# CRENSHAW COUNTY, ALABAMA



# NATURAL HAZARDS MITIGATION PLAN

July 2013

Prepared under the direction of the:

**Crenshaw County Hazard Mitigation Planning Committee** 

# Crenshaw County, Alabama Natural Hazards Mitigation Plan

The plan update was prepared under the direction of the Crenshaw County Hazard Mitigation Planning Committee. For additional information, please contact the EMA or the consultant, as follows:

Jessica Tomlin, Director Crenshaw County EMA P. O. Box 222 118 E. 3rd Street Luverne, AL 36049 Phone: 334-335-4538

E-mail: ccema@troycable.net

# **ACKNOWLEDGMENTS**

# **Crenshaw County Hazard Mitigation Planning Committee**

Jessica Tomlin- EMA Director
Benjamin Sanders - Crenshaw County Engineer
Morris Tate - City Engineer, City of Luverne
Dan Jackson - Mayor, Town of Glenwood
Bernie Sullivan - Mayor, Town of Brantley
Charles Swidell - Mayor, Town of Petrey
Joe Dexter Flynn - Mayor, Town of Rutledge
Carlos Dean - Mayor, Town of Dozier
Troy Hudson - Board Member, Crenshaw Co. Dept. of Education

# **Crenshaw County Emergency Management Agency**

Jessica Tomlin, Director

## **Table of Contents**

# **Chapter 1** Background and Purposes of the Plan

- 1.1 About the Plan
- 1.2 Scope
- 1.3 Authority
- 1.4 Funding
- 1.5 Purposes

## **Chapter 2** County Profile

- 2.1 Geographic Setting and History
- 2.2 Government
- 2.3 Demographics
- 2.4 Economy
- 2.5 Climate
- 2.6 Physical Features
- 2.7 Transportation
- 2.8 Utilities

# **Chapter 3** Planning Process

- 3.1 A Multi-Jurisdictional Planning Process
- 3.2 Hazard Mitigation Planning Committee
- 3.3 Public Involvement
- 3.4 Interagency and Intergovernmental Coordination
- 3.5 Participating Jurisdictions
- 3.6 Integration with Existing Plans
- 3.7 Professional Planning Guidance

# **Table of Contents (continued)**

# **Chapter 4** Risk Assessment

- 4.1 The Risk Assessment Process
- 4.2 Identification of Natural Hazards
- 4.3 Significant Natural Hazard Events
- 4.4 Tornadoes
- 4.5 Severe Thunderstorms
- 4.6 Floods
- 4.7 Droughts/Heat Waves
- 4.8 Hurricanes
- 4.9 Winter Storms/Freezes
- 4.10 Wildfires
- 4.11 Dam/Levee Failures
- 4.12 Earthquakes
- 4.13 Landslides
- 4.14 Vulnerability Assessment: Identification of Assets
- 4.15 Vulnerability Assessment: Impacts on Population, Buildings, Critical Facilities; Estimated Losses
- 4.16 Vulnerability Assessment: Analysis of Development Trends
- 4.17 Multi-Jurisdictional Risk Assessment

#### **Chapter 5** Mitigation Strategies

- 5.1 Purpose of the Mitigation Strategies
- 5.2 Steps in Developing the Strategies
- 5.3 The Planning Approach
- 5.4 Mitigation Issues and Opportunities
- 5.5 Existing Natural Hazard Mitigation Activities
- 5.6 Vision Statement
- 5.7 Comprehensive Mitigation Strategies

#### **Chapter 6** Community Mitigation Action Programs

- 6.1 Purpose of the Community Mitigation Action Programs
- 6.2 Prioritization of Mitigation Actions
- 6.3 Available Mitigation Measures
- 6.4 Mitigation Action Programs

# **Table of Contents (continued)**

| Chapter 7 | Plan Maintenance                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |
|-----------|-----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|           | 7.1<br>7.2<br>7.3<br>7.4<br>7.5                                                                                 | The Planning Cycle Plan Maintenance Procedures Implementation through Existing Programs Continued Public Involvement Ongoing Planning Needs                                                                                                                                                                                                                                                                                                                                              |  |  |
| Charts    | 2-1<br>4-1<br>4-2                                                                                               | Municipal Populations, Crenshaw County, Alabama<br>Annual Distribution by Month<br>Annual Distribution by Intensity                                                                                                                                                                                                                                                                                                                                                                      |  |  |
| Figures   | 5-1                                                                                                             | Steps in the Development of the Mitigation Strategies and Action Programs                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |
| Maps      | 2-1<br>2-2<br>2-3<br>2-4<br>4-1<br>4-2<br>4-3<br>4-4<br>4-5<br>4-6<br>4-7<br>4-8<br>4-9<br>4-10<br>4-11<br>4-12 | Location Map, Crenshaw County Population Density, Crenshaw County Topographic Map, Crenshaw County Transportation System, Crenshaw County Tornado Paths since 1950, Crenshaw County Tornado Threat Probabilities High Hazard Dams, Crenshaw County Earthquakes in Alabama since 1916 Earthquake Hazard Areas Landslide Hazard Areas, State of Alabama Communication Facilities Emergency Response Facilities Hazardous Materials Medical Care Facilities Schools Land Use and Land Cover |  |  |

# **Table of Contents (continued)**

| <b>Tables</b> | 2-1  | General Demographic Characteristics, Crenshaw County, Alabama |
|---------------|------|---------------------------------------------------------------|
|               | 2-2  | General Economic Characteristics, Crenshaw County, Alabama    |
|               | 2-3  | Largest Employers, Crenshaw County, Alabama                   |
|               | 2-4  | Climate Information, Crenshaw County, Alabama                 |
|               | 2-5  | Electronic Communication Providers, Crenshaw County, Alabama  |
|               | 3-1  | Hazard Mitigation Planning Committee Members                  |
|               | 4-1  | Natural Hazard Identification/Risk Assessment Exercise        |
|               | 4-2  | Summary of Federally-Declared Disasters, 1973-2003, Crenshaw  |
|               |      | County                                                        |
|               | 4-3  | Tornadoes since 1957, Crenshaw County                         |
|               | 4-4  | Fujita Tornado Damage Scale                                   |
|               | 4-5  | Thunderstorm and High Wind Events 1996-2003                   |
|               | 4-6  | Hail Events, 1995-2003                                        |
|               | 4-7  | Flood Events, Crenshaw County                                 |
|               | 4-8  | Flood Events Provided by the HMPC                             |
|               | 4-9  | Heat Index / Heat Disorders                                   |
|               | 4-10 | Hurricane/Tropical Storms since 1995, Crenshaw County         |
|               | 4-11 | Winter Storm Events, Crenshaw County                          |
|               | 4-12 | Wildfires in Crenshaw County                                  |
|               | 4-13 | Total County Building Inventory                               |
|               | 4-14 | Value of Buildings in County                                  |
|               | 4-15 | Population Vulnerable to Natural Hazards                      |
|               | 4-16 | Buildings Exposed to Natural Hazards                          |
|               | 4-17 | Value of Buildings Exposed to Natural Hazards                 |
|               | 4-18 | Annual Property Damage Estimates                              |
|               | 4-19 | Historical and Projected Population Growth Trends 1980-2025   |
|               | 4-20 | Population Growth Trends                                      |
|               | 4-21 | Multi-Jurisdictional Risk Assessment                          |
|               | 5-1  | National Flood Insurance Program Participants                 |
|               | 5-2  | Planning and Regulatory Tools by Jurisdiction                 |
|               | 6-1  | Mitigation Measures                                           |
|               | 6-2  | Crenshaw County Mitigation Action Program                     |
|               | 6-3  | Brantley Mitigation Action Program                            |
|               | 6-4  | Dozier Mitigation Action Program                              |
|               | 6-5  | Glenwood Mitigation Action Program                            |
|               | 6-6  | Luverne Mitigation Action Program                             |
|               | 6-7  | Petrey Mitigation Action Program                              |
|               | 6-8  | Rutledge Mitigation Action Program                            |
|               | 6-9  | Priority Projects for FEMA Funding                            |

# **Background and Purposes of the Plan**

#### 1.1 About the Plan

The <u>Crenshaw County</u>, <u>Alabama</u>, <u>Natural Hazards Mitigation Plan</u> is a multi-jurisdictional guide for all communities that have participated in the preparation of this plan through the Hazard Mitigation Planning Committee (HMPC). The jurisdictions that participated in the development of this plan include Crenshaw County, the City of Luverne, and the Towns of Brantley, Rutledge, Dozier, Glenwood, and Petrey. It fulfills the requirements of the Federal Disaster Mitigation Act of 2000 (DMA 2000) as administered by the Alabama Emergency Management Agency (AEMA) and the Federal Emergency Management Agency (FEMA) Region IV.

This plan complies with all of the eligibility requirements for FEMA grant assistance to participating localities, including the Hazard Mitigation Grant Program (HMGP), the National Flood Insurance Program's Community Rating System (CRS), the Flood Mitigation Assistance Program (FMA), and other Federal funding programs.

The planning process to revise the current Natural Hazards Mitigation Plan began in January 2013 with the appointment of the Hazard Mitigation Planning Committee by the Local Emergency Planning Committee of the Crenshaw County Emergency Management Agency (EMA). Each section of the plan was reviewed and updated by the planning committee as warranted.

# 1.2 Scope

The scope of the <u>Crenshaw County</u>, <u>Alabama</u>, <u>Natural Hazards Mitigation Plan</u> is the unincorporated and incorporated areas within the county. The plan addresses all natural hazards deemed to threaten property and persons within Crenshaw County. Both short-range and long-range hazard mitigation strategies are addressed, implementation tasks assigned, and funding alternatives identified.

In addition to this chapter, the plan contains the following elements:

- 1. A profile of the county's geography, history, physical features, and socioeconomic characteristics (Chapter 2 County Profile).
- 2. A description of the planning process that opens participation to all local governments, the public, academia, businesses, non-profit agencies, and regional, state and federal governments (Chapter 3 Planning Process).
- 3. A general assessment of the county's past and predicted future exposure to natural hazards and the risks that it faces, including impacts on buildings, critical facilities and infrastructure, and loss estimates (Chapter 4 Risk Assessment).

- 4. An assessment of local governments' capabilities to implement hazard mitigation measures, and the goals, objectives, policies and action items intended to effectively mitigate the county's natural hazard risks (Chapter 5 Mitigation Strategies).
- 5. The short-range (5-year) mitigation action programs for each participating jurisdiction (Chapter 6 Community Mitigation Action Programs).
- 6. Procedures for maintaining an active and effective long-range hazard mitigation planning and implementation program (Chapter 7 Plan Maintenance).

