of order±300 m. In addition the
multiplication byS−1

y effectively scales the measurements into
a dimensionless space in any case.

This large dynamic range within the state vector leads to
large variations from column to column in the values ofK.
Despite this, the formation of theKTS−1

y K matrix is actually
numerically stable in our case whereSy is diagonal. The
matrix product is essentially the results of a set of dot products
of every column ofK with every other column ofK. The
terms summed together to form one of these dot products are
all related to the same pair of state vector elements, so they all
have the same physical units. Thus, no special care need be
taken of ‘small’ numbers that might get lost in the summation,
small terms are by their nature insignificant.

However, the matrix inversion in (16) is a concern. The
matrix to be inverted contains a wild range of numbers (being
related to the square of the state vector), which need to
be combined in a series of multiply / addition operations.
To alleviate this concern, an element-by-element scaling is
applied to the state vector before the inversion such that the
diagonal elements of the matrix all become unity. Once the
inversion and the rest of the computation is completed, the
resulting state vector and covariance matrices are returned to
their original units.

H. Non-linearity and convergence issues

While the Gauss-Newton minimization technique is excel-
lent for linear and moderately non-linear systems, its under-
lying assumption of linearity can lead it to take inappropriate
steps in more seriously non-linear situations. For these sit-
uations, the Levenberg-Marquardt [9], [10] stabilization is a
common solution. This involves simply adding a matrixλI to
the matrix to be inverted in (16), whereλ is a scalar chosen
each iteration, andI is then×n identity matrix. This term is
added to the matrix after the scaling described in the previous
subsection is applied. When small values ofλ are chosen, the
step taken is clearly close to that which would be taken by
a regular Gauss-Newton iteration. Larger values ofλ result
in a smaller step, closer to the more conservative ‘steepest
descent’ iteration. The value ofλ chosen for the first iteration
is a ‘user input’, chosen based on the degree of non-linearity
anticipated. In later iterations the value ofλ is chosen based
on the progress made to that point.

Before each iterative step is taken in the minimization of
χ2 in (16) with the additionalλI term above, it is possible
to compute the value ofχ2 we would find at the destination,
were the system truly linear. This is done by substituting the
value ofx from (16) into (2) and recognizing that in the linear
regime

f
(
x(q+1)

)
= f

(
x(q)

)
+ K

[
x(q+1) − x(q)

]
. (17)
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In addition, it is similarly possible to compute the value we
would expectχ2 to take at the minimum, again assuming
linearity. For the case of Gauss-Newton iteration (where the
Levenberg-Marquardt parameterλ is zero) these are of course
the same location.

These two pieces of information can be useful in deter-
mining iteration strategy. Comparison of the value ofχ2

found at the destination with that which was expected yields
information on the amount of non-linearity in the system. This
can be considered when choosing the value ofλ to use in
the next iteration. Alternatively, in the case where particularly
poor reduction (or even increase) inχ2 is observed, the
algorithm may choose to retreat and select a differentλ for the
current step. More details of this decision process are given
in Appendix C of [7].

The value ofχ2 estimated to be at the true minimum is
useful in deciding when satisfactory convergence has been
obtained. For example, for the first post launch version of the
MLS Level 2 software, iterations cease whenχ2 is within 2%
of the value that is predicted to exist at the minimum.

IV. A N ALTERNATIVE APPROACH FOR‘ NOISY’ PRODUCTS

Some of the molecules EOS MLS is designed to observe
have particularly small mixing ratios, and weak emission
lines. The corresponding radiance observations thus have poor
signal to noise ratios, leading to noisy retrievals. For these
products, more useful scientific information can be obtained
by considering averaged products, such as daily zonal means,
or monthly maps. There are several ways in which to compute
such quantities.

One approach is simply to retrieve the products in the same
manner as all the others, and then use whatever averaging
technique is appropriate afterwards. The disadvantage of this
method is that, unless special care is taken, thea priori
information can significantly bias the results, as it is included
in each separate retrieval. This is the approach taken for
the version 1.5 of the MLS data processing software (using
appropriately large values for thea priori uncertainty for the
species of interest).

