Groundwater and Soil Salinit Monitoring Network

CRTR Meeting

25 January, 2012

Matt Grabau

Project Overview

Response to open call for proposals:

- Lower Colorado River Multi-Species Conservation Program: Financial Assistance Program for Fiscal Year 2010
 - Announcement No. 09 SF300006
- Research projects to assist in long-term success of LCR MSCP.

Salinity Concerns

- MSCP riparian trees are salt-intolerant.
- Elevated irrigation (Colorado River) water salinity due to evapoconcentration.
- Elevated soil and groundwater salinity due to river regulation, agricultural practices, and shallow groundwater.
- State of knowledge at MSCP restoration areas:
 - Soil salinity monitored, and sometimes higher than published salinity tolerances.
 - Groundwater salinity is generally not monitored.
 - Relatively little information on remediation of salt-affected soils and groundwater for restoration (more extensive for agriculture).
 - Long-term salt balances have not been determined.

Impetus for Project

- We know (background):
 - Salinity is variable at MSCP habitat creation sites.
 - General drivers of soil and groundwater salinity.
- We want to know (objectives):
 - What is the current status of soil and groundwater salinity at selected sites?
 - What trends can be anticipated over the LCR MSCP duration?
 - What can be done to mitigate soil salinity and maximize habitat creation success?

Project Activities

- 1. Review salinity literature and LCR data.
- 2. Establish a soil and groundwater monitoring network to determine salinity trends at three established riparian restoration sites.
- 3. Conduct aquifer testing to estimate groundwater movement.
- 4. Monitor soil and groundwater salinity, groundwater elevations.
- 5. Develop a salt balance model to evaluate accretion or loss in soils and groundwater.
- 6. Develop strategies for salinity control and long-term monitoring.

Soil Salinity and Sodicity

Salinity

- Soluble salt, with EC as a proxy.
- Per agricultural manuals:
 - <4 dS/m "nonsaline"</p>
 - 4-8 "moderately saline"
 - 8-16 "saline"
 - >16 "severely saline".
- Alters osmotic potential.
- For riparian trees, 50% growth reduction at 5 dS/m, death at 10-12 dS/m.

Sodicity

 High ratios of Na⁺ to Ca²⁺ and Mg²⁺

$$SAR = \frac{[NA^+]}{\sqrt{\frac{1}{2}([Ca^{2+}] + [Mg^{2+}])}}$$

• Or ESP >
$$15\%$$

 $ESP = \frac{echangeable_sodium}{CEC}$

- Soil dispersion and clogging.
- Phytotoxic pH

Salinity Concerns

Groundwater

- Direct phytotoxicity.
- Contributions to soil water:
 - □ Capillary rise into the unsaturated zone →
 - Evapoconcentration of salts.

Irrigation

- Potential for leaching, but:
 - Addition of salts to soil profile and groundwater.
 - Additional evaporation and evapoconcentration.
 - Groundwater mounding?

Salinity Management Strategies

1. Avoidance:

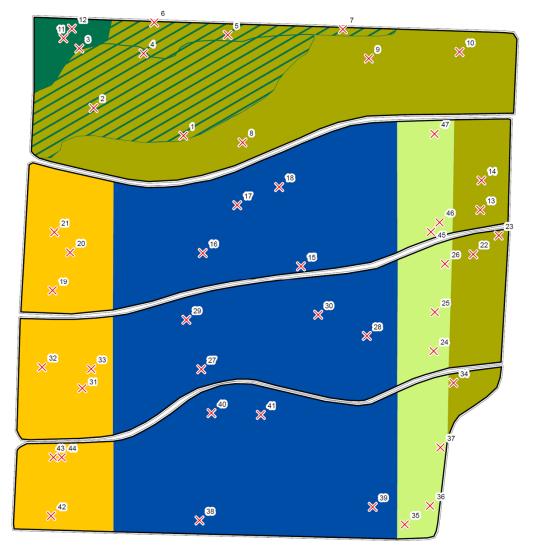
Plant according to salinity tolerances.
 OR

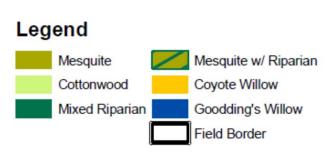
- 2. Remediation AND THEN
- 3. Monitoring and mitigation (Adaptive Management).

