Successes and Failures of Renovating Two Ponds at Imperial National Wildlife Refuge

Tammy Knecht

Andrea Montony – USBR/MSCP Mitch Thorson - USFWS

Outline

Background
Failures of Pond 1
Success of Pond 3
Future recommendations

Background

Location

Background

1990s USFWS managed DU2 Imperial Ponds for waterfowl and razorback sucker (RBS) 2007 MSCP reconstructed 6 ponds Advisory team formed

- USFWS: Fisheries and Refuge
- USBR/MSCP
- Marsh and Associates
- USGS

2007 nonnative carp and mosquitofish 2008 RBS and Bonytail (BTC) stocked 2008 redear sunfish, bluegill and warmouth

Rotenone Facts

Rotenone organic compound derived from pea family Works by disrupting cell function Affect gill breathing organisms Rotenone quickly breaks down naturally to harmless organic compounds Natural half-life is approximately 2 weeks

Compliance

 MSCP covered
 NEPA/Environmental Assessment
 Section 7
 Pesticide Use Proposal completed by USFWS

Application Method of 1st Treatment, Pond 1

Pond was dewateredCan it be done?

 Backpack Sprayers used

 Slow drip bottles system for upwellings

1st Treatment Pond 1 •1st Application April 29, 2009 •2nd Application July 9, 2009

4.0ppm of rotenone used for both applications

1st Treatment Pond 1 Problems

Upwellings decreased effectiveness of Rotenone Gave fish areas to escape from Rotenone Constant water supply

1st Treatment Pond 1 Problems

Large amount of vegetation on 2nd application

Results of 1st Treatment Pond 1

Onsuccessful kill
 Pond was not able to be completely dewatered
 Numerous upwellings to deal with
 2nd Treatment necessary

2nd Treatment Pond 1

1st Application February 17, 2010
2nd Application April 21, 2010
0.5ppm of rotenone used for both applications
Increase of 70 AF
Application method different

Application Method for 2nd Treatment

Spray perimeter

Venturi tube used for middle of pond

Results of 2nd Treatment Pond 1

 Unsuccessful kill
 Mosquitofish still present
 Thick vegetation areas inaccessible
 Rotenone concentration to Iow

1st Application February 17, 2010 4.0ppm 2nd Application April 21, 2010 0.5ppm Application method same as pond 1, 2nd treatment.

Amount of Rotenone used Pond 1 & 3

	Application		Gallons of	
Pond	Date	Acre Feet	Rotenone	ppm
1	29-Apr-2009	2*	4	4.0
1	9-Jul-2009	4*	7	4.0
1	17-Feb-2010	74	99	4.0
1	21-Apr-2010	74	12	0.5
3	17-Feb-2010	103	137	4.0
3	21-Apr-2010	103	17	0.5

* Does not include flow of upwellings

Future Plans

Enhance water quality Marsh and Associates will monitor RBS and BTC recently released into pond 1 • Came from harvest of Pond 2,4, and 6

Recommendations for future Treatments

Cut weeds back Use a higher concentration for mosquitofish Treat pond at full pool Dewatering a pond is expensive and ineffective

Acknowledgements USBR/MSCP Boulder City, NV Marsh and Associates Imperial NWR Gordon Mueller Chuck Minckley

Questions?