Lab Home | Phone | Search
Center for Nonlinear Studies  Center for Nonlinear Studies
 Home 
 People 
 Current 
 Affiliates 
 Alumni 
 Visitors 
 Students 
 Research 
 ICAM-LANL 
 Publications 
 2007 
 2006 
 2005 
 2004 
 2003 
 2002 
 2001 
 2000 
 <1999 
 Conferences 
 Workshops 
 Sponsorship 
 Talks 
 Colloquia 
 Colloquia Archive 
 Seminars 
 Quantum Lunch 
 CMS Colloquia 
 Q-Mat Seminars 
 Q-Mat Seminars Archive 
 Archive 
 Kac Lectures 
 Dist. Quant. Lecture 
 Ulam Scholar 
 Colloquia 
 
 Jobs 
 Students 
 Summer Research 
 Student Application 
 Visitors 
 Description 
 Past Visitors 
 Services 
 General 
 PD Travel Request 
 
 History of CNLS 
 
 Maps, Directions 
 CNLS Office 
 T-Division 
 LANL 
 
Monday, August 03, 2015
3:00 PM - 4:00 PM
CNLS Conference Room (TA-3, Bldg 1690)

Colloquium

Understanding the Nature of Excitons in Organic Semiconductors from First Principles Theory

Sahar Sharifzadeh
Boston University

Design of new organic materials for efficient optoelectronics relies on understanding their excited-state electronic structure, which is significantly influenced by both chemistry and solid-state morphology. While many organic materials have varying degrees of disorder, crystalline films with long-range order provide an opportunity to understand many fundamental physical properties relevant to electronics. Here, we will present first-principles many-body perturbation theory calculations of prototypical bulk organic semiconductors, aimed at understanding the influence of solid-state structure on the nature of optical excitations (excitons). Analysis of the electron-hole correlation function, computed within the GW and Bethe-Salpeter equation approach, allows us to quantify the extent and degree of charge transfer of the solid-state exciton. For rubrene and pentacene crystals, we predict that the solid-state exciton is highly sensitive to strain and changes in inter-molecular orientation induced by functionalization. These results indicate that the nature of excitons in organic semiconductors can be controlled by tuning solid-­‐state morphology, suggesting a new strategy for the design of optoelectronic materials.

Host: Sergei Tretiak