Soil and Groundwater Monitoring Network

> Beal Lake Palo Verde Ecological Reserve (PVER) Cibola NWR Unit #1

Three Diverse Habitat Creation Sites


Site	Land Conversion	Soil Type	Depth to Ground Water	Distance from Colorado River
Beal Lake	Dredge Spoils	Lagunita Sand	<5' ?	0.7-1.5 miles*
Palo Verde Ecological Reserve	Agricultural	Highly Variable	>15' ?	0-0.6 miles
Cibola NWR Unit #1	Agricultural, Cleared Non-natives	Silty Loam, variably sandy subsurface	5-10'	0.5-1.5 miles


* Immediately adjacent to Topock Marsh and Beal Lake

Soil Sampling and Testing Methods

- Salinity sampling locations selected based on soil type, vegetation, and/or distance from irrigation and then randomized.
- At each location, hand-augered to 6' below ground surface.
- Composited two-foot intervals (3 samples per location).

Soil Sampling Plan: Crane's Roost at Cibola NWR

Total Area: 140 Acres (~2000' X 2000') 2010 EC Summary: Beal Lake Restoration Site (Saturated-Paste Extract EC)

Depth Interval (n)	Mean dS/m	Median dS/m	Min dS/m	Max dS/m
0'-2' (70)	<u>3.3 A</u>	1.0	0.6	<u>44.1</u>
2'-4' (70)	<u>3.5 A</u>	1.4	0.9	<u>31.7</u>
4'-6' (70)	2.2 A	1.4	1.1	<u>13.2</u>

EC and RGR: 1. 3 dS/m = 70% 2. 5 dS/m = 50%

- 1.00/10 = 50/0
- 3. 12 dS/m = 0%

EC = 3 ≈ 1,500 mg/L TDS

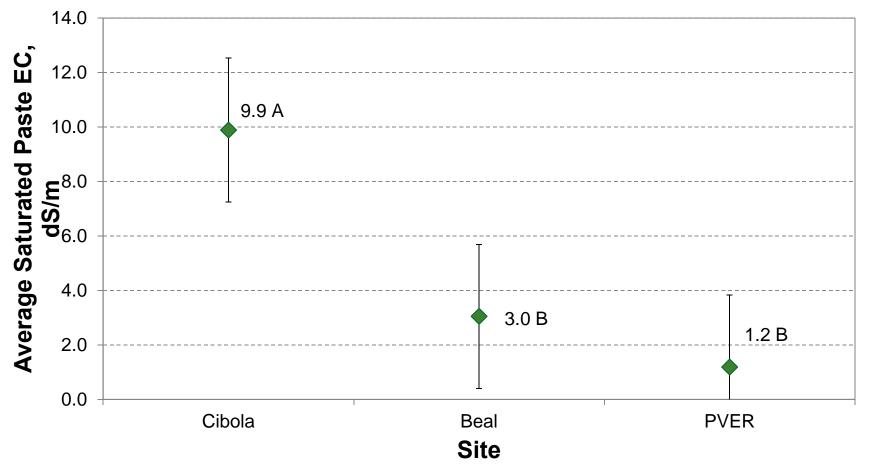
2010 EC Summary: Palo Verde Ecological Reserve (Saturated-Paste Extract EC)

Depth Interval (n)	Mean dS/m	Median dS/m	Min dS/m	Max dS/m
0'-2' (41)	1.2 A	1.1	0.8	2.2
2'-4' (41)	1.1 A	0.8	0.6	2.8
4'-6' (41)	1.2 A	0.7	0.5	<u>5.9</u>

