Reproductive Success of Individual Razorback Suckers in Impounded Backwaters

FIS011-00091 - Joel Sartore/www.joelsartore.com

Melody J. Saltzgiver Thomas E. Dowling Paul C. Marsh Tom Turner

Minckley et al. (2003) advocated use of backwaters in the management of razorback sucker

Objective

To obtain information about reproductive success of individual razorback suckers kept in backwaters

Methods

Stock adult razorback suckers in impoundments prior to spawning season. ➢ Equal sex ratios ➢ Fin clips

Gathered larvae throughout the spawning season, and juveniles during fall.

Genotype adults and offspring using microsatellites ►14 Loci

Assign parentage using computer software MYKISS

Dandy Backwater Results

2010 - Stocked 99 females,101 males

>207 larvae collected (6 collections)

 >36 females and 31 males contributed to larvae (33% of adults)

>40% of the larvae from unique female-male pairings

<u>2011</u> – Stocked 100 females, 100 males

≻No larvae

Dandy10 Individual Parent Contributions

Arizona Juvenile Backwater 2010 - Stocked 129 Females, 71 Males

>210 larvae collected (4 collections)

>66 females and 39 males contributed to larvae (53% of adults)

>75% of the larvae from unique female-male pairings

AJ10 Individual Parent Contributions

Arizona Juvenile Backwater

- <u>2011</u> Stocked 100 Females, 100 Males
- > 305 larvae captured (6 collections)
- 68 females and 69 males contributed to larvae (69% of adults)
- > 79% of the larvae from unique female-male pairings

AJ11 Individual Parent Contributions to Larvae

Arizona Juvenile Backwater

- > 201 juveniles captured
- > 43 females and 52 males contributed to juveniles (48% of adults)
- > 71% of the juveniles were unique female-male pairings

AJ11 Individual Parent Contributions to Juveniles

AJ11 Individual Parent Contributions

Imperial Ponds

2011 – Stocked 69 Females, 31 Males

- 57 larvae captured (1 collection)
- 17 females and 14 males contributed to larvae (31% of adults)
- 51% of the larvae were from unique female-male pairings

IP11 Individual Parent Contributions to Larvae

Imperial Ponds

2011 – Stocked 69 Females, 31 Males

≻23 Juveniles captured

>11 females and 11 males contributed to juveniles (22% of adults)

>74% of the juveniles from unique female-male pairings

IP11 Individual Contributions to Juveniles

Conclusions

Equal contributions across sexes

Individual adult contributions variable but higher than expected

33% Dandy 2010

53% AJ 2010 69% AJ 2011 larvae 48% AJ 2011 juveniles

31% IP 2011 larvae 22% IP 2011 juveniles

Some individuals contributed many progeny, yet high fraction of progeny are produced by unique pairings

40% Dandy 2010

75% AJ 2010 79% AJ 2011 Larvae 71% AJ 2011 Juveniles

51% IP 2011 Larvae 74% IP 2011 Juveniles

> Continue stockings and sample to monitor annual variation.

Try to understand differences among ponds