A second approach is to average the radiances from the
relevant bands in whatever manner is appropriate, and then to
perform retrievals on the averaged radiances. This method has
a problem however when the lines of interest are contaminated
by strong emission from other, highly variable molecules. This
is the case for example with some of the MLS BrO radiance
observations which are close to a strong O3 line.

The best approach to this problem is to retrieve the averaged
products as a separate task, after the main processing has
occured. Rather than using averaged radiances as above,
however, the full radiance data set for the relevant band is
considered. Consider the iterative retrieval expression given
in (16). In the linear (i.e. single iteration, with initial guess

x = a) case, this reduces to

x = a +

[
S−1

a + RTR +
∑

i

KT
i S−1

i Ki

]−1

∑
i

KT
i S−1

i [yi − fi (a)] . (18)

Now for the case of the noisy products, takex to be a
specific component of an averaged dataset (e.g., a single profile
corresponding to one latitude in a monthly zonal mean re-
trieval). Consider the measurement vectorsyi to represent each
individual scan in the relevant spectral band that contributes to
this component (e.g., all the scans in the latitude range under
consideration that month.) The forward models for each scan
use the previously retrieved values for the other molecules
and parameters that affect the radiance measurements (O3,
temperature, tangent pressure etc.) as constrained quantities.

It is possible to take this method further by definingx0

as the value of the product retrieved by the standard Level 2
processing. Let the vectorb contain all the other aspects of the
state retrieved by the Level 2 algorithms (ozone, temperature
etc.).

It is clear therefore that

yi − fi (a,b) = yi − [fi (x0,b) + Ki (a− x0)] (19)

The retrieval calculation (18) then reduces to:

x = a +

[
S−1

a + RTR +
∑

i

KT
i S−1

i Ki

]−1

[∑
i

KT
i S−1

i [yi − fi (x0,b)] − KT
i S−1

i Ki [a − x0]

]
. (20)

Accordingly, by having the Level 2 software gather appropriate
sums of theKT

i S−1
i Ki matrices and theKT

i S−1
i [y − fi (x0)]

vectors, the ‘noisy products’ algorithm need not invoke any
forward model calculations. All that is required is that values
of the above matrix and vector are collated together appropri-
ately, including the correction termKT

i S−1
i Ki [a − x0] where

x0 is taken from the standard Level 2 product, and the final
state computed as the result of (20).

Extending this to allow it to follow from a full two dimen-
sional Level 2 calculation is achieved by definingx to be the
mean of all or several profiles in the chunk and collapsing
together the appropriate block columns of theKi matrices.
The issue of errors on constrained quantities has not been
considered for this problem. It is possible that these should
be considered, and a non-diagonal form forSi used. This
would make it harder for the ‘noisy products’ algorithm to
avoid invoking forward model calculations. The issue will be
investigated when these algorithms are developed.

V. I MPLEMENTATION IN SOFTWARE

The algorithms described in section III have all been im-
plemented in a single ‘MLS Level 2 software program’ in
the Fortran 95 programing language, chosen because of its
great suitability to handling the complex matrix and vector
entities involved. The program was designed to be as flexible
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as possible, and is controlled by a ‘Level 2 Configuration File’
(L2CF) that is effectively a high level programming language.

The L2CF controls all aspects of the software, defining
the contents of state and measurement vectors, defining the
configurations of the various forward models available, reading
appropriatea priori, spectroscopic and calibration data, per-
forming retrievals, doing forward model runs for simulations
or off-line analysis, post-processing results, computing diag-
nostics and outputting results in appropriate files. In ‘produc-
tion’ mode, the software operates in a parallel form, with one
instance of the program acting as a ‘master’, coordinating the
work of multiple ‘slave’ instances on a cluster of computers,
each computing the results for individual ‘chunks’ of data as
described in section III-A. The software can also be run ‘on-
line’ for single chunks or simple one dimensional retrievals
of individual profiles. The on-line mode is enhanced by the
ability of the software to communicate with a separate program
(written in the IDL language from Research Systems Inc.) that
presents a graphical interface into the algorithm, allowing the
user to see the current state and measurement vectors and
many diagnostics, and to monitor the progress of retrievals
(effectively acting as a graphical ‘debugger’).