EC and RGR:

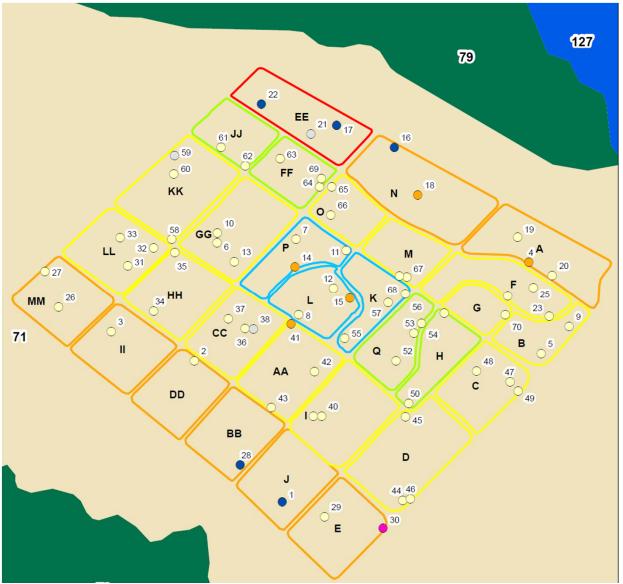
- 2. 5 dS/m = 50%
- 3. 12 dS/m = 0%

EC = 1 ≈ 520 mg/L TDS


2010 EC Summary: Cibola NWR Farm Unit #1 (Saturated-Paste Extract EC)

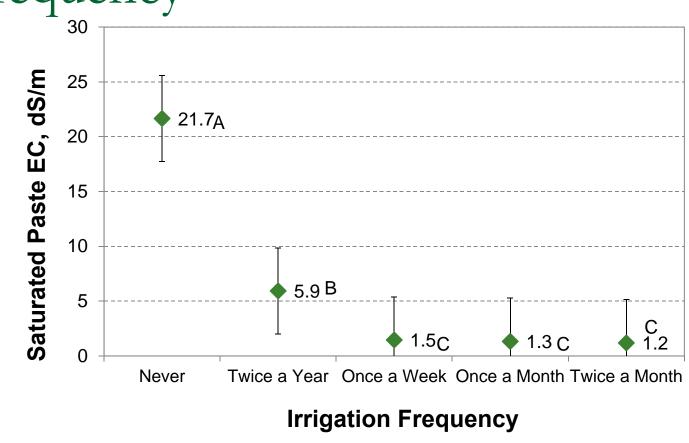
Depth Interval (n)	Mean dS/m	Median dS/m	Min dS/m	Max dS/m
0'-2' (82)	<u>10.6 A</u>	<u>4.9</u>	0.7	<u>95.2</u>
2'-4' (82)	<u>9.3 A</u>	<u>6.3</u>	0.8	<u>49.4</u>
4'-6' (82)	<u>9.9 A</u>	<u>7.7</u>	0.8	<u>31.3</u>