## 1.3 Authority

Section 409 of the Robert T. Stafford Disaster Relief and Emergency Assistance Act (Public Law 93-288, as amended), Title 44 CFR, as amended by Section 102 of the Disaster Mitigation Act of 2000, provides the framework for state and local governments to evaluate and mitigate all natural hazards as a condition for receiving federal disaster assistance. A major requirement of the law is the development of a local hazard mitigation plan.

## 1.4 Funding

Crenshaw County EMA and the HMPC updated this Mitigation Plan without funding.

#### 1.5 Purposes

Hazard mitigation is any action taken to permanently reduce or eliminate long-range risk to people and their property from the effects of hazards. These natural hazards can be of any type - tornadoes, floods, hurricanes, severe storms, winter freezes, droughts, landslides, or dam failures – resulting from natural disaster crises. Communities within the county can take steps to prepare and implement mitigation measures for almost any type of hazard that may threaten its citizens, businesses and institutions.

Hazard mitigation plans can identify a range of structural approaches to lower the costs of future disasters by meeting the unique needs of the community. For example, structural mitigation projects for flooding could involve modifying a stream channel to increase the conveyance of floodwaters or retarding the flow rate by the construction of detention facilities.

Mitigation strategies can also involve non-structural initiatives, such as educational programs to inform the community about the risks the public and its property face in order to encourage them to purchase insurance or retrofit their homes. Non-structural programs can also include developing and enforcing regulations to prevent construction in natural hazard areas or to ensure development that does occur will be resistant to the natural hazards threatening the area.

Mitigation programs and projects serve to lessen a community's vulnerability to the hardships and costs of disasters. The implementation of mitigation programs is a key component to achieving a sustainable community, one in which the economic and social needs of people, businesses, and institutions coexist with natural environmental constraints and are protected from the disruptions and impacts of emergencies and disasters. Hazard mitigation planning must be closely coordinated with a community's overall planning and development efforts. The most effective way for a community to initiate this objective is through a comprehensive local mitigation planning program. Comprehensive planning can provide Crenshaw County citizens a safe, healthy and prosperous place to live and work.

The purpose of the <u>Crenshaw County</u>, <u>Alabama,2013 Natural Hazards Mitigation Plan</u> is to develop a unified approach among its local governments for dealing with identified natural hazards and natural hazard management problems. This plan serves as a guide for local governments in their ongoing efforts to reduce vulnerability to the impacts produced by natural hazards.

Furthermore, the plan seeks to accomplish the following additional purposes:

- Establish an ongoing natural hazard mitigation planning program
- Identify and assess the natural hazards that pose a threat to life and property
- Evaluate additional mitigation measures that should be undertaken
- Outline procedures for monitoring the implementation of mitigation strategies

This plan provides guidance for local mitigation activities over the next five-year planning cycle. It encourages activities that are most effective and appropriate for mitigating the effects of all known natural hazards.

# **Chapter 2 County Profile**

# 2.1. Geographic Setting and History

Crenshaw County, population 13,906 (Census 2010), is located in rural southeast Alabama as shown on Map 2-1.

Containing approximately 611 square miles, it is not a part of any surrounding metropolitan area. The county is bordered on the north by Lowndes and Montgomery Counties, on the east by Butler County, on the south by Covington and Coffee Counties and on the west by Pike County. Created by act of the Alabama Legislature on November 24, 1866, it was named after Andrew Crenshaw. a prominent South Carolinian who settled in neighboring Butler County. The county seat was originally in the Town of Rutledge, but it moved to Luverne in 1893. The county also contains, in decreasing order of population, the City of Luverne (2,635), and the Towns of Brantley (920), Rutledge (476), Dozier (391), Glenwood (191), and Petrey (63).



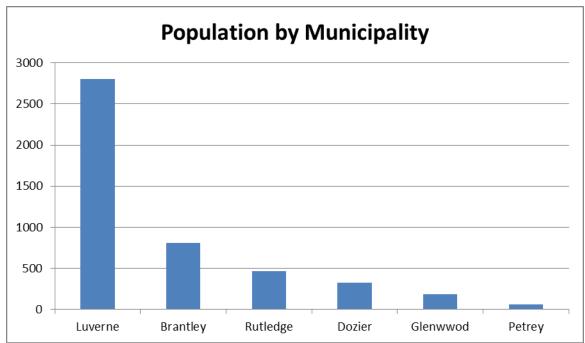
Map 2-1 Location Map, Crenshaw County

#### 2.2 Government

County government is in the form of a representative five-member commission presided over by the commission-appointed chairman. All of the municipalities have a mayor/city council form of government.

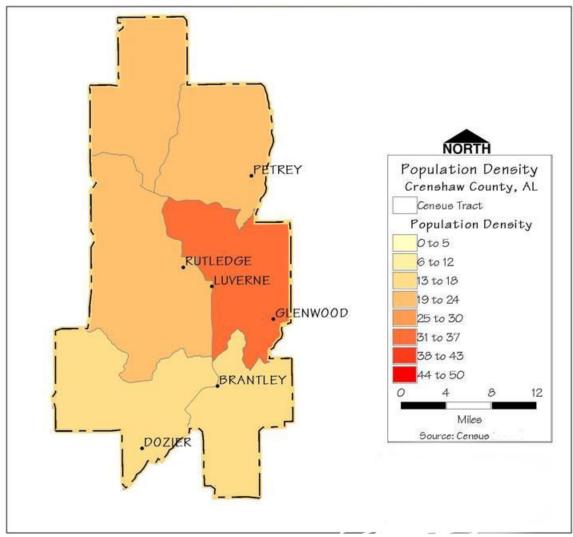
# 2.3 Demographics

General demographic information for Crenshaw County from Census 2010 is shown in Table 2-1. Crenshaw County's population, Census 2010, was 13,906. The City of Luverne's population was 2,635. The Town of Brantley was second largest with 920 people and third was Rutledge with 476. The population consists of 51.7% female and 48.3% male. The median age was 38.8 years. In 2010, 73.8% of the people were white and 24.8% were black. Of the houses in the county, 76.7% were owner occupied. The populations of each municipality and a population density map are depicted in Chart 2-1 and Map 2-2, respectively.


Table 2-1. General Demographic Characteristics, Crenshaw County, Alabama

| Subject                           | Number | Percent |
|-----------------------------------|--------|---------|
| Total Population                  | 13,906 | 100.0   |
| Sex and Age                       |        |         |
| Male                              | 6,714  | 48.3%   |
| Female                            | 7,192  | 51.7%   |
| Under 5 years                     | 829    | 6.0%    |
| 5 to 9 years                      | 943    | 6.8%    |
| 10 to 14 years                    | 924    | 6.6%    |
| 15 to 19 years                    | 989    | 7.1%    |
| 20 to 24 years                    | 734    | 5.3%    |
| 25 to 34 years                    | 719    | 5.2%    |
| 35 to 44 years                    | 776    | 5.6%    |
| 45 to 54 years                    | 927    | 6.7%    |
| 55 to 59 years                    | 934    | 6.7%    |
| 60 to 64 years                    | 939    | 6.8%    |
| 65 to 74 years                    | 1,189  | 7.7%    |
| 75 to 84 years                    | 702    | 6.7%    |
| 85 years and over                 | 310    | 2.2%    |
| Median age (years)                | 40.7   | (X)     |
| Race                              |        |         |
| One race                          | 13,704 | 98.5%   |
| White                             | 10,097 | 72.6%   |
| Black or African American         | 3,254  | 23.4%   |
| American Indian and Alaska Native | 57     | 0.4%    |
| Asian                             | 189    | 1.4%    |
| Some other race                   | 99     | 0.7%    |
| Two or more races                 | 202    | 1.5%    |
| Households                        |        |         |
| Total households                  | 5,652  | 100.0%  |
| Average household size            | 2.44   | (X)     |
|                                   |        |         |
|                                   |        |         |

Table 2-1. General Demographic Characteristics, Crenshaw County, Alabama


| Subject                       | Number | Percent |
|-------------------------------|--------|---------|
| Housing Occupancy             |        |         |
| Total housing units           | 6,735  | 100.0%  |
| Occupied housing units        | 5,652  | 83.9%   |
| Vacant housing units          | 1,083  | 16.1%   |
| Housing Tenure                |        |         |
| Occupied housing units        | 5,577  | 100.0   |
| Owner-occupied housing units  | 4,277  | 76.7    |
| Renter-occupied housing units | 1,300  | 23.3    |

Source: General Demographic Characteristics, Census 2010



Source: General Census 2010

Chart 2-1. Municipal Populations, Crenshaw County



Map 2-2. Population Density, Crenshaw County

#### 2.4 Economy

General economic information for Crenshaw County from Census 2010 is shown in Table 2-2. Table 2-3 lists the county's largest employers. Census 2010 reported that 54.1% of the population over 16-years-old was employed. The main occupation group was production, transportation, and material moving occupations with 24.3% of the workforce in that occupation, followed by management/professional with 22.4%, and followed by sales/office at 21.7% and service occupations at 14.2%. The main industry was education/health/social services - 18.1%, manufacturing was second with 16% of the working population employed in that industry, and third was retail at 10.4%. Families living below poverty were recorded at 18.6%.

Table 2-2. General Economic Characteristics, Crenshaw County, Alabama

| Subject                                                                | Number | Percent |
|------------------------------------------------------------------------|--------|---------|
| Employment Status                                                      |        |         |
| Population 16 years and over                                           | 10,717 | 100.0   |
| In labor force                                                         | 5,795  | 54.1    |
| Civilian labor force                                                   | 5,773  | 53.9    |
| Employed                                                               | 5,463  |         |
| Unemployed                                                             | 310    | 2.9     |
| Percent of civilian labor force                                        | 5.4    | (X)     |
| Armed Forces                                                           | 22     | 0.2     |
| Not in labor force                                                     | 4,922  | 45.9    |
| Occupation                                                             |        |         |
| Management, professional, and related occupations                      | 1,224  | 22.4    |
| Service occupations                                                    | 778    | 14.2    |
| Sales and office occupations                                           | 1,185  | 21.7    |
| Farming, fishing, and forestry occupations                             | 215    | 3.9     |
| Construction, extraction, and maintenance occupations                  | 734    | 13.4    |
| Production, transportation, and material moving occupations            | 1,327  | 24.3    |
| Industry                                                               |        |         |
| Agriculture, forestry, fishing and hunting, and mining                 | 496    | 9.1     |
| Construction                                                           | 485    | 8.9     |
| Manufacturing                                                          | 873    | 16.0    |
| Wholesale trade                                                        | 402    | 7.4     |
| Retail trade                                                           | 566    | 10.4    |
| Transportation and warehousing, and utilities                          | 348    | 6.4     |
| Information                                                            | 26     | 0.5     |
| Finance, insurance, real estate, and rental and leasing                | 274    | 5.0     |
| Professional, scientific, management, administrative, waste management | 237    | 4.3     |
| Educational, health and social services                                | 989    | 18.1    |
| Arts, entertainment, recreation, accommodation and food services       | 184    |         |
| Other services (except public administration)                          | 257    | 4.7     |
| Public administration                                                  | 326    |         |
| Poverty Status in 1999 (below poverty level)                           |        |         |
| Families                                                               | 729    | (X)     |
| Percent below poverty level                                            | (X)    | 18.6    |

Source: General Economic Characteristics, Census 2010

The SMART Alabama, LLC is the major employer in the county. The business enterprises involve varied products and services. Table 2-3 lists the ten largest employers in the county at this time.