In addition to the ability to do conventional retrieval calcu-
lations, producing Level 2 Geophysical Product (L2GP) output
files from input L1B radiance data, the software can also
produce L1B files of simulated radiances based on a state
vector formed from a set of L2GP files taken as input. This
capability was used extensively prior to launch for generating
radiance fields corresponding to known atmospheric states.
Developing a different program to perform that essential task
would entail the duplication of all the relevant code for
initializing the forward model and constructing the state vector.
Combining both the retrieval and simulation tasks in a single
piece of software makes it far easier to ensure that identical
forward model algorithms and parameters are used for both
tasks, and dramatically reduces the complexity of the code
maintenance effort.

In addition to these tasks, the Level 2 software has proved
flexible enough to have been used for a large variety of other
tasks, from those as mundane as translating MLS Level 2 data
files from an older version of their format (based on HDF-EOS
version 4) to a newer one (HDF-EOS version 5), to as complex
as doing a retrieval using monthly zonal mean radiances, or
pre-computing tables to be used in the linear forward model
[5].

VI. RETRIEVAL APPROACH FOR VERSION1.5

To this point, this paper has described the EOS MLS
retrieval algorithms in a fairly general sense. In this section
we will describe the particular configuration of the software
used to generate the version 1.5 (v1.5 hereafter) EOS MLS
Level 2 data, the first publicly released MLS dataset. This
section should be regarded as a ‘snapshot’ of the current con-
figuration, as future versions of the data processing algorithms
are planned.

A. ‘Standard’ products, and ‘Diagnostic’ products

The geophysical products from the MLS retrieval algorithms
can be divided into two categories. Each of the ‘standard’ MLS
geophysical products are output in separate files with a daily
granularity. The ‘standard’ products are the science team’s
‘best’ estimate of that product from the MLS observations.
Typically they are taken from the MLS observation of that
species in a particular frequency region. For example, in the
version 1.5 processing, the standard product for ozone is the
ozone as retrieved from the 240 GHz radiance information.

In later versions, it is intended that the standard products
for many species will be formed from some optimal combi-
nation of the information obtained from all the relevant MLS
radiances (ideally from one ‘comprehensive’ retrieval phase).
However, changes in instrument configuration, such as the
temporary power down of one radiometer, or the changing
of the MLS switch network [1] will impact these products,
as they change the whole MLS measurement system. Such
retrieval schemes have not yet been implemented, pending
improvements in computer resources, and in understanding of
any systematic differences seen between the estimates obtained
in the different MLS radiance signals.

For analyses such as trend studies, it may be more ap-
propriate to consider the ‘diagnostic’ MLS products. These
are simply the products retrieved from each retrieval phase
independently. Being based on only a single radiometer (plus
the 118 GHz signal used in the retrieval temperature and
tangent pressure in all phases), these may be less sensitive
to any changes in instrument configuration. As an example,
consider nitrous oxide, for which there are two diagnostic
products: N2O-190, and N2O-640, corresponding to retrievals
using 190 and 640 GHz radiance observations respectively. Of
these N2O-640 is generally considered superior, and so the
standard product for N2O is currently simply a copy of the
N2O-640 product. Table I details how each of the standard
products is derived from the diagnostic products in v1.5.

B. The Core, Core+Rn approach

The phasing approach described in section II-B has been im-
plemented in what is known as the ‘Core, Core+Rn’ approach
in the v1.5 algorithms. In the ‘Core’ phase of the retrievals (ac-
tually three separate phases), retrieved estimates are obtained
for the tangent pressure, temperature, and upper tropospheric
humidity aspects of the state vector. These are obtained from
the R1A 118 GHz observations of emission from O2 (mainly
for temperature and pressure) and selected channels from the
R2 190 GHz observations (mainly for upper tropospheric water
vapor). This is followed by phases such as ‘Core+R2A’ and
‘Core+R2B’ where, in addition to temperature and pressure,
other species such as water vapor, ozone and nitric acid are
retrieved.