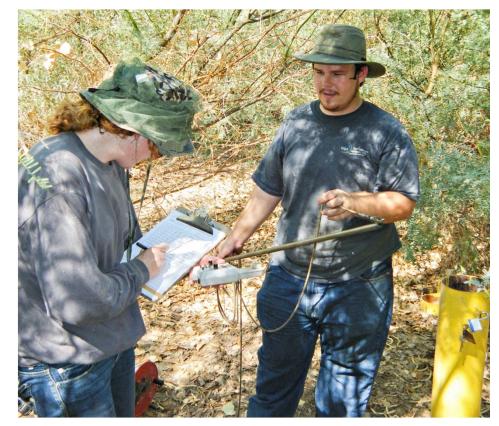
EC and RGR: 1. 3 dS/m =70%

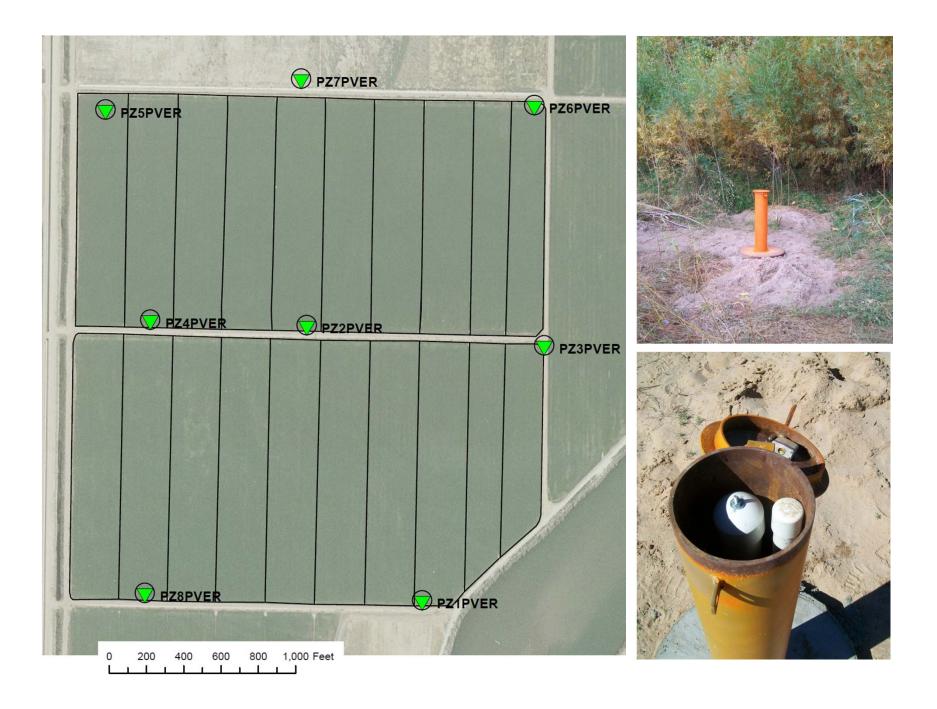

- 2. 5 dS/m =50%
- 3. 12 dS/m =0%


0-6' EC Site Comparison

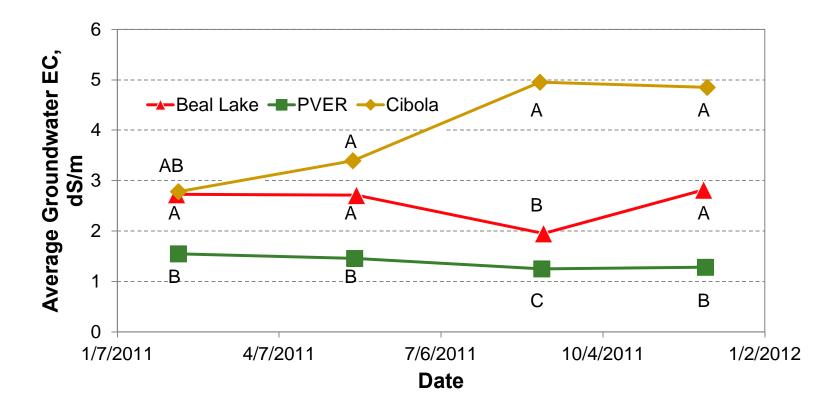
• Higher soil EC at Cibola.