Table 2-3. Largest Employers, Crenshaw County

| Company                            | Location        | Product/Service                         | # of<br>Employees |
|------------------------------------|-----------------|-----------------------------------------|-------------------|
| SMART Alabama, LLC                 | Luverne         | Automobile Industry                     | 756               |
| Crenshaw County Board of Education | Crenshaw County | Educational Service                     | 301               |
| Sister Schubert's                  | Luverne         | Yeast Rolls                             | 275               |
| Crenshaw County Hospital           | Luverne         | Health Care/Emergency<br>Services       | 175               |
| Dongwon                            | Crenshaw County | Door Frame - Automobile                 | 184               |
| Luverne Nursing Home               | Luverne         | Elderly Care                            | 163               |
| Browder Veneer                     | Crenshaw County | Veneer Manufacturer                     | 85                |
| Petrey Wholesale                   | Petrey          | Wholesale Goods                         | 75                |
| Hick's Inc.                        | Luverne         | Wholesale Sporting Goods<br>Distributor | 75                |
| Pepsi                              | Luverne         | Bottling Company & Distributor          | 70                |

Source: Crenshaw County Economic and Development Authority

#### 2.5 Climate

Crenshaw County's climate is typical of most Gulf Coast States. Annual precipitation is fairly heavy. Summers are long and hot with moist tropical air from the Gulf of Mexico dominating the area. Afternoon thunderstorms during the summer are common. Winters are generally moderate. Winter weather is the product of successive cold fronts moving across the area bringing heavy rains and cold temperatures which generally moderate in a couple of days. Tropical storms or hurricanes occasionally move across the county producing heavy rains and damaging winds. Table 2-4 provides average and extreme weather observations.


**Table 2-4. Weather Observations, Crenshaw County** 

| Item                                                | Observation |
|-----------------------------------------------------|-------------|
| Average Winter Temperature                          | 50° F       |
| Average Winter Minimum Temperature                  | 38° F       |
| Lowest Recorded Temperature (January 21, 1985)      | -3° F       |
| Average Summer Temperature                          | 79° F       |
| Average Summer Maximum Temperature                  | 89° F       |
| Highest Recorded Temperature (July 15, 1980)        | 105° F      |
| Total Annual Precipitation                          | 65 inches   |
| Heaviest Recorded One-Day Rainfall (March 13, 1960) | 8.13 inches |
| Average Seasonal Snowfall                           | 0.7 inches  |
| Heaviest Recorded Snowfall                          | 15.8 inches |
| Prevailing Wind                                     | North       |
| Highest Average Windspeed                           | 6 mph       |

Source: http://www.amea.com/comms/luverneprof.html

# 2.6 Physical Features

Crenshaw County is located in the Southern Coastal Plain physiographic region. The topography is primarily gently rolling. Soils located in alluvial and floodplain areas are very fertile, and the best for agriculture. The county's drainage systems generally run in a north to south direction. Crenshaw County's topography is depicted in Map 2-3.



Map 2-3. Topographic Map, Crenshaw County

#### 2.7 Transportation

As depicted on Map 2-4, U.S. Highways 331 and 29 run through Crenshaw County. These highways intersect in Luverne, located in the center of the county. There are numerous county roads serving the rural areas. The Southern Alabama Railroad cuts through the southeastern portion of the county. The Frank Sikes Airport provides air transportation.

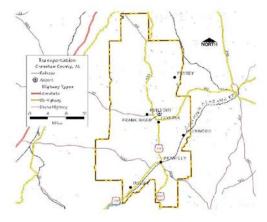
#### 2.8 Utilities

**Electricity Providers -** Covington Electric, Pioneer Electric, Alabama Power and South Alabama Electric Cooperative.

Gas Providers - Southeast Alabama Gas District.

**Water Service -** Water systems are shown in Table 2-5. The City of Luverne is not interconnected to the other water systems.

**Table 2-5. Water Service Providers** 


| System                                | Location      | Number of |
|---------------------------------------|---------------|-----------|
|                                       |               | Customers |
| Quint-Mar Water Authority             | Highland Home | 2,405     |
| South Crenshaw County Water Authority | Brantley      | 1,820     |
| Luverne Water Works and Sewer Board   | Luverne       | 1,200     |
| Brantley Water Works                  | Brantley      | 415       |
| Rutledge Water Works                  | Rutledge      | 280       |
| Dozier Water Works                    | Dozier        | 200       |
| Glenwood Water Works                  | Glenwood      | 141       |

**Sanitary Sewer -** Provided by municipalities. The Town of Petrey has septic tanks only.

**Telephone Communications.** BellSouth, Centurytel, Mon-Cre and Goshen.

Cable TV - Troy Cablevision, Mallard Cablevision

**Print.** The Luverne Journal



Map 2-4. Transportation System, Crenshaw County *Source: HAZUS 2010* 

# **The Planning Process**

#### 3.1 A Multi-Jurisdictional Planning Process

The Hazard Mitigation Committee represents all incorporated cities and towns and all unincorporated communities and areas of Crenshaw County. The Committee seeks a coordinated and active mitigation planning process among all jurisdictions with their full participation in plan development and implementation. This integrated planning process combines the risks, issues, goals, and mitigation measures of each community into a consolidated plan whereby all jurisdictions have equal opportunity for participation and full representation in the planning process. This process, therefore, satisfies the requirements of CFR Section 201.6(a) (3) of the DMA 2000 in which "multi-jurisdictional plans may be accepted, as appropriate, as long as each jurisdiction has participated in the process."

Representatives from all jurisdictions have participated in the planning process by attending Committee meetings, completing Committee assignments and exercises, attending the public meeting, and completing other planning activities during the drafting phase of this Plan. In addition to Committee representation, each jurisdiction conducted an independent public hearing to receive public comments prior to final action by each governing body to adopt the plan. The minimum level of Committee participation for each jurisdiction was achieved by one or more representatives that were actively involved in one or more planning activities conducted in the drafting phase of the plan. Authorized representatives for any given jurisdiction are shown in Table 3-1.

#### 3.2 Hazard Mitigation Planning Committee

The Hazard Mitigation Planning Committee is a special planning committee containing representatives of organizations in Crenshaw County concerned with natural disasters who guided the development of this natural hazards mitigation plan. The members of the planning committee and the organizations or jurisdiction they represent are as shown in Table 3-1.

Table 3-1. Hazard Mitigation Planning Committee Members

| Name                   | Agency                                   | Representing                          |
|------------------------|------------------------------------------|---------------------------------------|
| Benjamin Sanders       | Crenshaw Co<br>Engineer                  | Crenshaw County and<br>Municipalities |
| Jessica Tomlin         | Crenshaw County-<br>EMA                  | Crenshaw County and<br>Municipalities |
| Mayor Bernie Sullivan  | Town of Brantley-<br>Office of the Mayor | Town of Brantley                      |
| Mayor Charles Swindell | Town of Petrey-<br>Office of the Mayor   | Town of Petrey                        |
| Mayor Dan Jackson      | Town of Glenwood-                        | Town of Glenwood                      |

Formatted: Bullets and Numbering

Table 3-1. Hazard Mitigation Planning Committee Members

| Name                   | Agency              | Representing                    |
|------------------------|---------------------|---------------------------------|
|                        | Office of the Mayor |                                 |
| Mayor Joe Dexter Flynn | Town of Rutledge-   | Town of Rutledge                |
|                        | Office of the Mayor |                                 |
| Mayor Carlos Dean      | Town of Dozier-     | Town of Dozier                  |
|                        | Office of the Mayor |                                 |
| Morris Tate            | City of Luverne-    | City of Luverne                 |
|                        | Engineer            |                                 |
| Troy Hudson            | Board Member,       | Superintendent, Crenshaw County |
|                        | Crenshaw County     | Department of Education         |
|                        | Department of       |                                 |
|                        | Education           |                                 |

Over the course of the Committee meetings during the drafting phase, each Committee member was asked to participate in five exercises designed by the Committee to solicit input into the planning process by each member. (Section 5.2 in Chapter 5 presents complete descriptions of the exercises and their application in the planning process). Representatives from all jurisdictions completed all of the exercises. In Committee Exercise #1 - Mission/Vision Statements - the members created a mission statement for the Committee and a vision statement for a disaster-resistant community. Committee Exercise #2 - Hazard Identification - was used to identify the natural hazards members believe were possible risks/threats to their jurisdiction and rank those hazards according to those risks/threats. Committee Exercise #3 - Hazard Profiles - required members to provide information on natural hazards that occurred in their jurisdiction. Committee Exercise #4 - Capabilities Assessment for Hazard Mitigation - surveyed members to identify regulatory tools, i.e. codes, ordinances; what their personnel resources are, i.e. city engineer; and what financial resources are available, i.e. CDBG, taxes, within their jurisdictions. Committee Exercise #5 -Alternative Mitigation Measures - asked the participants to describe the most critical natural hazard issues and opportunities and make recommendations for mitigation measures and projects. The information provided from the members' participation in Committee meetings and in Committee exercises form the basis for this Plan. Results of all exercises are maintained in the EMA offices.

Members were recommended by Jessica Tomlin, Director of the Crenshaw County EMA, and then appointed by the Local Emergency Planning Committee for the entire five-year cycle of this mitigation plan. Senior elected officials represented their respective municipalities. Each represented member of the committee was able to attend one or more of the meetings held. Unincorporated areas were represented by the county engineer and EMA Director. The staff of the Crenshaw County EMA serves the committee in a support role as facilitator with the participating municipalities and the County Commission. The mission statement of the committee is as follows:

To oversee and establish a comprehensive hazard mitigation planning process that:

• Engages public participation and support;

- Facilitates federal, state, regional and local agencies' coordination;
- Constantly monitors and evaluates the potential risks of natural hazards to life and property;
- Actively mobilizes all available community resources and measures to mitigate the threats of natural hazards; and,
- Results in programmed actions with specific results.

During the planning process, the committee held meetings in January and May 2013. Documentation of these meetings in the form of sign-in sheets and meeting agendas are on file in the EMA office.

