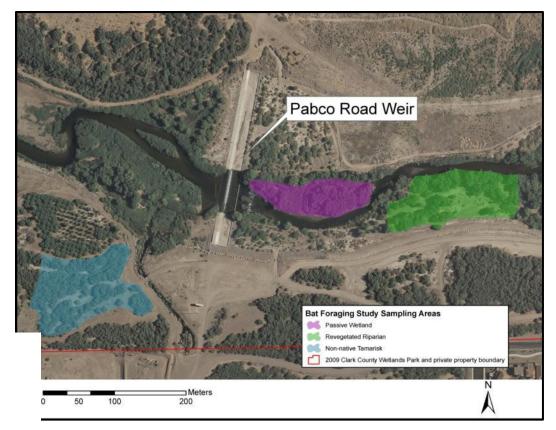

Measuring Habitat Improvement Along the Las Vegas Wash Using Bat Dietary Analysis

January 26, 2010

Jason R. Eckberg and Marissa E. Foster
Las Vegas Wash Coordination Committee
Southern Nevada Water Authority

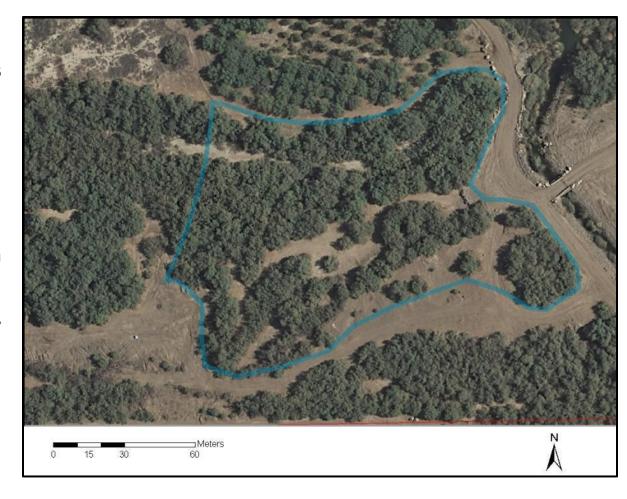
Las Vegas Wash


Background

- Since 2000, over 280 acres have been revegetated along the Wash
- Prior to 2004, bats at the Wash were known through rare mist netting or shooting
- In January 2004 we started our first acoustic monitoring survey
 - 18 bat species were identified
- In 2008 we started our first capture study
 - 8 bat species previously picked up on acoustic units were confirmed
- We wanted to know: Does restoration at the Wash improve bat habitat?

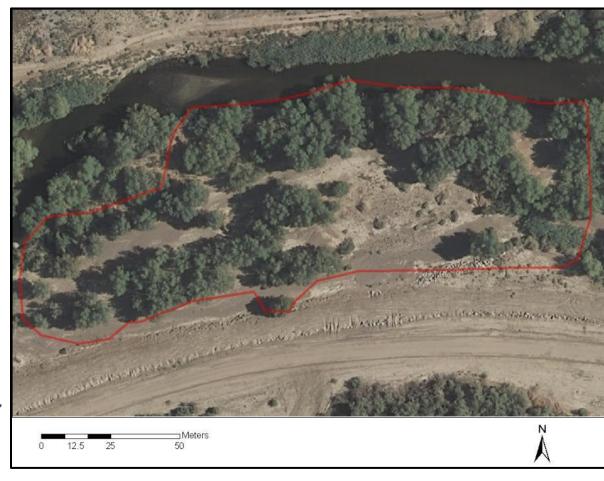
Site Selection

- Three sites were chosen because all were different habitats that were in close proximity. This gave each area an equal opportunity to be chosen for bat foraging.
- The three sites were located in a tamarisk stand, a riparian revegetation area and a passively created wetland



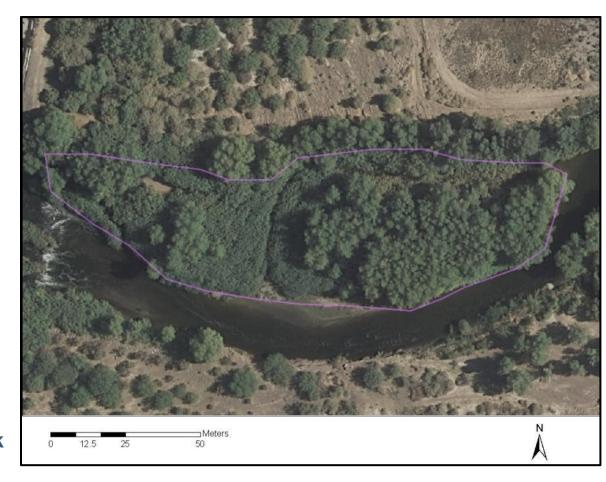
Methodology - Site Selection

Tamarisk


- Mature stand that is over 50 years old
- Exclusively Tamarisk (*Tamarix ramosissima*)
- Approximately 175m from the main Wash channel
- Good flight corridor from abandoned dirt road through site
- Represents a prerestoration state

