Movement patterns and genetic analyses reveal different patterns of population structuring of Southwestern Willow Flycatchers

Katie Stumpf, Tad Theimer, Mary Anne McLeod, Tom Koronkiewicz

Movement dynamics

 Localized breeding populations often linked through dispersal

• Dispersal increases gene flow

Philopatry reduces gene flow

 Two approaches to documenting movement

Using direct observations of **movements** to predict population structure

- May overestimate gene flow
 - "Effective dispersal" (Prugnolle and de Meeus 2002)
- May underestimate gene flow
 - Failure of mark-recapture to detect movements (Schweizer et al. 2007)

Using **genetics** to predict population structure

 Detect movements traditional analyses would miss

- Rare and/or long-distance movements
- Species with low detection probabilities
- May reflect historical patterns of gene flow
 - May not reflect changes in movement patterns caused by recent habitat changes

Southwestern Willow Flycatcher

- Expect low population differentiation
 - Highly mobile, migratory
- Expect high population differentiation
 - High philopatry
 - Short dispersal distances

Do movement patterns and genetic analyses predict same patterns of population structure?

 Predict population structure based on longterm movement data
 Nest monitoring and extensive resighting from 2003 – 2008

2. Predict population structure using genetics of breeding adults 7 microsatellite loci (Pearson et al. 2006) 2 Bayesian population clustering approaches – 1 used spatially explicit data, 1did not

Hypothesis based on geographic distance:

2 distinct populations

Hypothesis based on movements

EITHER 1 panmictic population

OR

3 distinct populations

13 Adult movements

Genetic population structure: STRUCTURE

- 7 loci from 93 individuals
- 2 populations most supported by multiple runs

Genetic population structure:

- 2 populations supported in 12/15 runs
 - Each run is a new analysis

- PAHR always distinct

MESQ

Why are more distant sites more genetically similar?

- Low individual turnover at PAHR keeps gene flow minimal?
 - May be due to less water and/or habitat variability among years
- Elevation and latitude gradient provide ecological barrier to gene flow (e.g. Paxton et al. 2009)

- 1. Incomplete movement data?
 - 75% of nestlings banded (McLeod et al. 2009) but still some unbanded birds at start of season
- 2. Floater males may contribute to gene flow?
 - EPP rates for WIFLs high (Pearson et al. 2006)

- Incomplete movement data
 Unbanded birds, lack of detection
- 1. Floater males may contribute to gene flow
 EPP rates for WIFLs high (Pearson et al. 2006)

- 3. Low effective dispersal?
 - Migrant individuals may contribute fewer offspring than resident (Parn et al. YEAR)

How effective were the dispersals into and out of PAHR?

- 3. Low effective dispersal?
 - One adult moved from MESQ to PAHR produced 15 OS, but only 1 female successfully recruited
 No successful repro

- 3. Low effective dispersal?
 - One adult moved from MESQ to PAHR produced
 15 OS, but only 1 female
 successfully recruited
 - 3 juvenile dispersals resulted in 0 recruited offspring

Behavioral difference with elevation/latitudinal gradation across subspecies boundary? Suggests PAHR less strongly

linked to other sites demographically

Thanks!

Population genetics

	AVE ALLELES /	# PRIVATE			
SITE	LOCUS (SE)	ALLELES	Ho	$\mathbf{H}_{\mathbf{e}}$	$\mathbf{F}_{\mathbf{IS}}$
BIWI	5 (0.93)	1	0.55 (0.79)	0.65 (0.67)	0.19(0.08)
MESQ	6.57 (1.11)	3	0.66 (0.05)	0.7 (0.06)	0.015 (0.13)
MOME	5.43 (0.92)	1	0.64 (0.1)	0.66 (0.099)	0.002 (0.078)
PAHR	8.43 (1.325)	8	0.69 (0.06)	0.75 (0.06)	0.06 (0.07)
ТОРО	7 (1.31)	0	0.66 (0.08)	0.68 (0.09)	-0.002 (0.056)

Significant isolation by distance