Laguna Division Conservation Area

Project Update for the Colorado River Terrestrial and Riparian Meeting

> Laughlin, NV January 26, 2011

Presentation Outline

- Project Site Map
- Objectives and Design Considerations
- Status Update
- Water availability
- Current Design Concept and Construction Components
- Re-vegetation and Habitat
- Maintenance and Monitoring
- Information needs

Project Site Map

- Project Area 1222 acres
- Reach Length 4.3 miles
- Existing Conditions
 - Extensive/dense tamarisk monoculture

Project Design Considerations

- Up to 100 cfs available for project use
- Habitat Targets
 - Open Water/Marsh: 50 100 ac
 - Cottonwood/Willow: >200 ac
 - Upland(mesquite): <500 ac
 - Include specific habitat for T&E species
- Provide hydrology to support habitats for 50 years or more
- No detrimental effect on existing Mittry Lake or Old River Channel Habitats
- Minimize impacts to existing operations (sluicing, dredge disposal, water delivery, etc.)
- Minimize both initial construction and long-term operating costs

Target Habitats

Cottonwood/Willow: >200 ac

Upland (Mesquite): <500 ac

Target Species

California Black Rail

Yuma Clapper Rail

Southwestern Willow Flycatcher

Yellow Billed Cuckoo

Yuma Hispid Cotton Rat

Western Least Bittern

Permitting Update

- NEPA
 - Public Outreach held in March 2010
 - Draft NEPA September 2010
 - Final NEPA January 2011
- 404 Permit
 - Scheduled submittal February 2011
- Additional Permitting
 - Yuma County encroachment permit for road crossing

Water Accounting

- 100 cfs continuous flow is available from the Gila Settling Basin
 - Looking at historical (1943 2009) monthly flow data of gauging station, USGS 0952250 Gila Gravity Main Canal at Imperial Dam, collected in the Main Canal.
 - In the event of a water shortage to the Gila Main Canal, the Laguna Division Conservation Area has lower priority than downstream users and water supply to the Area may be limited.

http://waterdata.usgs.gov/az/nwis/monthly/?referred_module=sw&site_no=09522500&por_09522500_2=19986,00060,2,1943-08,2010-03&format=html_table&date_format=YYYY-MM-DD&rdb_compression=file&submitted_form=parameter_selection_list

General Project Update

- Boundary change
 - Additional acres from dredge disposal site
- Designing preferred alternative
- Moving towards construction
- Finding a balance between wildlife and public presence

Current Design Concept: Overview

- Operate as a managed, riverine system to maximize limited water resource
- Use existing overflow channels through project area to minimize excavation
- Use "pulse flows" to provide irrigation to woody species
- Requires water control structures to manage water levels

Construction Components

- Water Delivery System from Gila Forebay
 - Headworks
 - Pipeline
- Site Preparation for Earthwork
 - Burning and Grubbing of Saltcedar
- Earthwork
 - Channels provide the topography to support water conveyance and vegetation/ habitat
 - Utilize existing topography to minimize cut/fill and maximize pulse flow irrigated area
 - Reach 1 & 2 primary and secondary channels; Reach 3 outlet channels; Enhancement of historic channel
 - Levees and roads for access and firebreaks
- Water Control Structures
 - Manage water levels in Reaches 1 & 2, and historic river channel
 - Additional Mittry Lake turnout structure

Water Delivery System Overview

- Gravity system delivering high quality water from the Gila Forebay to the wetland restoration area
- Pipeline headworks at the Gila Forebay
- 2,300-FT, 48-IN. diameter pipeline
- Cross underneath the Gila Wasteway Canal with an inverted siphon

Water Delivery System: Headworks

 Construction window during maintenance draw-down of the Gila Forebay (November 2012)

ELEVATION

- Install temporary steel coffer dam during the maintenance draw-down
- Construct pipe penetration/closure of the Gila Forebay liner and install secondary slide gate
- Install primary valve and meter. The primary valve/meter will be utilized to control flow based on habitat and downstream user needs.