#### 3.23.3 Public Involvement

The Hazard Mitigation Planning Committee solicited public input into the mitigation plan through two community meetings and an internet Web site. They were also invited to attend committee meetings and provide their comments and concerns. The HMPC sponsored a special community meeting for additional public input into the planning process during the drafting stage of the plan. At that meeting, the plan, hazards, and mitigation measures were discussed among participants. Displays and handouts regarding various hazards were made available to the public. The public was encouraged to fill out a public survey about the risks and threats of hazards. A public hearing to receive comments was held by each jurisdiction prior to adopting the plan by resolution, as required by State law. The original resolutions and public hearing minutes are kept on file at the administrative offices of each jurisdiction and the Crenshaw County EMA office

Public meetings were held on January 14, 2013 and May 3, 2013 to obtain input into this plan.

A public hearing to receive comments was held by each jurisdiction prior to adopting this Plan by resolution, as required by state law.

#### 3.4 Interagency and Intergovernmental Coordination

The committee members recommended which organizations and agencies in the area were to be contacted in regard to the plan. Agencies were chosen based on their relation to hazard mitigation; their interest in those areas affected by hazards, i.e. businesses; and the impact hazards in Crenshaw County could have on surrounding counties. In addition, the following agencies were contacted in regard to this plan requesting their input and cooperation. The National Weather Service provided data on hazard events and a representative of the Geological Survey of Alabama submitted comments on the plan. There was no input from the agencies listed below.

#### Federal Agencies

- National Weather Service Mobile Office
- Natural Resources Conservation Service Alabama District

Formatted: Bullets and Numbering

• U.S. Army Corps of Engineers – Mobile District

#### State Agencies

- Alabama Emergency Management Agency (AEMA)
- Alabama Department of Economic and Community Affairs (ADECA)
- Alabama Department of Environmental Management (ADEM)
- Alabama Department of Transportation (ALDOT)
- Alabama Department of Natural Resources (ANDR)
- Alabama Forestry Commission Crenshaw County Office
- Geological Survey of Alabama

#### Regional Agencies

• South-Central Alabama Development Commission

#### Businesses, Academia, Non-Profits & Regional Agencies

- American Red Cross -Montgomery Area Chapter
- Luverne Chamber of Commerce

#### **Adjacent Counties**

- Butler County, Alabama
- Coffee County, Alabama
- Covington County, Alabama
- Lowndes County, Alabama
- Montgomery County, Alabama
- Pike County, Alabama

The notice on the following page was sent via e-mail or fax to agencies having an interest in the hazard mitigation plan.

#### NOTICE OF DRAFT PLAN AND REQUEST FOR COMMENTS

# <u>Crenshaw County, Alabama,</u> 2013 Updated Natural Hazard Mitigation Plan

<u>Crenshaw County is currently updating their Natural Hazards Mitigation Plan for municipalities and unincorporated areas. The plan will serve as a strategic planning guide in fulfillment of requirements of the Federal Disaster Mitigation Act of 2000 (DMA 2000), as administered by the Federal Emergency Management Agency (FEMA). DMA 2000 provides the framework for state and local governments to evaluate and mitigate all hazards as a condition to receiving federal disaster assistance.</u>

A major requirement of the federal law is to update the local hazard mitigation plan. Among other DMA 2000 planning criteria, an "open public involvement process is essential to the development of an effective plan. In order to develop a more comprehensive approach to reducing the effects of natural disasters, the planning process shall include: An opportunity for neighboring communities, local and regional agencies involved in hazard mitigation activities, and agencies that have the authority to regulate development, as well as businesses, academia and other private and non-profit interests to be involved in the planning process."

To meet the coordination requirements, the County's Hazard Mitigation Planning Committee requests your organization's involvement in the planning process. You may view the draft plan in the EMA office. Contact information for the EMA Director may be found in the draft plan. This site is maintained to inform the general public and interested parties of the planning process and to allow a convenient means to comment on the plan as it is drafted. You may forward this message to any agency or individual that might have an interest in the mitigation plan. On behalf of the Hazard Mitigation Planning Committee, your participation is appreciated.

### 3.5 Participating Jurisdictions

All jurisdictions within Crenshaw County have participated in the planning process by direct representation on the planning committee and have committed to adopting the final plan by formal resolution. All members were required to participate. Individuals whose schedule did not permit their presence at the meetings received the questionnaires through the mail or via fax. They did reply by fax, email, postal mail or phone if they were unable to attend the meeting. These jurisdictions include the city of Luverne, the Municipalities of Brantley, Petrey, Glenwood, Rutledge, Dozier, and the Crenshaw County Commission. The Town of Highland Home, under the process of incorporation during this plan, also participated. The unincorporated areas of the county were represented by the county engineer, fire association, and EMA Coordinator.

All municipalities participated through one or more of the following means:

- Responding to questionnaires and Committee exercises
- Attending one or more Committee meetings
- Attending public meetings
- Reviewing draft plan sections
- Offering comments on the draft plan
- Adopting the plan through formal resolution (Prior to adoption, the municipalities reviewed the resolution and conducted a public hearing.)

#### 3.6 Integration with Existing Plans

The information in this plan was derived from input from the committee members and the agencies listed in section 3.4, National Flood Insurance Program, and various public and private websites, as well as, HAZUS 2007 software as noted throughout the study. The websites included NOAA, University of Alabama, USGS, US Census, FEMA and the Department of Natural Resources. This document will be incorporated into the Crenshaw County Comprehensive Emergency Operations Plan administered through the Emergency Management Agency. No comprehensive or capital improvement plans are currently in effect for the county, but the requirements of this mitigation plan will be integrated into any future planning documents at the appropriate time.

<u>Incorporated into this plan is information from the following plans</u>, studies and reports, among other resources:

- Alabama Data Center Demographic and Economic Reports
- FEMA and Local Disasters Reports
- Flood Insurance Studies and Flood Insurance Rate Maps
- NOAA and NWS Records
- US Census

Formatted: Bullets and Numbering

Formatted: Bullets and Numbering

# Chapter 4 Risk Assessment

#### 4.1 The Risk Assessment Process

This risk assessment identifies all natural hazards affecting Crenshaw County. It provides information on the history and extents of hazards, evaluates the possible effects, identifies vulnerable populations and assets (buildings, critical facilities, and essential infrastructure), and estimates potential losses that might occur. The risk assessment process identifies the most critical problems and issues that require mitigation actions.

#### 4.2 Identification of Natural Hazards

The Planning Committee completed *Committee Exercise #2 - Hazard Identification* in which they reviewed a list of all potential natural hazards and identified those that might occur in their jurisdiction. Next, members ranked the risk or probability of the hazard occurring and the threat of damage that might be incurred should the event take place. The results are presented in Table 4-1.

| Table 4-1. Natural Hazard Identification/Risk Assessment Exercise |      |              |              |                                                          |  |
|-------------------------------------------------------------------|------|--------------|--------------|----------------------------------------------------------|--|
| Hazard                                                            | Exp* | Risk**       | Threat***    | Jurisdiction Affected                                    |  |
| Tornadoes                                                         | Yes  | Very Severe  | Very Severe  | Dozier, Brantley, Glenwood, Luverne,<br>Rutledge, Petrey |  |
| Severe storms                                                     | Yes  | Very Severe  | Very Severe  | Dozier, Brantley, Glenwood, Luverne,<br>Rutledge, Petrey |  |
| Floods                                                            | Yes  | Very Severe  | Moderate     | Dozier, Brantley, Glenwood, Luverne, Rutledge, Petrey    |  |
| Droughts/Heat<br>Waves                                            | Yes  | Very Severe  | Very Severe  | Dozier, Brantley, Glenwood, Luverne, Rutledge, Petrey    |  |
| Hurricanes                                                        | Yes  | Severe       | Very Severe  | Dozier, Brantley, Glenwood, Luverne, Rutledge, Petrey    |  |
| Winter storms/<br>Freezes                                         | Yes  | Moderate     | Severe       | Dozier, Brantley, Glenwood, Luverne, Rutledge, Petrey    |  |
| Dam/Levee<br>Failure                                              | Yes  | Moderate     | Severe       | Dozier, Brantley, Glenwood, Luverne,<br>Rutledge, Petrey |  |
| Wildfire                                                          | Yes  | Slight Risk  | Slight Risk  | Dozier, Brantley, Glenwood, Luverne,<br>Rutledge, Petrey |  |
| Earthquakes                                                       | Yes  | Minimal Risk | Slight Risk  | Dozier, Brantley, Glenwood, Luverne,<br>Rutledge, Petrey |  |
| Landslides                                                        | Yes  | Minimal Risk | Minimal Risk | Dozier, Brantley, Glenwood, Luverne,<br>Rutledge, Petrey |  |

<sup>\*</sup>*EXP* is the exposure to hazard

<sup>\*\*</sup>Risk is the probability of the hazard event occurring within the county

#### 4.3 Significant Natural Hazard Events

In Committee Exercise #3 - Hazard Profiles, the Committee profiled past hazards. All jurisdictions responded to the exercise and hazards are listed in Table 4-2. Numerous sources have been utilized to profile significant hazards, including: the Storm Events Database of the National Climatic Data Center (NCDC); FEMA Region IV –Presidential Declarations; the National Weather Service; the Crenshaw County EMA; the Alabama Geological Survey and the HMPC Members. The Storm Events Database may be searched at the following link: <a href="http://www4.ncdc.noaa.gov/cgiwin/wwcgi.dll?">http://www4.ncdc.noaa.gov/cgiwin/wwcgi.dll?</a> wwevent~storms.