Methodology - Site Selection

RiparianRevegetation

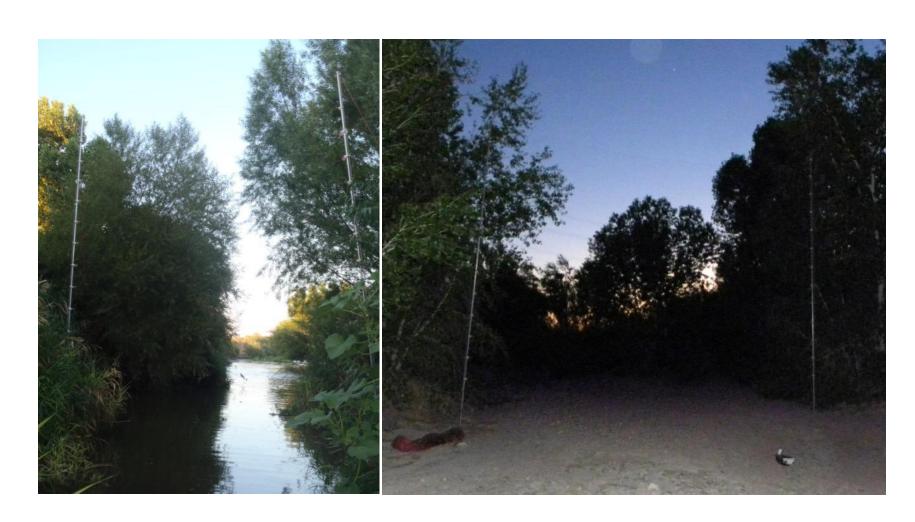

- Planted with native species in 2001
- Dominated by Cottonwoods (Populus fremontii)
- Approximately 30m from the Wash channel
- Good flight corridor naturally formed by tree growth

Methodology - Site Selection

PassivelyCreatedWetland

- Less than 5 years old
- Dominated by Common Reed (Phragmites australis) and Goodding's Willow (Salix gooddingii)
- Back water arm created a flight corridor and slow moving water to drink and glean from

Methodology - Insect Monitoring



Methodology - Bat Monitoring

- One high net was placed in the flight corridor at each site
 - Nets were 6-9m wide and mature vegetation blocked both sides

Methodology - Bat Monitoring

Methodology - Bat Monitoring

- Acoustic units were placed close to the net to record bat activity at each net
- Acoustics were recorded onto an SD card and transferred to a computer for analysis

Methodology - Guano

- Guano Analysis
 - Guano was analyzed under a stereo microscope
 - Each pellet was teased apart
 - Insect parts were identified to order
 - Insect sample specimens were used to help in identification

- Number of individual insects collected at UV light by month
 - * No UV light collection in August, listed species were collected on the mist net

Order	May	June	July	August*	September	October	Grand Total	% of Total
Hemiptera	1782	7914	1035		2	2	10735	59.12%
Diptera	244	759	111		427	848	2389	13.16%
Lepidoptera	191	432	445	4	508	471	2051	11.29%
Unknown		192	950		213	46	1401	7.72%
Trichoptera		905	61		93	11	1070	5.89%
Coleoptera	5	268	76		17	4	370	2.04%
Neuroptera	5	44	16		5	1	71	0.39%
Hymenoptera	4	19	14		3		40	0.22%
Odonata			2	4	1	2	9	0.05%
Orthoptera	2		5			2	9	0.05%
Blattodea	1		1		3		5	0.03%
Mantodea				2	1	1	4	0.02%
Aranae	1				2	1	4	0.02%
Isopoda	1						1	0.01%
Grand Total	2236	10533	2716	10	1275	1389	18159	

Hemiptera and 1 Coleoptera (lady beetle)

- Buprestidae Prasinalia cuneata
- State Record

- Splendid Tamarisk Weevil (Coniatus splendidulus)
- State Record, first scientifically documented account in US (in review)

Results – Bat Guano Analysis

- Number of guano pellets containing insect order parts per species per site (N=402)
 - Antrozous pallidus and Myotis yumanensis only species found on all three sites
 - Lasiurus cinereus, Lasiurus xanthinus and Myotis californicus were excluded

	Tamarisk		Revegetation		Passive		Crond
	Antrozous pallidus	Myotis yumanensis	Antrozous pallidus	Myotis yumanensis	Antrozous pallidus	Myotis yumanensis	Grand Total
Coleoptera	0	4	37	8	5	39	93
Diptera	0	0	28	0	0	4	32
Hemiptera	0	0	0	0	0	6	6
Hymenoptera	2	2	2	1	0	42	49
Lepidoptera	0	10	4	3	0	43	60
Unknown	0	0	10	2	0	60	72