Gila Forebay near proposed headworks

Water Delivery System: Pipeline

- 48-inch diameter, 2,300 Foot pipeline
 - Inverted siphon to cross underneath the Gila Wasteway Canal
 - Scheduled to be constructed Spring 2011
- Constructed through portions of the original Yuma Proving Grounds historic area – SHPO consultation underway

Site Preparation for Earthwork

- Prescribed Fire
 - Single burn of entire project area
 - BLM developing burn plan
 - Scheduled for fall/winter 2011
- Post-Burn Operations
 - Clearing, Grubbing & Piling
 - Soil & Water Monitoring
 - On-going removal of invasive species as necessary

Public Concerns with Burn

- Nearby Agriculture Fields
 - Wind direction for ash fallout
 - Displaced Animals
- Wildlife and Wildlife Areas
 - Breeding Season
 - Displaced Animals
 - Recreation at Mittry Lake Wildlife Area
- Nearby Homes and Parks
 - Road Closures
 - Smoke / Ash fallout
 - Fire Containment
- Invasive Weeds
 - Spread of Invasive Weeds by Fire Management Operations

Bureau of Land Management will address these in final burn plan

Earthwork Operations: Typical Cross Sections

Earthwork Operations

- Earthwork
 - Approximately 1.3 Million Cubic Yards of excavation
 - Utilize excavated spoils to form levees and maintenance roads
 - Excavate from south to north to allow management of groundwater
 - Commence post-burn (Fall 2012)
- Invasive weed management on-going

Water Control Structures

- Overshot Gates set in cast-in-place concrete bays
- Constructed in concert with earthwork operations
- Potential to automate
- Additional Mittry Lake turn-out structure

MSCP Laguna Restoration

Reach 1 Concept Drawing

MSCP Laguna Restoration Reach 1Cross Section

tion

Scale: 1" = 120' Date: 8/25/10 0 30' 60' 120' 180

MSCP Laguna Restoration Reach 3 Typical Channel Cross Section

Scale Date: 8/25/10

MSCP Laguna Restoration Historic Channel Cross Sections

Scale: Date: 8/25/10

Habitat Acreages

	OPEN WATER	DEEP MARSH	TRANSITION ZONE/ FIRE BREAK	COTTONWOOD/ WILLOW	MESQUITE
Reach 1	46	63	35	164	57 (no irrigation) 159 (irrigation)
Reach 2	21	24	50	234	30 (no irrigation) 44 (irrigation)
Reach 3	4	10	8	14	0 (no irrigation) 102 (irrigation)
Historic River Channel	0	0	81	14	11 (no irrigation) 6 (irrigation)
Project Totals	71	97	174	426	98 (no irrigation) 311 (irrigation)
MSCP Targets	50-100			>200	<500

Channel Revegetation (Tidal irrigation with water control structures)

April 2006

June 2010

Marsh and Transitional Zone (Tidal irrigation with water control structures)

October 2005

June 2010

Transitional Zone (Tidal irrigation with water control structures)

October 2006

June 2010

Plant Establishment

1. Establishment of marsh plantings and upper terrace mesquite plantings

- Hand planting of marsh plugs and deep pot mesquites
- Marsh plants must establish before the transitional/cottonwood areas can be flooded

-Mesquite plantings irrigated with sheet irrigation in leveled areas

- 2. Establishment of transitional zones and cottonwood/ willow once marsh plants are tall enough to flood for longer periods (4-6 months after marsh plantings)
 - Machine planted with plugs and/or hand planting with larger 1 gallon trees

Plant Establishment

3. Water level management

- Frequent fluctuations the first two years during establishment
- Once vegetation is established maintain stable water levels especially during migration and nesting seasons

Project Maintenance and Monitoring

- Follow up aerial/land-based herbicide treatments after burn and up to planting areas
- Continued weed maintenance of planted/unplanted areas during plant establishment period (intense maintenance the first 2-3 years)
- Maintenance and operation of water control structures, roads and project infrastructure (50 years)
- Irrigation of upper terrace mesquite revegetation
- Plant and wildlife monitoring of restored area
- Long-term weed, replanting and irrigation maintenance

Additional Information Needs

- Additional Monitoring Wells along Proposed Channels

 Groundwater information (water quality and salinity)
- Additional soil surveys to determine the depth to water table, soil texture and soil salinity across the site
- Vegetation design will need refinement to incorporate the additional water and soil analyses

Current Schedule

Questions?