Crenshaw County has been included in a total of sixteen federal disaster declarations from 1975 to 2008. These declarations are listed in Table 4-2 as provide by FEMA, Region IV. All of these events did not necessarily occur within the boundaries of Crenshaw County. When major damage from a natural disaster occurs, FEMA, as a matter of practice, includes a "buffer" area of adjoining counties in the event it is later determined the damage was more widespread. Specific instances of this practice are discussed as they are encountered in the following hazard profiles.

| Table 4-2. Summary of Federally-Declared Disasters 1973-2013,<br>Crenshaw County |                     |                     |                              |  |  |
|----------------------------------------------------------------------------------|---------------------|---------------------|------------------------------|--|--|
| Disaster No.                                                                     |                     |                     |                              |  |  |
| 458                                                                              | Flood               | 03-14-1975          | IA, PA-ABCDEFG, DH, DUA, IFG |  |  |
|                                                                                  | Hurricane Eloise    | 09-(13-27)-<br>1975 |                              |  |  |
| 488                                                                              | Severe Storm        | 10-10-1975          | IA, PA-ABCDEFG, DH, DUH, IFG |  |  |
| 3045                                                                             | Drought             | 08-08-1977          | PA-AB                        |  |  |
| 598                                                                              | Hurricane Frederick | 09-13-1979          |                              |  |  |
| 742                                                                              | Hurricane Elena     | 09-07-1985          |                              |  |  |
| 861                                                                              | Severe Storm        | 03-23-1990          | IA, PA-ABCDEFG, DH, DUA, IFG |  |  |
| 3096                                                                             | Snow Storm          | 03-15-1993          | PA-AB                        |  |  |
| 1070                                                                             | Hurricane Opal      | 10-10-1995          | IA, PA-ABCDEFG, DH, DUA, IFG |  |  |
| 1208                                                                             | Severe Storm        | 03-17-1998          | IA, PA-ABCDEFG, DH DUA, IFG  |  |  |
| 3133                                                                             | Hurricane George    | 09-29-1998          | PA-AB                        |  |  |
| 1250                                                                             | Hurricane George    | 10-06-1998          | IA, PA-ABCDEFG, GH, DUA. IFG |  |  |
| 1549                                                                             | Hurricane Ivan      | 09-15-2004          | IA,PA-ABCDEFG,GH,DUA,IFG     |  |  |
| 1593                                                                             | Hurricane Dennis    | 07-10-2005          | PA-ABCDEFG,GH,DUA,IFG        |  |  |
| 3237                                                                             | Hurricane Katrina*  | 09-10-2005          | IA, PA-AB                    |  |  |
| 3292                                                                             | Hurricane Gustav*   | 08-30-2008          | PA-AB                        |  |  |

| 1835 | Flooding | 04-28-2009 | PA-ABCDEFG |
|------|----------|------------|------------|
| 1870 | Flooding | 12-31-2009 | PA-ABCDEFG |

\* Crenshaw County was listed under the Emergency Declarations for these disasters; however, were not designated counties under the Major Disaster Declaration.

| * Declaration Ty                       | ype Key                      |  |  |  |
|----------------------------------------|------------------------------|--|--|--|
| IA – Individual assistance             | A – Debris removal           |  |  |  |
| PA – Public assistance                 | B – Protective measures      |  |  |  |
| DH – Disaster housing                  | C – Roads and bridges        |  |  |  |
| CC – Crisis counseling                 | D – Water control facilities |  |  |  |
| DFA – Direct federal assistance        | E – Public buildings         |  |  |  |
| DUA – Disaster unemployment assistance | F – Public utilities         |  |  |  |
| HM – Hazard mitigation                 | G – Recreation               |  |  |  |
| IFG – Individual and family grant      | SA – Stafford Act            |  |  |  |
| SBA – Small Business Administration    | 403C – Department of Defense |  |  |  |
|                                        |                              |  |  |  |

#### 4.4 Tornadoes

**Hazard Description.** A tornado is a violent windstorm characterized by a twisting, funnel-shaped cloud. It is spawned by a thunderstorm or hurricane and produced when cool air overrides a layer of warm air, forcing the warm air to rise rapidly. Tornado season is generally March through August, although tornadoes can occur at any time of year. They tend to occur in the afternoons and evenings. Over 80 percent of all tornadoes strike between noon and midnight.

**Hazard Profile.** Table 4-3 lists the tornado events for Crenshaw County contained in the Storm Events Database for which there are reported damages. The earliest damage-causing event on record occurred in 1957 with the most recent in 2013. Tornado magnitudes are measured on the Fujita Scale, shown in Table 4-4. Other tornadoes with a magnitude of F0 are listed in the database but were not damage causing.

Since 1950, a total of 16 tornado events and one funnel cloud have caused no deaths, 30 injuries and approximately \$3.455 million in property damage in the county since 1957. According to NCDC data Crenshaw County's worst tornado was an F1 in January 1990 that caused 28 injuries and \$2.5 million in damages. It cut a path of destruction 73 yards wide and 8 miles long, beginning at LAT/LONG 31.783333/86.35 and ending at LAT/LONG 31.883333/86.2.

Table 4-3. Tornadoes Since 1957, Crenshaw County

|                             |            |        |         |           |        |          | Property                     | Crop            |
|-----------------------------|------------|--------|---------|-----------|--------|----------|------------------------------|-----------------|
| Location                    | Date       | Time   | Туре    | Magnitude | Deaths | Injuries | Damage                       | Damage          |
| Crenshaw – Began at Lat     |            |        |         | _         |        |          | _                            |                 |
| 31.7 Long 86.3 and Ended at |            | 11:50  |         |           |        |          |                              |                 |
| unknown                     | 6/28/1957  | a.m.   | Tornado | F0        | 0      | 0        | \$ -                         | \$ -            |
| Crenshaw Began at Lat 31.7  |            |        |         |           |        |          |                              |                 |
| Long 86.216667 and Ended    |            | 9:30   |         |           |        |          |                              |                 |
| at unknown                  | 9/29/1965  | p.m.   | Tornado | F2        | 0      | 2        | \$25,000.00                  | \$ -            |
| Crenshaw - Began at Lat     |            |        |         |           |        |          |                              |                 |
| 31.933333 Long 86.4531      |            |        |         |           |        |          |                              |                 |
| and Ended at Lat 31.216667  |            | 2:30   |         |           |        |          |                              |                 |
| and Long 86                 | 4/18/1969  | a.m.   | Tornado | F4        | 0      | 0        | \$250,000.00                 | \$ -            |
| Crenshaw - Began at Lat     |            |        |         |           |        |          |                              |                 |
| 31.55 Long 86.233333 and    |            |        |         |           |        |          |                              |                 |
| Ended at Lat 31.583333 and  |            | 7:30   |         |           |        |          |                              |                 |
| Long 86.133333              | 5/18/1969  | a.m.   | Tornado | F2        | 0      | 0        | \$25,000.00                  | \$ -            |
| Crenshaw - Began at Lat     |            | ·      |         |           |        |          |                              |                 |
| 31.716667 Long 86.266667    |            | 3:00   |         |           |        |          |                              |                 |
| and Ended at unknown        | 11/20/1973 | p.m.   | Tornado | F2        | 0      | 0        | \$25,000.00                  | \$ -            |
| Crenshaw - Began at Lat     |            |        |         |           |        |          |                              |                 |
| 31.5 Long 86.35 and Ended   |            |        |         |           |        |          |                              |                 |
| at Lat 31.516667 and Long   |            | 1:45   |         |           |        |          |                              |                 |
| 86.333333                   | 5/20/1980  | a.m.   | Tornado | F1        | 0      | 0        | \$25,000.00                  | \$ -            |
| Crenshaw - Began at Lat     |            |        |         |           |        |          |                              |                 |
| 31.783333 Long 86.35 and    |            |        |         |           |        |          |                              |                 |
| Ended at Lat 31.883333 and  |            | 5:50   |         |           |        |          |                              |                 |
| Long 86.2                   | 1/25/1990  | a.m.   | Tornado | F1        | 0      | 28       | \$2,500,000.00               | \$ -            |
|                             |            | 7:30   |         |           |        |          |                              |                 |
| Brantley                    | 10/4/1995  | p.m.   | Tornado | F0        | 0      | 0        | \$10,000.00                  | \$ -            |
|                             |            | 8:00   |         |           |        |          |                              |                 |
| Saville                     | 10/4/1995  | p.m.   | Tornado | F0        | 0      | 0        | \$10,000.00                  | \$ -            |
|                             |            | 9:15   |         |           |        |          |                              |                 |
| Highland Home               | 11/7/1996  | p.m.   | Tornado | F1        | 0      | 0        | \$70,000.00                  | \$ -            |
|                             |            | 1:03   |         |           |        |          |                              |                 |
| Glenwood                    | 9/28/1998  | p.m.   | Tornado | F1        | 0      | 0        | \$50,000.00                  | \$ -            |
|                             |            | 1:05   |         |           |        |          |                              |                 |
| Patsburg                    | 9/28/1998  | p.m.   | Tornado | F1        | 0      | 0        | \$100,000.00                 | \$ -            |
|                             |            | 1:10   |         |           |        |          |                              |                 |
| Luverne                     | 9/28/1998  | p.m.   | Tornado | F1        | 0      | 0        | \$50,000.00                  | \$ -            |
|                             |            | 1:10   |         |           |        |          |                              |                 |
| Petrey                      | 9/28/1998  | p.m.   | Tornado | F1        | 0      | 0        | \$50,000.00                  | \$ -            |
| •                           |            | 6:20   |         |           |        |          | ·                            |                 |
| Bradleyton                  | 4/30/2005  | a.m.   | Tornado | F0        | 0      | 0        | \$150,000.00                 | \$ -            |
| -                           |            | 5:30   |         |           |        |          | ·                            |                 |
| Dozier                      | 5/31/2005  | p.m.   | Tornado | F0        | 0      | 0        | \$15,000.00                  | \$ -            |
|                             |            | 3:00   |         |           |        |          |                              |                 |
| Saville                     | 4/14/2007  | p.m.   | Tornado | F0        | 0      | 0        | \$100,000.00                 | \$ -            |
|                             |            | 3:29   |         |           |        |          |                              | 3:00            |
| Luverne                     | 12/26/2012 | p.m.   | Tornado | EF1       | 00     | 1 0      | <b>\$000</b> 0000            | 07\$4/104/12007 |
| •                           | <u> </u>   | 3:35p. |         | •         |        |          |                              | 3:00            |
| Patsburg                    | 12/26/2012 | m.     | Tornado | EF1       | 0      | 10       | \$ <b>300</b> ,0000040104/20 |                 |
| ·                           |            |        |         |           |        |          |                              |                 |
|                             |            |        |         | TOTALS    | \$ -   | \$ -     | <b>3₺₿ქ</b> 550000.00        | \$ -            |

Source: NOAA; http://www4.ncdc.noaa.gov/cgi-win/wwcgi.dll?wwevent~storms

**Community Impacts.** The damage from a tornado is the result of the high wind velocity and wind-blown debris. Tornado winds can approach speeds as high as 300 miles per hour, travel distances over 100 miles and reach heights over 60,000 feet above ground. The potential damage resulting from a tornado is directly correlated to the strength of the particular tornado and is quantified utilizing the Fujita Tornado Scale, shown in Table 4-4.