Section II-B described how the ‘cumulative’ approach to
retrieval phasing was preferable to performing constrained
quantity error propagation. However, in pre-launch testing, it
was decided that this approach was not universally appropriate.
In particular, it was found that retrievals including tropospheric
water, a species whose impact on the MLS radiances is very
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TABLE I

THE ORIGIN OF EACH OF THE‘ STANDARD PRODUCTS’ FROM V1.5

Product Origin

BrO Core+R4 (640 GHz)
CH3CN Core+R2B (190 GHz)
ClO Core+R4 (640 GHz)
CO Core+R3 (240 GHz)

H2O Core+R2A (190 GHz)

HCl Core+R4 (640 GHz)
HCN Core+R2B (190 GHz)

HNO3
Core+R3 (240 GHz) for 10 hPa or greater, Core+R2
(190 GHz) for lesser pressures

HO2 Core+R4 (640 GHz)
HOCl Core+R4 (640 GHz)
N2O Core+R4 (640 GHz)
O3 Core+R3 (240 GHz)
OH Core+R5 (2.5 THz)
Temperature Core for pressures of 1 hPa or greater, Core+R2 for lesser pressures.

nonlinear, were prone to instability. Accordingly, once an
appropriate estimate for this is obtained (in the Core+R2A
phase), it is constrained in later phases. No propagation of the
errors associated with constraining water vapor is performed
in the later phases. Investigation showed that the error involved
in neglecting this propagation is insignificant, mainly because
the impact of upper tropospheric water vapor on most of the
MLS radiances is fairly spectrally flat and largely orthogonal
to the signatures of other species.

Other minor deviations from the strict implementation of
the planned scheme have been chosen. In particular, in the
‘Core+R4B’ phase, targeting N2O from the 640 GHz ra-
diometer, the ozone abundance, rather than being retrieved
is constrained to previously retrieved values with no error
propagation. Knowledge of the ozone signature in the N2O
spectral region is somewhat uncertain, and this approach was
found to produce generally preferable results for N2O.

C. Flagging the presence of clouds in v1.5

While microwave signals are far less sensitive to the pres-
ence of clouds in the atmosphere than shorter wavelength
signals, very thick clouds can have an impact large enough
to affect MLS measurements of gas phase composition. The
Level 2 software needs to be able to identify such radiances
and deal with them appropriately. In addition, the cloud
signatures can be used to measure cloud properties [11].

The mechanism whereby clouds affect the MLS radiances
is mainly scattering of microwave radiation. The details of the
impact vary both from channel to channel and as a function
of limb ray tangent height. Optically thin observations in a
channel (those that are less than about 50% of the radiance
at saturation) can be affected by both scattering and emission
from clouds which lead to an unexpected enhancement in radi-
ance. Radiance observations lower down, where the radiances
are close to or beyond saturation, can be affected by scattering
from clouds, which leads to suppression of the radiance signal.
While the cloud scattering and emission effects are spectrally
broad in nature, the impact of these effects on the MLS

limb observations are frequency dependent and become more
severe as the radiances get closer to saturation. For example,
a cloud at 100 hPa will affect channels where the atmosphere
is optically thin enough to allow MLS see down to that level.
However, channels that do not see down to 100 hPa will be
unaffected.

The MLS Level 2 software therefore takes steps to avoid
considering radiances that are thought to be strongly affected
by cloud effects, and/or report an increased uncertainty on
them. These impacted radiances are identified by comparing
the MLS radiance observations in selected optically thin
channels (most suited to cloud detection) in each radiometer
with those predicted from forward model calculations. The
gas phase retrievals are instructed to ignore or downplay
radiances where large differences between observation and
model are observed. This activity is performed at three distinct
points during the v1.5 algorithms. The first two are during the
Core group of phases where the ‘current best’ temperature
and tangent pressure information from MLS are used in a
forward model, in conjunction with a water vapor profile
representing 110% relative humidity with respect to ice, to
obtain a reasonable upper limit for clear sky radiances. Finally,
after the Core+R2B phase, once the best information on
water vapor has been obtained from MLS, a new forward
model estimate is computed using the MLS retrieved water
observations in order to re-flag cloud contaminated radiances
for all radiometers to be used in later phases.

