

DNSSEC Basics and Key Management Issues

Internet Infrastructure Protection

- Importance of Internet / Internet Technologies
 - Vital to commerce, defense, quality of life.
- Threats to Internet Infrastructure increasing
 - Innovation in the threat space far out paces innovation in the protection space.
 - "Good guys" constantly in a reactionary / catch up mode that can't scale.
 - Innovation driven by the "bad guys" ... global infrastructures do not respond well to day-zero attacks.
 - Many Internet critical infrastructure systems lack viable basic security mechanisms
 - Routing, Naming, Email, telephony, etc.
- Security and Stability of the Internet
 - Can not be maintained by status quo in the infrastructure.
 - Lack of innovation in this space is a threat in and of itself.

Domain Name System

- Importance of the DNS
 - We all understand the 1st order importance of the DNS.
 - 1st step in every instance of Internet communication.
 - Attacks can hijack/DoS services, machines, zones.
 - Not everyone understands the 2nd order implications of the implicit trust model that is based upon this insecure basic service.
 - Exploiting the DNS is a tool in undermining what we think of as "trusted" services.
 - CA validations, SSL connections, on-line authentication factors.
 - Sophistication of attacks increasing as are their risks.

Kaminsky Attack.

- What was known / unknown
 - Technically nothing new
 - vulnerability identified in '95 at least.
 - What opened eyes ...
 - ...was the scope of vulnerability millions of recursive resolvers.
 - ... was the ease of executing the attack.
 - ... was the novel ways in which cache poisoning could be used as a tool to undermine other critical network services and trust models.
 - What people are learning ...
 - Is that there is not simple quick fix.
 - "The patch" while important only moved the vulnerability from trivial to exploit to easy to exploit
 - The real vulnerability is the inherent lack of security in the DNS.
 - The Kaminsky attacks will continue software available, patched systems proven still vulnerable.
 - The Kaminsky attack is just the latest instance to exploit a systemic problem. There will be more.

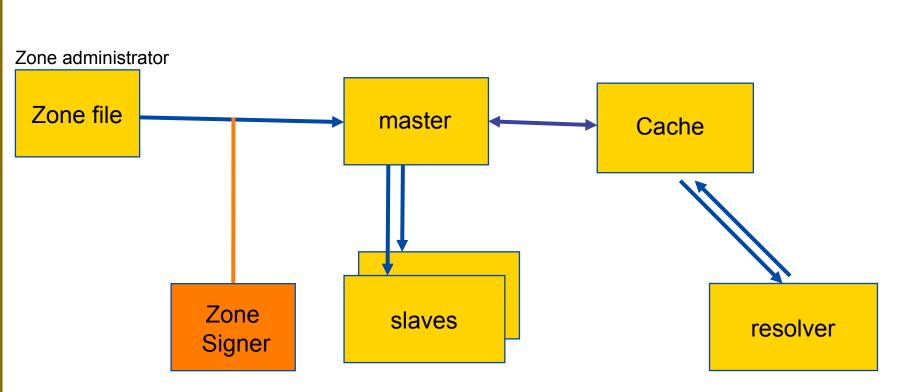
DNS Security

- DNS Security Extensions
 - Widely recognized as the correct long term fix to the systemic problem that underlies the Kaminsky attack.
 - Base standards are mature, implementations are available, operational experience available.
 - Global DNSSEC deployment activities / interests are accelerating
 - .se, .br, .uk, .org, .arpa, .gov have deployments or plans underway.
- Lack of a signed root
 - Clear technical and business case barrier to wider deployment.
 - Community desire for a signed root will continue to increase.
 - DoC increasingly viewed as an impediment to progress on this issue.
 - Need a clear DoC decision about plans for DNSSEC deployment.

NIST and DNSSEC

A brief summary of some of our efforts/activities follows:

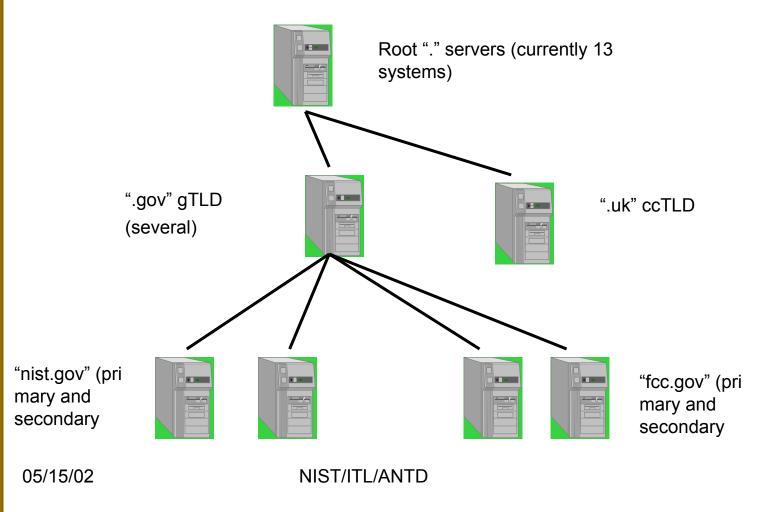
- NIST staff edited the base DNSSEC standard specifications in the IETF:
 - RFC4033 "DNS Security Introduction and Requirements" March 2005.
 - RFC4034 "Resource Records for the DNS Security Extensions", March 2005.
 - RFC4035 "Protocol Modifications for the DNS Security Extensions", March 2005.
 - NIST staff continue to lead development of other DNSSEC related specifications in the IETF.
- NIST staff have developed a Secure DNS Deployment Guide NIST SP800-81 that is widely cited in the industry/DoD.
 - http://csrc.nist.gov/publications/nistpubs/800-81/SP800-81.pdf
- NIST is implementing a staged USG DNSSEC deployment strategy
 - through the development and promulgation of appropriate FISMA technical security controls. Initial DNSSEC security controls were published in the 2006 version (NIST Special Publication 800-53r1, Recommended Security Controls for Federal Information Systems) of these controls and are also referenced in NIST Special Publication 800-53A, Guide for Assessing the Security Controls in Federal Information Systems. Additional controls will be added in the next version of Special Publication 800-53, due to be published in the fall of 2008.


NIST and DNSSEC

A brief summary of some of our efforts/activities follows:

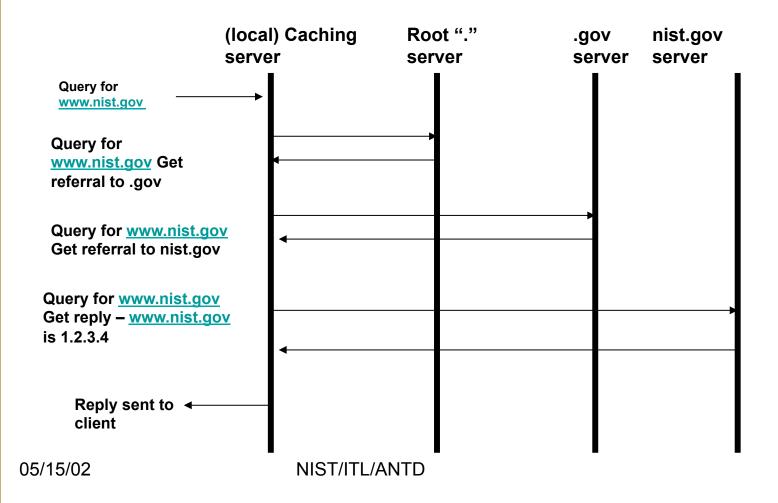
- NIST contributing to technical analysis of global deployment issues.
 - Technical plans for signing the root.
 - Technical plans for Trust Anchor Repositories.
 - Technical plans for .gov deployment.
 - Performance and stability of large scale deployment.
 - Leading standardization of DNSSEC future proofing: algorithm rollover mechanisms, etc.
- NIST leading SNIP Secure Naming Infrastructure Pilot
 - Distributed testbed for operational experiments / training in DNSSEC operations.
 - Conducting hands on training for DNS operators / managers.

DNS: Data Flow


All DNS data is transmitted as plaintext

8

Topological view of DNS



Cyber and Network Security Program

Example of DNS Query

Cyber and Network Security Program

What DNSSEC Was Designed For:

- Source Authentication
 - Owner of zone database entered in DNS data
 - Signature indicates who generated the data
- Integrity
 - DNS data was not tampered with by other parties.
- Authenticated Denial of Existence
 - Name does not exist in the DNS and the owner of that zone can prove it.
- All aimed to protect the end user system

DNSSEC Was Not Designed For:

- Confidentiality
 - DNS data is not encrypted
- DoS prevention at the server
- User/Service authentication
 - Just DNS data
- A poor man's PKI