Table 4-4. Fujita Tornado Damage Scale

| Scale | Wind Estimate<br>(mph) | Typical Damage                                                                                                                                                                                                           |
|-------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| F0    | < 73                   | <u>Light damage</u> . Some damage to chimneys; branches broken off trees; shallow-rooted trees pushed over; sign boards damaged.                                                                                         |
| F1    | 73-112                 | <u>Moderate damage</u> . Peels surface off roofs; mobile homes pushed off foundations or overturned; moving autos blown off roads.                                                                                       |
| F2    | 113-157                | <u>Considerable damage</u> . Roofs torn off frame houses; mobile homes demolished; boxcars overturned; large trees snapped or uprooted; light-object missiles generated; cars lifted off ground.                         |
| F3    | 158-206                | <u>Severe damage</u> . Roofs and some walls torn off well-constructed houses; trains overturned; most trees in forest uprooted; heavy cars lifted off the ground and thrown.                                             |
| F4    | 207-260                | <u>Devastating damage</u> . Well-constructed houses leveled; structures with weak foundations blown away some distance; cars thrown and large missiles generated.                                                        |
| F5    | 261-318                | <u>Incredible damage</u> . Strong frame houses leveled off foundations and swept away; automobile-sized missiles fly through the air in excess of 100 meters (109 yds); trees debarked; incredible phenomena will occur. |

Source: <a href="http://www.spc.noaa.gov/faq/tornado/f-scale.html">http://www.spc.noaa.gov/faq/tornado/f-scale.html</a>

Charts 4-1 and 4-2 show the characteristics of tornadoes since 1950 within a 20-mile radius of the center of Crenshaw County. (Source: VorTek, LLC. SATT 3.0 Site Assessment of Tornado Threat software)

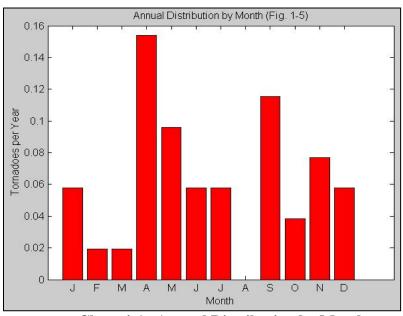
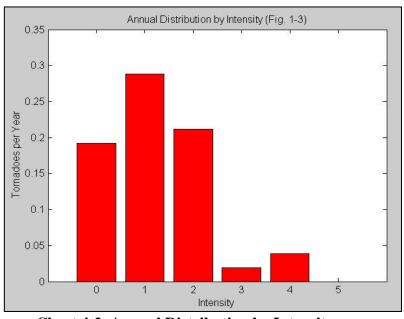
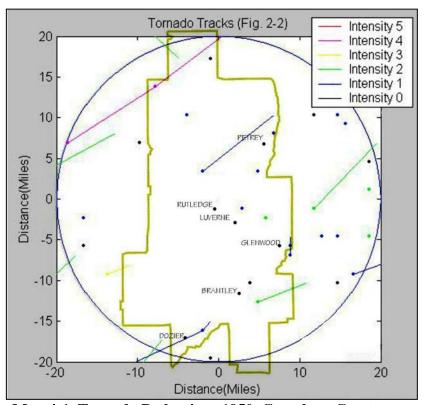
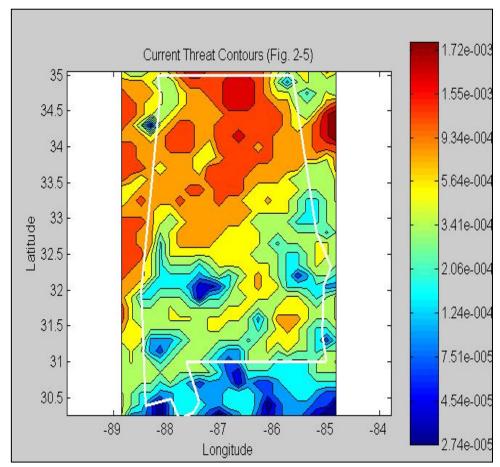





Chart 4-1. Annual Distribution by Month



**Chart 4-2. Annual Distribution by Intensity** 


**Location and Intensity.** Paths of tornadoes within Crenshaw County since 1950 are shown on Map 4-1. All parts of the county are equally susceptible to damage from tornadoes. Therefore, all Crenshaw County residents are at risk of tornadoes.



Map 4-1. Tornado Paths since 1950, Crenshaw County

**Probability of Future Occurrences**. Map 4-2 depicts the relative probability of tornado occurrences, based on historical data since 1950. Crenshaw County has a relatively moderate probability of risk. The potential for hurricanes or remnants of hurricanes and the number of thunderstorms Crenshaw County experiences per year increases the likelihood of tornadoes.

Based on the information available from the Storm Events Database, it appears the county may expect a damage-causing tornado once every three years. A death- or injury-causing tornado has occurred, on average, once every 21 years. Average annual damages are estimated at \$73,000 per year. Although we can extract data and probability of occurrence from historical information, the risk of a tornado occurring and the location of damage appear to be a random event.



Source: VorTek, LLC, generated by SATT 3.0 Tornado Threat Assessment Software.

**Map 4-2. Tornado Threat Probabilities** 

#### 4.5 Severe Thunderstorms

**Hazard Description.** A severe thunderstorm is a storm containing damaging winds of at least 58 miles per hour or hail that measures a minimum of three-fourths of an inch in diameter. All severe thunderstorms contain intense lightning and straight-line or downburst winds that can be extremely strong and concentrated. Falling rain and sinking air create these winds that can reach speeds as high as 125 mph.

**Hazard Profile.** The Storm Events Database contains 61 reports of damage from severe thunderstorms in Crenshaw County since 1957. These storms have caused a total of \$688,000 in damages. A listing of these events is presented in Table 4-5.

| Table 4-5. Thunderstorm and High Wind Events, 1957-2013 |            |              |                       |           |        |          |                    |                |  |
|---------------------------------------------------------|------------|--------------|-----------------------|-----------|--------|----------|--------------------|----------------|--|
| Location                                                | Date       | Time         | Туре                  | Magnitude | Deaths | Injuries | Property<br>Damage | Crop<br>Damage |  |
| Crenshaw                                                | 06/28/1957 | 1010         | Tstm Wind             | 0 kts.    | 0      | 0        | 0                  | 0              |  |
|                                                         | 08/18/1969 | 1300         | Tstm Wind             | 0 kts.    | 0      | 0        | 0                  | 0              |  |
| Crenshaw                                                | 04/07/1973 | 1035         | Tstm Wind             | 0 kts.    | 0      | 0        | 0                  | 0              |  |
| Crenshaw                                                | 04/25/1973 | 1145         | Tstm Wind             | 0 kts.    | 0      | 0        | 0                  | 0              |  |
| Crenshaw                                                | 05/08/1973 | 0830         | Tstm Wind             | 0 kts.    | 0      | 0        | 0                  | 0              |  |
| Crenshaw                                                | 03/30/1981 | 0345         | Tstm Wind             | 0 kts.    | 0      | 0        | 0                  | 0              |  |
| Crenshaw                                                | 05/07/1982 | 2000         | Tstm Wind             | 0 kts.    | 0      | 0        | 0                  | 0              |  |
| Crenshaw                                                |            |              |                       |           | -      | _        | _                  |                |  |
| Crenshaw                                                | 11/20/1986 | 1010         | Tstm Wind             | 0 kts.    | 0      | 0        | 0                  | 0              |  |
| Crenshaw                                                | 11/20/1986 | 1115         | Tstm Wind             | 0 kts.    | 0      | 0        | 0                  | 0              |  |
| Crenshaw                                                | 02/16/1990 | 1001         | Tstm Wind             | 0 kts.    | 0      | 0        | 0                  | 0              |  |
| Crenshaw                                                | 04/01/1990 | 1650         | Tstm Wind             | 0 kts.    | 0      | 0        | 0                  | 0              |  |
|                                                         | 08/19/1990 | 1600         | Tstm Wind             | 0 kts.    | 0      | 0        | 0                  | 0              |  |
| Crenshaw                                                | 08/22/1990 | 1430         | Tstm Wind             | 0 kts.    | 0      | 0        | 0                  | 0              |  |
| Crenshaw                                                | 12/03/1990 | 1010         | Tstm Wind             | 0 kts.    | 0      | 0        | 0                  | 0              |  |
| Crenshaw                                                | 03/29/1991 | 1130         | Tstm Wind             | 0 kts.    | 0      | 0        | 0                  | 0              |  |
| Crenshaw                                                | 01/13/1992 | 1540         | Tstm Wind             | 0 kts.    | 0      | 0        | 0                  | 0              |  |
| Crenshaw                                                | 07/09/1992 | 1830         | Tstm Wind             | 0 kts.    | 0      | 0        | 0                  | 0              |  |
| Crenshaw                                                | 08/27/1992 | 1310         | Tstm Wind             | 0 kts.    | 0      | 0        | 0                  | 0              |  |
| Crenshaw                                                | 06/27/1992 |              |                       | U KIS.    | U      | U        | U                  | U              |  |
| Luverne                                                 | 6/7/1996   | 5:00<br>p.m. | Thunderstorm/<br>Wind | 50 kts.   | 0      | 0        | \$1,000            | \$0            |  |
| Highland<br>Home                                        | 9/16/1996  | 7:10<br>p.m. | Thunderstorm/<br>Wind | 50 kts.   | 0      | 0        | \$2,000            | \$0            |  |
| Highland<br>Home                                        | 11/7/1996  | 9:20<br>p.m. | Thunderstorm/<br>Wind | 90 kts.   | 0      | 0        | \$250,000          | \$0            |  |
| Luverne                                                 | 12/16/1996 | 8:35<br>p.m. | Thunderstorm/<br>Wind | 50 kts.   | 0      | 0        | \$2,000            | \$0            |  |
| Glenwood                                                | 1/24/1997  | 8:30<br>a.m. | Thunderstorm/<br>Wind | 50 kts.   | 0      | 0        | \$2,000            | \$0            |  |
| Luverne                                                 | 4/22/1997  | 7:30<br>p.m. | Thunderstorm/<br>Wind | 50 kts.   | 0      | 0        | \$60,000           | \$0            |  |
| Dozier                                                  | 4/22/1997  | 9:50<br>p.m. | Thunderstorm/<br>Wind | 50 kts.   | 0      | 0        | \$2,000            | \$0            |  |
| Luverne                                                 | 4/22/1997  | 9:50<br>p.m. | Thunderstorm/<br>Wind | 50 kts.   | 0      | 0        | \$2,000            | \$0            |  |