Appropriate thresholds for cloud contamination have been
empirically determined for each radiometer, based on simula-
tions. The thresholds have been chosen to maximize the use of
radiances consistent with not severely affecting the retrieved
species. Flagged radiances are either not used (in the case of
the 240 GHz and some 118 GHz radiances), or weighted less
in the retrievals (190 GHz radiances). To give one example,
the software ignores MLS 240 GHz radiance observations in
cases where the observed radiances are more than 5 K greater
or 30 K smaller than those predicted by the forward model for
a selected optically thin channel in the 240 GHz radiometer.
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TABLE II

THE PHASES THAT FORM THE V1.5 RETRIEVAL ALGORITHMS.

Phase Target speciesa Measurements Comment

Init-pTan T, pTan (GHz), GPH R1A (118 GHz) Very quick forward model

Update-pTan T, pTan (GHz), GPH R1A (118 GHz) Slower more accurate model

Init-UTH U.T. H2O R2 (190 GHz)

Core+R2A T, pTan (GHz), GPH, H2O, N2O,
HNO3, O3

R1A (118 GHz), R2 (190 GHz)

H2O retrieved down to
316 hPa, other species to 215
or 100 hPa, uses costly full
forward model.

Core+R2B
T, pTan (GHz), GPH, H2O, HNO3,
ClO, O3, HCN, CH3CN R1A (118 GHz), R2 (190 GHz)

Main H2O radiances excluded,
products retrieved down to
between 316 and 100 hPa.
Fast linear forward model
used.

High-Cloud Baseline terms as proxy for cloud
contamination

R2 (190 GHz), R3 (240 GHz)

Used for flagging clouds in
Core+R3 and later phases, in
addition to forming basis for
cloud water products.

Core+R3 T, pTan (GHz), GPH, O3, CO, HNO3 R1A (118 GHz), R3 (240 GHz) Retrievals down to 316 hPa

Core+R4A
T, pTan (GHz), GPH, ClO, BrO,
HO2, HOCl, HCl, O3, HNO3,
CH3CN

R1A (118 GHz), R4 (640 GHz) Retrievals down to 147 hPa

Core+R4B T, pTan (GHz), GPH, N2O R1A (118 GHz), R4 (640 GHz) Retrievals down to 147 hPa

Core+R5 T, pTan (GHz, THz), GPH, OH, O3
R1A (118 GHz), R5H and R5V
(2.5 THz) Retrievals down to 68 hPa

aTangent pressure and Geopotential height have been abbreviated to pTan (GHz/THz) and GPH respectively. Minor state vector components such as
‘baseline’ have been omitted.

D. A note on correlated noise

The MLS radiances measured by the 640 GHz radiometer
show an unexpected signature of correlated noise in their
observations of limb radiance. The noise signature is largely
consistent from channel to channel across the whole of the
640 GHz band. This behavior is inconsistent with the pre-
launch understanding of the behavior of the 640 GHz receiver
formed from ground based calibration studies. The receiver
has had this property since construction, but it was not recog-
nized in the pre-launch calibration data because of differences
between the calibration and limb observation regimes. The
2.5 THz receivers show a smaller manifestation of the same
phenomenon.

The Level 1B algorithms report two estimates of the noise
on individual radiances. The first noise is the spectrally varying
component for each channel in each radiometer. The second
component is that which is spectrally flat. The observed behav-
ior in the 640 GHz receiver results in a larger than anticipated
spectrally flat component to the noise. Prior to launch, it
had been understood that the spectrally flat component would
be sufficiently small that it could be essentially ignored in
Level 2. The baseline terms, represented by a fairly coarse
vertical profile on pressure surfaces, would be sufficient to
account for unexplained radiances. However, the observed
large amounts of spectrally flat noise which vary rapidly from
minor frame to minor frame dictate a switch to having an
independent baseline for each minor frame. It was decided for
consistency to switch to this representation not just for the
640 GHz, but all the receivers.