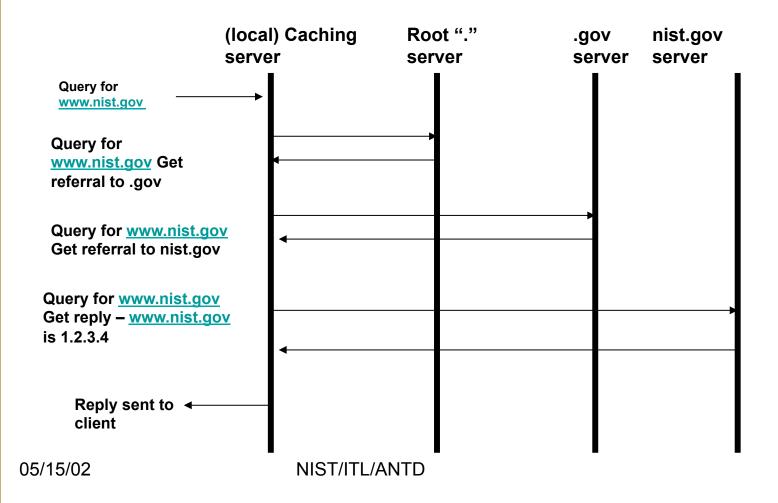
DNS + DNSSEC

DNS

DNSSEC

Query: www.nist.gov

Response: www.nist.gov A 129.6.13.23 Query: www.nist.gov +DNSSEC


Response: www.nist.gov A 129.6.13.23

Signature www.nist.gov <encoded sig>

Example of DNS Query

Cyber and Network Security Program

Now with DNSSEC...

- Host A queries for <u>www.nist.gov</u>
 - Server does not have info in cache, queries Root (pre-configured with root key).
 - Gets referral to ".gov" (containing NS, A and DS records for .gov's key)
 - Client queries .gov. Gets referral to "nist.gov" (containing NS, A and DS records for "nist.gov"s key)
 - Client queries nist.gov and gets reply: Address for <u>www.nist.gov</u> and RRSIG record covering that Address record
 - nist.gov zone key included in reply.
 - Client must construct Chain of Trust:

From nist.gov			From .gov			From root	
www A	RRSIG	nist.gov DNSKEY	nist.gov DS	RRSIG	.gov DNSKEY	.gov DS	RRSIG

DNSSEC and Key Roles

- 2 types of keys (does not matter to the protocol just administration and policy)
 - Zone Signing Key (ZSK) key that signs DNS data
 - Key Signing Key (KSK) key that signs the DNSKEY data ONLY
- The owners of these two keys can be unique
- KSK can be thought of as the "Master Key" that authenticates the data signing key (ZSK)

In the Z	one		Parent Zone				
Data	Sig (Data)	ZSK	Sig (ZSK)	KSK	DS (KSK)	Sig (DS)	ZSK

Features of DNSSEC

- Zones are signed, not servers
 - Keys are associated with zones
- Backward Compatible
 - Client must signal it wants signatures in response
 - Also allows for other DNS extensions to co-exist
- Crypto agnostic
 - Cryptographic algorithms can be swapped out
- Based on open standards
 - Several independent implementations
 - DNSSEC totally contained within DNS protocol

Trust Anchor Repositories

Types of TARs

- Community of Interest
 - Closed membership
 - Grouped around an industry, country, TLD, etc.
 - Example: .aero or US banks
- Global
 - Open to everyone
 - Who runs the global TAR?
 - How to establish trust in a TAR?
 - Back to the same problem for DNSSEC without a signed root

The Positives of TARs

- Some domains may not be able to be in signed tree, must rely on getting their keys out another way
- Step to have as much of the DNS covered until root zone is signed
- Ability to have private communities
 - Example: USG consisting of .gov, .mil, .us, etc.
- Root zone key distribution
 - A TAR of one key, the root key

The Negatives of TARs

- Only push the problem up one level
 - How does one establish trust in a newly discovered TAR?
- How many TARs are too many?
 - Clients must individually manage each TAR they are interested in – potentially hundreds to thousands.
- Note: There is only one root zone
 - One root key for all of the DNS

Resources

- General DNSSEC
 - http://www.dnssec.net/
- NIST DNSSEC project
 - http://www-x.antd.nist.gov/dnssec/
 - <u>http://www.dnsops.gov/</u>