Results – Bats Acoustics

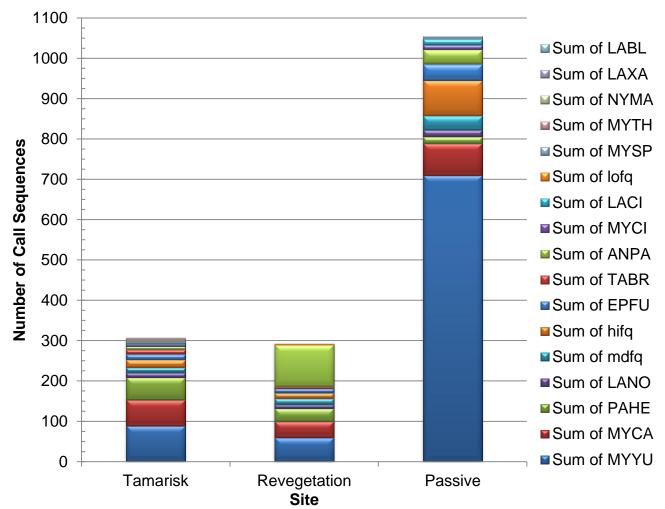
Scientific Name	Common Name	Species Code
Antrozous pallidus ¹²	Pallid bat	ANPA
Eptesicus fuscus	Big brown bat	EPFU
Lasionycteris noctivagans	Silver-haired bat	LANO
Lasiurus blossevillii ²³	Western red bat	LABL
Lasiurus cinereus ¹	Hoary bat	LACI
Lasiurus xanthinus ¹	Western yellow bat	LAXA
Myotis californicus ¹	California myotis	MYCA
Myotis ciliolabrum	Western small-footed myotis	MYCI
Myotis thysanodes	Fringed myotis	МҮТН
Myotis yumanensis ¹	Yuma myotis	MYYU
Nyctinomops macrotus	Big free-tailed bat	NYMA
Parastrellus hesperus	Canyon bat	РАНЕ
Tadarida brasiliensis ²	Brazilian free-tailed bat	TABR

¹Captured in mist nets as well as on acoustic units

²State of Nevada protected species

³State of Nevada sensitive species

Results - Bats Acoustics

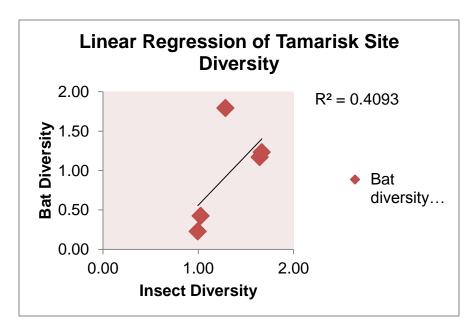

Call Sequences				
Month	Tamarisk	Revegetation	Passive	Grand Total
May	16	49	68	133
June	7	31	73	111
July	58	23	63	144
August	144	95	167	406
September	55	44	533	632
October	27	50	151	228
Total	307	292	1055	1654

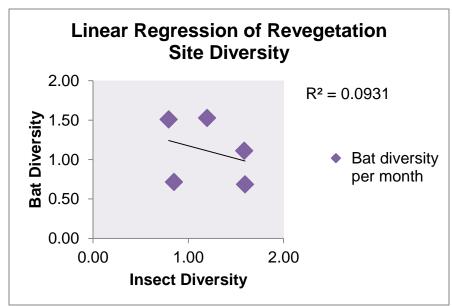
Feeding Buzz

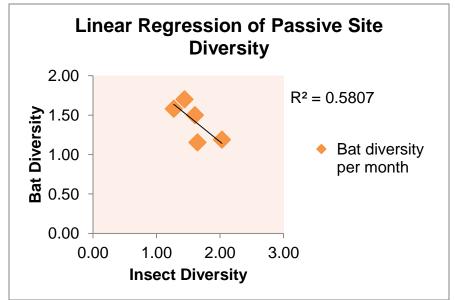
Month	Tamarisk	Revegetation	Passive	Grand Total
May	1	0	1	2
June	0	1	0	1
July	7	0	0	7
August	17	1	1	19
September	5	5	0	10
October	4	0	1	5
Total	34	7	3	44