E. Some selected results from v1.5

A full discussion of the results from the v1.5 algorithms and
the discussion of its performance are beyond the scope of this
paper. A detailed discussion of data quality will be supplied
to those wishing to use MLS data [12]. Figure 3 gives as an
example a pair of retrieved stratospheric N2O profiles on 10th
January 2005, one at the equator, one at high northern latitudes
in the winter polar vortex. Other examples of retrieved MLS
products are given in [13].

F. Plans for future versions

The main goal for the next version of the Level 2 algorithm
is to retrieve a water vapor product with a higher vertical
resolution of twelve surfaces per decade change in pressure in
the tropopause region, compared to the typical six per decade.
Such a product, while having greater vertical resolution than
the ‘standard’ water vapor product, will necessarily have a
poorer precision.

Significant improvements in forward model efficiency (with
a slight penalty in accuracy) are anticipated in future versions,
through the optional use of a ‘pre-frequency averaging’ ap-
proximation. This will allow for the use of the ‘full’ non-linear
forward model in cases where up to now its use has involved
a prohibitive amount of computational effort (such as for most
of the 640 GHz radiances).

Increase in knowledge of the spectroscopic parameters
influencing the MLS radiance signals will undoubtedly lead
to improvements in many MLS products. While most of the
spectral lines ‘targetted’ by MLS are well characterized, some
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Fig. 3. An example of some results from the v1.5 algorithms for measurements made on 10th January 2005. The case shown is two retrievals of N2O
abundance from the 640 GHz radiances. The left hand plots show retrieved N2O with the error bars indicating the estimated precision. The right hand plots
show the measured (symbols) radiances in channels 4, 10, 11, 12 and 13 of the 640 GHz N2O band (red, green, blue, orange, magenta respectively). The
widths of the symbols denote the reported noise (spectrally varying component) on the measurements. The solid lines show the fitted radiances estimated by
the forward model, corresponding to the retrieved N2O profile. These are shown only for the radiances used in the retrieval, hence the absence of the solid
lines below∼17 km.

measurements are influenced by emission from other lines
whose parameters are currently more poorly known. In addi-
tion, further (probably minor) improvements to our knowledge
of the calibration of the MLS instrument are anticipated which
will have an impact on the MLS data quality.

VII. SUMMARY

This paper has reviewed the retrieval algorithms imple-
mented for the EOS MLS instrument. In conjunction with its
companion papers, this should serve as a useful reference for
those wishing to better understand the EOS MLS measurement
system, and as possible guidance for those implementing
retrieval schemes for other instruments. The algorithms are

performing well on incoming MLS data, and yielding results
whose quality is broadly in line with pre-launch expectations.

APPENDIX

THE CALCULATION OF COLUMN ABUNDANCES

In addition to retrieving profiles of atmospheric temperature
and composition, the MLS Level 2 software also computes
column abundances above the tropopause for most species.
Tropopause pressure is derived from the MLS temperature
profiles, according to the standard World Meteorological Orga-
nization definition, adapted appropriately for use with pressure
rather than altitude coordinates.

Given a retrieved abundance profilefi for a linear represen-
tation basis (see section II-C.4) on a set of pressure surfaces
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Pi, with i = 1 . . . n, the column abundance (number per cm2)
above a pressure levelP ? is given by

C =
1

mg

{
fnPa

+
n−1∑
i=1

fi

∆ζi

[
Pb (ζi+1 − ζb) +

Pi+1 − Pb

ln 10

]

+
n∑

i=2

fi

∆ζi−1

[
Pc (ζc − ζi−1) +

Pc − Pi

ln 10
− Pi∆ζi−1

]

+ f1 (Pd − P1)

}
, (21)

whereζx = − log10(Px),

ζa =max (ζn, ζ?) ,

ζb =min [max (ζi, ζ
?) , ζi+1] ,

ζc =min [max (ζi−1, ζ
?) , ζi] ,

ζd =min (ζ1, ζ
?) ,

∆ζi = ζi+1 − ζi, m is the molecular mass of dry air and
g is a nominal value of the earth’s gravitational field. Using
1

mg = 0.789 DU ppmv−1 hPa−1 gives the column in milli-
atm-cm (Dobson units) for pressure in hPa and concentrations
fi in ppmv.
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