| Location         | Date       | Time                 | Type                  | Magnitude | Deaths | Injuries | Property Damage | Crop<br>Damage |
|------------------|------------|----------------------|-----------------------|-----------|--------|----------|-----------------|----------------|
| Petrey           | 3/8/1998   | 4:00<br>p.m.         | Thunderstorm/<br>Wind | 50 kts.   | 0      | 0        | \$5,000         | \$0            |
| Luverne          | 5/3/1998   | 8:25<br>p.m.         | Thunderstorm/<br>Wind | 50 kts.   | 0      | 0        | \$3,000         | \$0            |
| Luverne          | 6/6/1998   | 1:00<br>a.m.         | Thunderstorm/<br>Wind | 50 kts.   | 0      | 0        | \$3,000         | \$0            |
| Highland<br>Home | 6/19/1998  | 4:55<br>p.m.         | Thunderstorm/<br>Wind | 50 kts.   | 0      | 0        | \$5,000         | \$0            |
| Highland<br>Home | 8/20/1999  | 2:15<br>p.m.         | Thunderstorm/<br>Wind | 50 kts.   | 0      | 0        | \$5,000         | \$0            |
| Luverne          | 7/20/2000  | 5:25<br>p.m.         | Thunderstorm/<br>Wind | 55 kts.   | 0      | 0        | \$5,000         | \$0            |
| Glenwood         | 8/9/2000   | 8:25<br>p.m.         | Thunderstorm/<br>Wind | 50 kts.   | 0      | 0        | \$8,000         | \$0            |
| Honoraville      | 1/19/2001  | 9:55<br>p.m.         | Thunderstorm/<br>Wind | 55 kts.   | 0      | 0        | \$5,000         | \$0            |
| Dozier           | 3/12/2001  | 1:10<br>p.m.         | Thunderstorm/<br>Wind | 75 kts.   | 0      | 0        | \$15,000        | \$0            |
| Dozier           | 10/13/2001 | 8:25<br>p.m.         | Thunderstorm/<br>Wind | 50 kts.   | 0      | 0        | \$10,000        | \$0            |
| Luverne          | 10/13/2001 | 8:45<br>p.m.<br>2:00 | Thunderstorm/<br>Wind | 55 kts.   | 0      | 0        | \$15,000        | \$0            |
| Patsburg         | 1/19/2002  | p.m.                 | Thunderstorm/<br>Wind | 55 kts.   | 0      | 0        | \$10,000        | \$0            |
| Highland<br>Home | 3/12/2002  | 12:10<br>p.m.        | Thunderstorm/<br>Wind | 50 kts.   | 0      | 0        | \$10,000        | \$0            |
| Luverne          | 7/7/2002   | 6:30<br>p.m.         | Thunderstorm/<br>Wind | 50 kts.   | 0      | 0        | \$10,000        | \$0            |
| Luverne          | 7/20/2002  | 3:50<br>p.m.         | Thunderstorm/<br>Wind | 50 kts.   | 0      | 0        | \$10,000        | \$0            |
| Brantley         | 7/20/2002  | 4:15<br>p.m.         | Thunderstorm/<br>Wind | 50 kts.   | 0      | 0        | \$10,000        | \$0            |
| Highland<br>Home | 12/19/2002 | 7:05<br>p.m.         | Thunderstorm/<br>Wind | 50 kts.   | 0      | 0        | \$5,000         | \$0            |
| Highland<br>Home | 2/22/2003  | 3:25<br>p.m.         | Thunderstorm/<br>Wind | 50 kts.   | 0      | 0        | \$25,000        | \$0            |
| Rutledge         | 6/11/2003  | 1:15<br>p.m.         | Thunderstorm/<br>Wind | 50 kts.   | 0      | 0        | \$5,000         | \$0            |
| Brantley         | 6/26/2004  | 4:15<br>p.m.         | Thunderstorm/<br>Wind | 50 kts.   | 0      | 0        | \$5,000         | \$0            |
| Bullock          | 7/15/2004  | 6:10<br>p.m.         | Thunderstorm/<br>Wind | 50 kts.   | 0      | 0        | \$8,000         | \$0            |
| Highland<br>Home | 4/22/2005  | 7:55<br>p.m.         | Thunderstorm/<br>Wind | 50 kts.   | 0      | 0        | \$15,000        | \$0            |
| Luverne          | 4/22/2005  | 8:10<br>p.m.         | Thunderstorm/<br>Wind | 50 kts.   | 0      | 0        | \$10,000        | \$0            |
| Brantley         | 5/7/2006   | 9:30<br>a.m.         | Thunderstorm/<br>Wind | 50 kts.   | 0      | 0        | \$15,000        | \$0            |

Table 4-5. Thunderstorm and High Wind Events, 1957-2013 Continued

| Location         | Date       | Time        | Type                  | Magni<br>tude | Deaths | Injuries | Property<br>Damage | Crop<br>Damage |
|------------------|------------|-------------|-----------------------|---------------|--------|----------|--------------------|----------------|
|                  |            |             |                       |               |        |          |                    |                |
| Patsburg         | 7/20/2006  | 2:47 p.m.   | Thunderstorm/<br>Wind | 50 kts.       | 0      | 0        | \$8,000            | \$0            |
|                  |            |             | Thunderstorm/         |               |        |          |                    |                |
| Rutledge         | 4/26/2007  | 11:11 a.m.  | Wind                  | 0             | 0      | 0        | \$7,000            | \$0            |
| Brantley         | 6/9/2007   | 4:15 p.m.   | Thunderstorm/<br>Wind | 0             | 0      | 0        | \$8,000            | \$0            |
| Brantley         | 7/10/2007  | 4:40 p.m.   | Thunderstorm/<br>Wind | 0             | 0      | 0        | \$25,000           | \$0            |
| Brantley         | 10/23/2007 | 2:40 a.m.   | Thunderstorm/<br>Wind | 0             | 0      | 0        | \$30,000           | \$0            |
| Highland<br>Home | 1/10/2008  | 7:55 p.m.   | Thunderstorm/<br>Wind | 0             | 0      | 0        | \$8,000            | \$0            |
| Dozier           | 2/17/2008  | 1:58 p.m.   | Thunderstorm/<br>Wind | 0             | 0      | 0        | \$12,000           | \$0            |
| Highland<br>Home | 2/17/2008  | 3:04 p.m.   | Thunderstorm/<br>Wind | 0             | 0      | 0        | \$30,000           | \$0            |
| Highland<br>Home | 2/26/2008  | 7:00 a.m.   | Thunderstorm/<br>Wind | 0             | 0      | 0        | \$12,000           | \$0            |
| Brantley         | 2/26/2008  | 7:45 a.m.   | Thunderstorm/<br>Wind | 0             | 0      | 0        | \$12,000           | \$0            |
| Crenshaw         | 3/26/2009  | 12:06<br>am | Thunderstorm/<br>Wind | 50 kts.       |        |          |                    |                |
| Crenshaw         | 3/26/2009  | 12:56 am    | Thunderstorm/<br>Wind | 50 kts.       |        |          |                    |                |
| Crenshaw         | 3/31/2009  | 6:42 pm     | Thunderstorm/<br>Wind | 50 kts.       |        |          |                    |                |
| Crenshaw         | 4/06/2009  | 1:28 am     | Thunderstorm/<br>Wind | 50 kts.       |        |          |                    |                |
| Crenshaw         | 4/11/2009  | 3:51 am     | Thunderstorm/<br>Wind | 50 kts.       |        |          |                    |                |
| Crenshaw         | 4/13/2009  | 7:15am      | Thunderstorm/<br>Wind | 50 kts.       |        |          |                    |                |
| Crenshaw         | 5/03/2009  | 7:51 pm     | Thunderstorm/<br>Wind | 50 kts.       |        |          |                    |                |
| Crenshaw         | 5/04/2009  | 2:13 pm     | Thunderstorm/<br>Wind | 50 kts.       |        |          |                    |                |
| Crenshaw         | 5/06/2009  | 8:33 pm     | Thunderstorm/<br>Wind | 50 kts.       |        |          |                    |                |
| Crenshaw         | 5/06/2009  | 9:58 pm     | Thunderstorm/<br>Wind | 50 kts.       |        |          |                    |                |
| Crenshaw         | 5/07/2009  | 11:21 pm    | Thunderstorm/<br>Wind | 50 kts.       |        |          |                    |                |
| Crenshaw         | 5/07/2009  | 11:58 pm    | Thunderstorm/<br>Wind | 50 kts.       |        |          |                    |                |
| Crenshaw         | 6/24/2009  | 7:10 pm     | Thunderstorm/<br>Wind | 50 kts.       |        |          |                    |                |
| Crenshaw         | 7/16/2009  | 9:00 pm     | Thunderstorm/<br>Wind | 50 kts.       |        |          |                    |                |
| Crenshaw         | 8/12/2009  | 2:21 am     | Thunderstorm/         | 50 kts.       | 0      | 0        | 0                  | \$0            |

| G 1      | 0/16/2000  | 1.15     | Thunderstorm/         | 5014    |   | 0 | 0   | фо  |
|----------|------------|----------|-----------------------|---------|---|---|-----|-----|
| Crenshaw | 9/16/2009  | 1:15 am  | Wind Thunderstorm/    | 50 kts. | 0 | 0 | 0   | \$0 |
| Crenshaw | 9/16/2009  | 1:51 am  | Wind                  | 50 kts. | 0 | 0 | \$0 | \$0 |
| Crenshaw | 9/16/2009  | 2:25 am  | Thunderstorm/<br>Wind | 50 kts. | 0 | 0 | \$0 | \$0 |
| Crenshaw | 9/20/2009  | 11:05 am | Thunderstorm/<br>Wind | 50 kts. | 0 | 0 | 0   | \$0 |
| Crenshaw | 12/02/2009 | 11:05 am | Thunderstorm/<br>Wind | 50 kts. | 0 | 0 | 0   | \$0 |
| Crenshaw | 3/11/2010  | 3:02 am  | Thunderstorm/<br>Wind | 50 kts. | 0 | 0 | \$0 | \$0 |
| Crenshaw | 3/11/2010  | 3:35 am  | Thunderstorm/<br>Wind | 50 kts. | 0 | 0 | \$0 | \$0 |
| Crenshaw | 4/24/2010  | 6:21 am  | Thunderstorm/<br>Wind | 50 kts. | 0 | 0 | 0   | \$0 |
| Crenshaw | 4/24/2010  | 6:17 am  | Thunderstorm/<br>Wind | 50 kts. | 0 | 0 | 0   | \$0 |
| Crenshaw | 4/25/2010  | 9:00 am  | Thunderstorm/<br>Wind | 50 kts. | 0 | 0 | \$0 | \$0 |
| Crenshaw |            |          | Thunderstorm/ Wind    |         | 0 |   | \$0 |     |
|          | 6/01/2010  | 7:54 pm  | Thunderstorm/ Wind    | 50 kts. | U | 0 | \$0 | \$0 |
| Crenshaw | 10/25/2010 | 1:18 pm  | Thunderstorm/         | 50 kts. |   |   |     |     |
| Crenshaw | 3/09/2011  | 2:50 pm  | Wind Thunderstorm/    | 50 kts. |   |   |     |     |
| Crenshaw | 3/09/2011  | 3:10 pm  | Wind<br>Thunderstorm/ | 50 kts. |   |   |     |     |
| Crenshaw | 3/27/2011  | 5:51 pm  | Wind Thunderstorm/    | 50 kts. |   |   |     |     |
| Crenshaw | 4/05/2011  | 2:41 am  | Wind<br>Thunderstorm/ | 50 kts. |   |   |     |     |
| Crenshaw | 4/16/2011  | 4:33 am  | Wind Thunderstorm/    | 50 kts. |   |   |     |     |
| Crenshaw | 4/16/2011  | 5:00 am  | Wind                  | 50 kts. |   |   |     |     |
| Crenshaw | 4/16/2011  | 5:11 am  | Thunderstorm/<br>Wind | 50 kts. |   |   |     |     |
| Crenshaw | 5/13/2001  | 7:24 pm  | Thunderstorm/<br>Wind | 50 kts. |   |   |     |     |
| Crenshaw | 5/26/2011  | 6:29 am  | Thunderstorm/<br>Wind | 50 kts. |   |   |     |     |
| Crenshaw | 5/26/2011  | 6:34 am  | Thunderstorm/<br>Wind | 50 kts. |   |   |     |     |
| Crenshaw | 6/11/2011  | 1:57 am  | Thunderstorm/<br>Wind | 50 kts. |   |   |     |     |
| Crenshaw | 6/11/2011  | 9:17 am  | Thunderstorm/<br>Wind | 50 kts. |   |   |     |     |
| Crenshaw | 6/17/2011  | 7:29 pm  | Thunderstorm/<br>Wind | 50 kts. |   |   |     |     |
| Crenshaw | 8/11/2011  | 11:26 pm | Thunderstorm/<br>Wind | 50 kts. | 0 | 0 | 0   | \$0 |
| Crenshaw | 9/27/2011  | 1:39 pm  | Thunderstorm/<br>Wind | 50 kts. | 0 | 0 | 0   | \$0 |
| Crenshaw | 9/28/2011  | 12:27 am | Thunderstorm/<br>Wind | 50 kts. | 0 | 0 | \$0 | \$0 |
| Crenshaw | 11/16/2011 | 4:35 pm  | Thunderstorm/<br>Wind | 50 kts. | 0 | 0 | \$0 | \$0 |