Results – Bat Acoustic

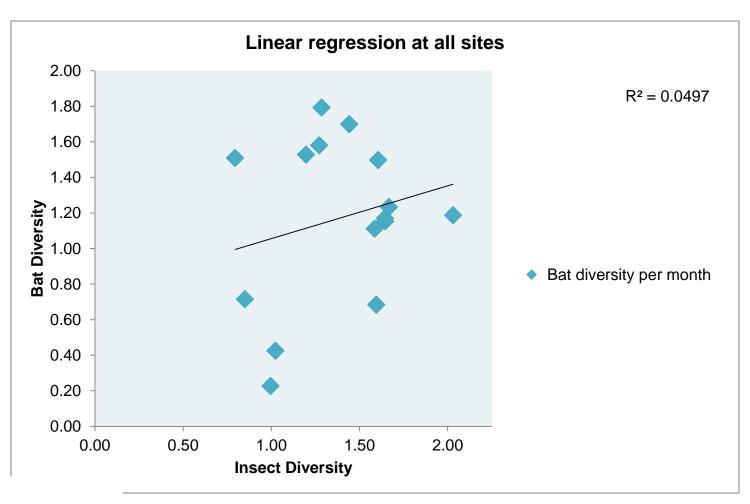
- 3700 monitoring minutes
- 1063 minutes of bat activity
- 1666 calls able to ID to species (N=13)

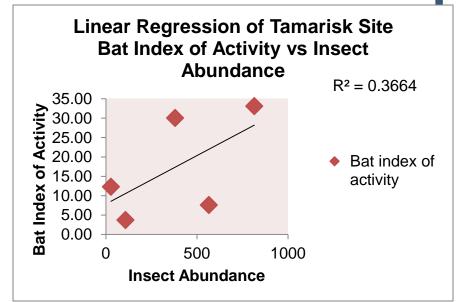


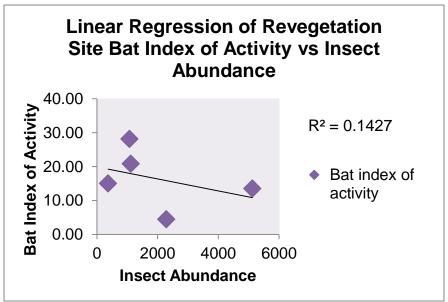

Results – Bat Captures

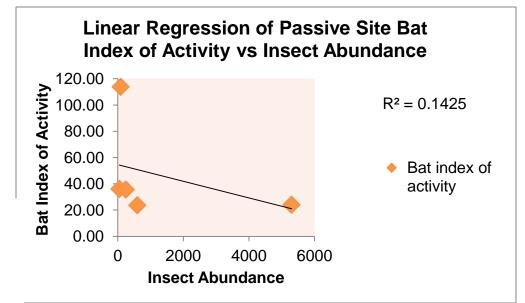

70 total captures (5 species)

Results – Diversity Comparison

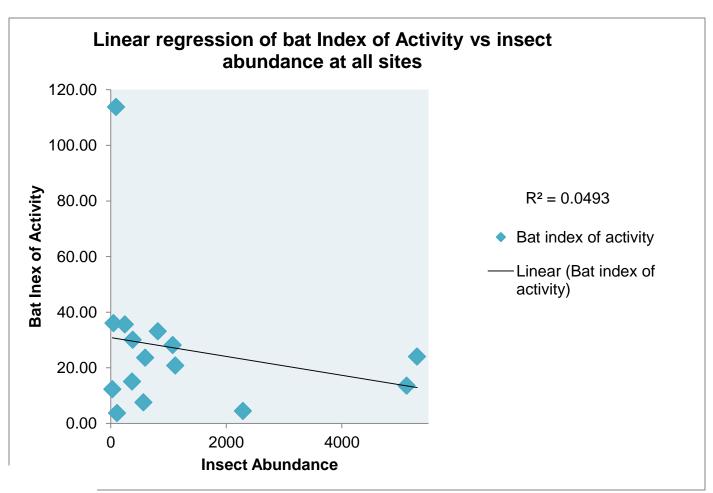





Results – Diversity Comparison



Results – Abundance Comparison



Results – Index of Activity Comparison

Conclusions – Site Summary

- Tamarisk had very few captures but also had highest species richness on acoustic units
 - Also highest number of feeding buzzes
- Bat activity at the revegetation site was at expected levels, similar to the two previous capture years
 - There were less acoustic calls than the passive site and tamarisk site
 - There were more captures than the tamarisk site but less than the passive site
- The passive site had the greatest number of captures and acoustic calls
 - This site was over a back channel of the Wash so we think this was a drinking area

Conclusions – Overall

Did revegetation help bat habitat?

- NO!
 - A conclusion can't be made based on this study
- None of our comparisons between bat and insect activity indicated a significant correlation
- Same holds true for comparisons between bat activity and vegetation characteristics
- When Yuma myotis (majority of activity) are removed all sites had a similar amount of acoustic activity

QUESTIONS?

Jason R. Eckberg & Marissa E. Foster 702 – 822 – 3389 jason.eckberg@snwa.com