2010 EC Summary: Beal Lake Restoration Site Bulk Soil EC

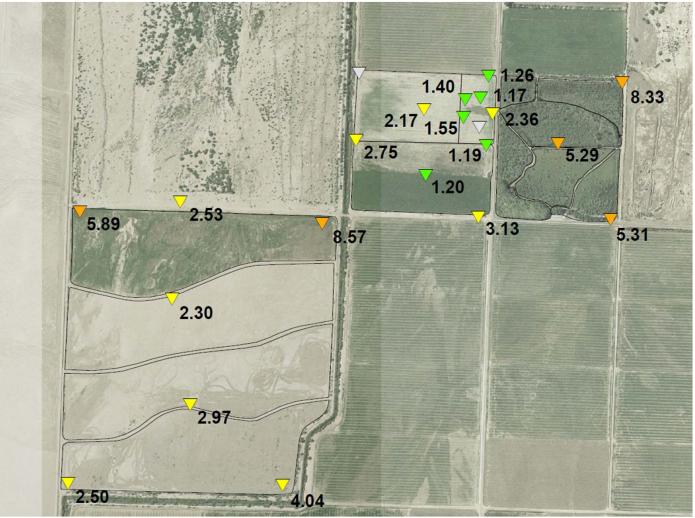

Beal Lake: 2010 0-6' EC and Irrigation Frequency



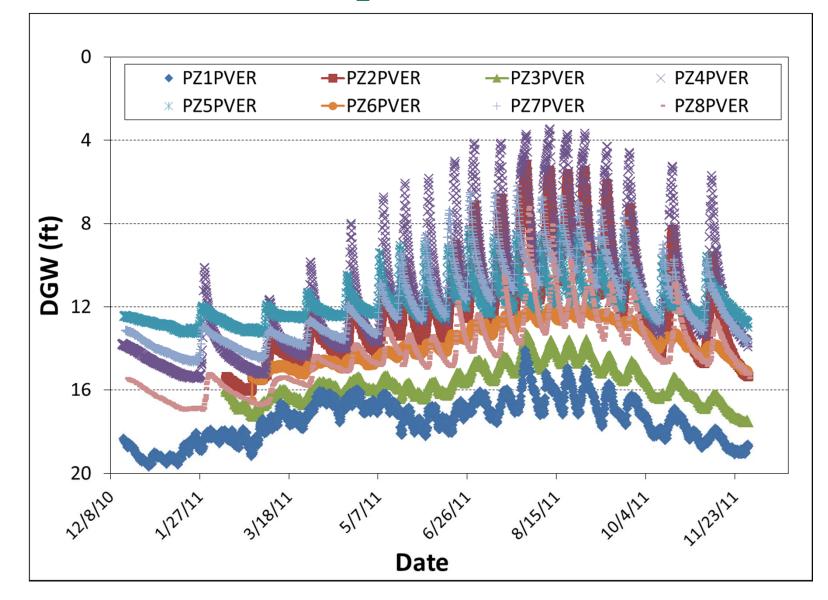
• Lower EC with increased irrigation frequency.


Groundwater Monitoring

- Grid of wells established at each site.
- Instrumented to monitor groundwater elevation and temperature.
 - Continuous salinity at two wells per site.
- Groundwater salinity (EC) field-measured quarterly.



Groundwater EC Through 2011



- Higher groundwater EC at Beal and Cibola.
- Lowest EC at PVER—note: greatest depth to GW.
- Greater variation at Cibola.

Groundwater EC Distribution: Cibola, May 2011

Groundwater Depth: PVER

2012 Activities

- Continued groundwater sampling and groundwater elevation data downloads.
- Repeat soil salinity sampling.
- Further analysis of soil and groundwater salinity results.
- Integration of vegetation monitoring data—correlation of key vegetation characteristics with soil and groundwater salinity?
- Develop salt balance model(s) and analyze irrigation management strategies.

Preliminary Conclusions

- Soil and groundwater salinity is a concern for riparian restoration.
- Various monitoring methods exist and are being implemented during this study.
- Soil and groundwater salinity are likely effects of:
 - Soil texture,
 - Depth to groundwater,
 - Communication with the Colorado River mainstem, and
 - Irrigation and drainage management.
- Long-term management effects will be modeled as a part of this study.
- Remediation options exist at various costs, but their effectiveness is uncertain.

Acknowledgements:

Havasu and Cibola NWR US FWS

California Fish and Game Gregg Garnett, Ashlee Rudolph

