Developing a Spatial Model of Yellow-billed Cuckoo Breeding Habitat

James R. Hatten¹

¹U.S. Geological Survey, Western Fisheries Research Center, Columbia River Research Laboratory, Cook, Washington

Matthew J. Johnson², Jennifer A. Holmes²

²U.S. Geological Survey, Southwest Biological Science Center, Colorado Plateau Research Station, Flagstaff, Arizona

Project Objectives

- Characterize Yellow-billed Cuckoo breeding habitat
- Develop spatially explicit models of cuckoo breeding habitat
- Identify all potential cuckoo habitat on the Lower Colorado River
- Extrapolate the model to other parts of the state
- Use the predictive model for habitat restoration and enhancement effectiveness monitoring

Modeling Approach

Sample Locations - 2006

Exploratory Variables

- Terrain roughness (30-m DEMs)
- Distance to water
- Distance to agriculture or cities
- Vegetation density (Thematic Mapper)
 NDVI
 - Tasseled Cap
- Vegetation heterogeneity
- Patch size and configuration
 - Multiple scales
- Hydro-geomorphic classification
 - Different approaches

Terrain Ruggedness

Terrain Ruggedness (classified)

Distance to Water

Vegetation Density (NDVI)

Patch (120-m radius)

Vegetation Heterogeneity (480-m radius)

Significant Variables

Terrain ruggedness

4 classes: flat, low, moderate, high

Patch density

Amount of dense vegetation (NDVI > 0.41) within 120-m radius (4.5 ha)

Patch heterogenity

Variation in vegetation density (SD of NDVI) inside a 480-m radius (72 ha)

Significant Covariates

SAMPLE

≥USGS

Significant Covariates

Model Outputs

Probability grids
Spatially explicit maps
Multiple classification approaches

Probability Surface - 2006

Binary Habitat Map - 2006

75% overall accuracy

≥USGS

Probability Surface - 2006

Binary Habitat Map - 2007

Potential Cuckoo Habitat 2007

Model Extrapolation

Future YBCU modeling efforts

160 Kilometers

Verde River YBCU Model Results

San Pedro YBCU Model

Conclusions

Terrain ruggedness most important

-moderate terrain ruggedness the best (>20 times as likely to have YBCU as flat terrain)

Patch size and composition important

- 120 m radius (core density)
- 480 m radius (vegetation heterogeneity)
- Each 10% of core area covered in dense vegetation = 15% increase in YBCU
- Each 1SD increase in vegetation heterogeneity = 68% increase in YBCU

Classification accuracy ~75%

Extrapolation produced results on the Verde and San Pedro that were not as specific as on the LCR.

Southwestern Willow Flycatcher Modeling

Landsat TM Imagery: Salt/Roosevelt 1994 – 2005

Predicted SWFL Breeding Habitat: Salt/Roosevelt 1994 – 2005

20-yr Habitat Analysis

≥USGS

Temporal Model Accuracy: 1994 - 2004

≥USGS