

INFORMATION

DNS Security Extensions (DNSSEC) **Briefing**

Created by the DNSSEC-Deployment Initiative Modified and Presented by Scott Rose, NIST scottr@nist.gov June 3, 2009

To put DNS vulnerabilities in context...

- Central role of DNS
 - the Internet's address system
- Why DNS is at risk
- DNSSEC: The Security Extensions
- DNSSEC and FISMA
- NIST provided guidance and tools
- Deployment Progress and Lessons Learned

INFORMATION TECHNOLOGY LABORATORY

About DNS

- Domain Name System (DNS)
- Worldwide database, widest deployed standards-based name system
- Essential component of Internet
 - Robust even in the presence of some errors
 - Often the first part of any Internet transaction
- Due to lightweight, distributed nature, attacks very difficult to detect

Why DNS Is At Risk

- Designed in 1980s, different threat model
- Optimized for fast query/response times, not for security; trust implied and expected
- DNS threats first identified in early 1990s
- Not designed for:
 - wide public use
 - current functions
 - current scope: .com and .net today capable of handling 400 billion DNS queries every day

Why DNS Is At Risk: Threats and Attacks

- Attacks via and against DNS infrastructure are increasing
- DNS seen as critical weakness in National Strategy to Secure Cyberspace (2003)
- Financial/large enterprises see major increases in online attacks for fraudulent purposes
 - Consumer confidence decreasing
- Tools available: no learning curve required

Most Recent Attack

- Rapid, widespread and resilient
- Reduces time required to poison recursive name server's cache
- All known name server implementations are affected
 - Some more than others (took < 10s to poison the cache)
 - Most implementations patched; now as easy/difficult to poison as any other implementation
- Even patched software vulnerable
 - cache poisoning attempt possible in < 10 hours

DNS Security Extensions (DNSSEC)

- Internet Systems Consortium: DNSSEC "only full solution" to recent attacks
- Considered more viable long-term solution, compared to patches
- DNSSEC provides users with technical basis for verifying DNS answers from name servers
 - Uses public/private key cryptography
 - Adds required data to Zone
 - From user perspective, DNSSEC does <u>not</u> change zone content

What DNSSEC Provides

- Cryptographic signatures in the DNS
- Integrates with existing server infrastructure and user clients
- Assures integrity of results returned from DNS queries:
 - Users can validate source authenticity and data integrity
- Checks chain of signatures up to root
 - Protects against tampering in caches, during transmission
- Not provided: message encryption, security for denial-of-service attacks

Drawbacks of DNS Security

- Increased complexity
 - Extra queries to create chain of trust, resolvers able to verify digital signatures
 - Key management now a factor in DNS operations
- Increased zone database size
 - Contain more records, doubling or tripling size of DNS zone database
 - example: nist.gov (22k RRs): 9.5 MB usigned, 19 MB signed.
- Increased interaction between delegations
 - To secure delegations to sub-zones

DNSSEC Deployment

- US Department of Homeland Security Science & Technology Directorate programs
- DHS cannot secure Internet by itself
 - Taking leadership role, facilitating public-private partnerships (industry and government)
- Outside of the USG:
 - Several ccTLD's currently signed
 - .org in process
 - Verisign announced .com/net to be signed by 2011

DNSSEC Guidance

Secure DNS Guidance Documents

- NIST Special Publication 800 81(r1)
- Deals with DNS Security, not just DNSSEC
- NIST developed conformance tool to aid in auditing

• Pilot / Operational Deployment in .gov

- Government as early adopter.
- Work with GSA, NTIA, OMB to establish operational procedure for DNSSEC in the gov domain.
- Operate pilot deployment: Secure Naming Infrastructure Pilot (SNIP)
- Conducted .gov operator's workshops and training.

XIST Special Publication 809-xx
National Institute of Standards and Technology Technology Administration U.S. Department of Commerce
COMPUTER SECURITY
Secure Domain Name System (DNS) Deployment Guide

DNSSEC and FISMA

- Putting the FISMA Puzzle Together.
- **FIPS-200** *Minimum* Security Requirements for Federal Information Systems
 - Points to NIST 800-53 Recommended Security Controls for Federal Information Systems for technical controls to meet these requirements.

• NIST-800-53-r3

- Defines DNS security controls
- Cites NIST 800-81 used as reference.

• Promulgation – closing the loop.

- Final FIPS-200 published March 2006.
 - Effective immediately, 1 year for compliance according to FISMA

• OMB memo M-08-23

- In line with FISMA deadlines
- Special deadlines for .gov zone and all other Federal agencies

yber and Network Security Program

DNS Related Controls in SP800-53r2

- SC-20 Secure Name/Address Resolution Service (Authoritative Source)
 - Will be pushed down to Low/Moderate/High in revision 3
 - DNSSEC signing of zone data
- SC-21 Secure Name/Address Revolution Service (Recursive or Caching Resolver)
 - For High category only
 - Recursive servers must be able to validate DNSSEC signed responses.
- SC-22 Architecture and Provisioning for Name/Address Resolution Service
 - Non-DNSSEC control
 - addresses other best security practices for DNS deployment and

Other NIST Resources

- Secure Naming Infrastructure Pilot (SNIP)
 - pilot domain acts as a distributed test lab
 - Completely voluntary
 - Organizations operate delegations (<zone>.dnsops.gov) to practice DNSSEC operations
 - Integrate DNSSEC into current operations
 - SNIP integrated into .gov operations
 - i.e. dnsops.gov has secure delegation from .gov
 - Also has vendor (non-gov) component dnsops.biz
 - <u>http://www.dnsops.biz/vendors</u> gives details on each

SNIP Impact

Stepping stone for operational use

 USG DNS operators get experience running delegation under dnsops.gov before deploying in own agency

Tool testing

 Tech transfer / training on existing tool suites (NIST, SPARTA, Shinkuro, ISC, et al).

Platform Testing

- Multi-vendor environment
 - Servers ISC/BIND, NSD, Secure64 and more surprises
 - Resolvers Linux, BSD, Microsoft, OS X
 - Applications TBD.

Procedure Testing

Refinement of procedure/policy guidance and reporting requirements

Lessons Learned from Early Deployments

- Deployment is really a content management exercise, not just a security exercise
 - FISMA, other drivers lead to centralization of many network operations
 - How is the data handled will help how best to deploy
- Signing is easy, key management is hard
 - Keys stored on machines, smart cards, hardware security modules (HSM)
 - key rollover/resigning done via homebrewed perl scripts to robust, fully functional COTS products
- Communication more important than strong crypto
 - Knowing who to contact (parent zone and subzones) important.
 - can be simple as email or web forms to complex M of N key generation ceremony

More Lessons Learned

- Upgrade vs. new purchases
 - Majority of agencies may not need investment in new equipment upgrades may be enough, but it depends on current plans
 - May choose to for other reasons, but DNSSEC may not be the driver
- Invest the same importance in the keys as you do the data
 - There is such a thing as overkill
 - Consider information leakage as well
- Do not need to wait on anybody to deploy first
 - Majority of work is internal operations, interface to parent zone will be in a standard form
 - Practice makes perfect SNIP

Resources

- Secure Name Infrastructure Pilot (SNIP)
 - <u>http://www.dnsops.gov/</u>
- NIST Publications Webpage
 - <u>http://www.csrc.nist.gov/</u>
- DNSSEC Deployment Initiative
 - <u>http://www.dnssec-deployment.org/</u>
- DNSSEC.net Resource page
 - <u>http://www.dnssec.net/</u>