| a .       | 0.400.404.4 |           | Thunderstorm/         |           |   |   |           | 40  |
|-----------|-------------|-----------|-----------------------|-----------|---|---|-----------|-----|
| Crenshaw  | 9/22/2011   | 11:46 pm  | Wind                  | 50 kts.   | 0 | 0 | 0         | \$0 |
| Crenshaw  | 1/21/2012   | 8:12 pm   | Thunderstorm/<br>Wind | 50 kts.   |   |   |           |     |
| Cronsnavi | 1/21/2012   | 0.12 p.ii | Thunderstorm/         | D O Mills |   |   |           |     |
| Crenshaw  | 2/18/2012   | 10:38 pm  | Wind                  | 50 kts.   |   |   |           |     |
| Crenshaw  | 2/24/2012   | 3:52 pm   | Thunderstorm/<br>Wind | 50 kts.   |   |   |           |     |
| Crenshaw  | 3/30/2012   | 8:13 pm   | Thunderstorm/<br>Wind | 50 kts.   |   |   |           |     |
| Crenshaw  | 5/21/2012   | 8:36 pm   | Thunderstorm/<br>Wind | 50 kts.   |   |   |           |     |
| Crenshaw  | 6/03/2012   | 9:43 pm   | Thunderstorm/         | 50 kts.   |   |   |           |     |
| Crenshaw  | 6/03/2012   | 10:14 pm  | Thunderstorm/<br>Wind | 50 kts.   |   |   |           |     |
| Crenshaw  | 6/03/2012   | 11:27 pm  | Thunderstorm/<br>Wind | 50 kts.   |   |   |           |     |
| Crenshaw  | 6/31/2012   | 9:33 am   | Thunderstorm/<br>Wind | 50 kts.   |   |   |           |     |
| Crenshaw  | 6/31/2012   | 12:54 pm  | Thunderstorm/<br>Wind | 50 kts.   |   |   |           |     |
| Crenshaw  | 8/19/2012   | 12:21 am  | Thunderstorm/         | 50 kts.   |   |   |           |     |
| Crenshaw  | 12/26/2012  | 3:35 am   | Thunderstorm/<br>Wind | 50 kts.   |   |   |           |     |
| Crenshaw  | 12/26/2012  | 4:15am    | Thunderstorm/<br>Wind | 50 kts.   |   |   |           |     |
| Crenshaw  | 2/11/2013   | 12:33 am  | Thunderstorm/<br>Wind | 50 kts.   |   |   |           |     |
| Crenshaw  | 2/11/2013   | 1:37 am   | Thunderstorm/<br>Wind | 50 kts.   |   |   |           |     |
| Crenshaw  | 6/24/2013   | 9:19 pm   | Thunderstorm/         | 50 kts.   |   |   |           |     |
| Crenshaw  | 6/28/2013   | 6:56 pm   | Thunderstorm/<br>Wind | 50 kts.   |   |   |           |     |
| Crenshaw  | 7/12/2013   | 9:32 pm   | Thunderstorm/<br>Wind | 50 kts.   |   |   |           |     |
| Crenshaw  | 7/15/2013   | 12:10 am  | Thunderstorm/<br>Wind | 50 kts.   |   |   |           |     |
|           |             |           | TOTALS                | 0         | 0 | 0 | \$690,000 | \$0 |

Source: NOAA; http://www4.ncdc.noaa.gov/cgi-win/wwcgi.dll?wwevent~storms

Community Impacts. In addition to tornadoes, flooding, and straight-line winds, thunderstorms can cause considerable damage from lightning. Since 1975 Crenshaw County has experienced 132 severe thunderstorms. Large hail, though very rare, can cause injury or loss of life. Normally it only causes damage to automobiles, trees and crops. Both lightning and high winds frequently cause loss of life and considerable property damage. The power of lightning's electrical charge and intense heat can electrocute on contact, split trees, ignite fires, and cause electrical failures. No lightning events have been reported for Crenshaw County.

**Location** All areas of Crenshaw County have equal exposure to severe storms. Unlike flooding and tornadoes, severe storms lack geographic centers and boundaries and therefore cannot be substantively mapped.

**Extent** The extent of severe storms depends on severity and duration. A storm's severity is a combination of rainfall, wind-speed, the size of any accompanying hail and the scope of any flooding that a severe storm may induce. The exact extent of severe storms is not predictable. Severe storms can also result in flooding due to heavy precipitation and wildfires due to lightning and will accompany hurricanes and tornadoes. Large hail, though very rare, can cause injury or loss of life and major property damages, including crop damages. Normally, however, hail is more likely to damage cars and windows than to damage farmland. Lightning can electrocute persons and cause wildfires in forests and pastures by striking trees and dry grass. The most typical threat posed by high winds is power outage, which usually occurs when trees fall onto power lines.

**Probability of Future Occurrences.** The probability of a severe thunderstorm occurring depends on certain atmospheric and climatic conditions. The National Weather Service has data comparing the number of events per year with other regions of the country.

Based on historical information, Crenshaw County can expect approximately 5.5 instances of straight-line wind- or hail-induced damage per year. Average annual damages from severe thunderstorm events are estimated at \$60,875. Although we can extract data and probability of occurrence from historical information, the risk of a thunderstorm occurring and the location of damage appear to be a random event.

## 4.6 Floods

**Hazard Description.** Flooding is defined as the accumulation of water within a water body and the overflow of excess water onto adjacent floodplain lands. The floodplain is the land adjoining the channel, river, stream, ocean, lake, or other water body that is susceptible to flooding.

**Hazard Profile.** The list of federally-declared disasters, input from the planning committee, and the Storm Events Database were utilized to profile the history of flood events in Crenshaw County. Most of the flooding in the Crenshaw County occurs countywide. The Conecuh River and Patsaliga Creek flow though the county. They and their tributaries are subject to flooding.

The Storm Events Database contains damage-causing flood events from 1998. Since that time, seven different flood events have resulted in \$324 thousand in property damages. A summary of flood events is shown in Table 4-7. Crenshaw County has experienced some flood damages over the past 25 years but, due to the rural nature of the county, flooding is not a major problem. Most flooding is of a flash type, along streams and tributaries. Flooding and heavy rain both have also been know to cause major road damage. Floodwaters that cover the surface of the road often causes the base of the road to wash away and the surface asphalt to crack or fail. This failure of the roads can lead to utility damages. A summary of flood events as recorded in the Storm Events Database

is shown in Table 4-7. Additional flood events provided by the HMPC are listed in Table 4-8.

|                                         |                                         | Table        | 4-7. Flood I  | Events, Crei | nshaw Co | ounty    |                    |                |
|-----------------------------------------|-----------------------------------------|--------------|---------------|--------------|----------|----------|--------------------|----------------|
| Location                                | Date                                    | Time         | Туре          | Magnitude    | Deaths   | Injuries | Property<br>Damage | Crop<br>Damage |
|                                         |                                         | 6:00         |               |              |          |          | _                  |                |
| Countywide                              | 3/8/1998                                | a.m.<br>8:30 | Flood         | 0            | 0        | 0        | \$300,000          | \$0            |
| Countywide                              | 9/29/1998                               | a.m.         | Flood         | 0            | 0        | 0        | \$0                | \$0            |
| County Mas                              | 0/20/1000                               | 12:00        | 11000         |              |          |          | Ψ0                 | Ψ0             |
| Countywide                              | 5/6/1999                                | p.m.         | Flash Flood   | 0            | 0        | 0        | \$10,000           | \$0            |
| Central                                 |                                         |              |               |              |          |          |                    |                |
| Portion of                              |                                         | 5:50         |               |              |          |          |                    |                |
| Crenshaw                                | 6/27/1999                               | p.m.         | Flash Flood   | 0            | 0        | 0        | \$4,000            | \$0            |
| 0                                       | 0/0/0004                                | 12:00        |               |              |          |          | <b>#</b> 40.000    | Φ0             |
| Countywide                              | 3/3/2001                                | p.m.<br>9:20 | Flash Flood   | 0            | 0        | 0        | \$10,000           | \$0            |
| Luverne                                 | 6/11/2001                               | p.m.         | Flash Flood   | 0            | 0        | 0        | \$0                | \$0            |
|                                         |                                         | 8:15         |               |              |          | _        |                    |                |
| Luverne                                 | 12/24/2002                              | a.m.         | Flash Flood   | 0            | 0        | 0        | \$0                | \$0            |
| Western                                 |                                         |              |               |              |          |          |                    |                |
| Portion of                              |                                         | 8:00         |               |              |          |          |                    |                |
| Crenshaw                                | 7/10/2005                               | p.m.         | Flash Flood   | 0            | 0        | 0        | \$0                | \$0            |
| Countravido                             | 3/31/2009                               | 3:59         | Flood         |              |          |          | \$0                |                |
| Countywide                              | 3/31/2009                               | pm<br>11:10  | Flood         | 0            | 0        | 0        | Φ0                 | 0              |
| Countywide                              | 4/01/2009                               | am           | Flood         | 0            | 0        | 0        | \$0                | \$0            |
| - county mas                            | ., 0 ., 2000                            | 5:11         | 1.000         |              |          |          | <b>4</b> •         | Ψ σ            |
| Countywide                              | 4/1/2009                                | pm           | Flood         | 0            | 0        | 0        | \$0                | \$0            |
|                                         |                                         | 1:25         |               |              |          |          |                    |                |
| Countywide                              | 9/16/2009                               | am           | Flash Flood   | 0            | 0        | 0        | \$0                | 0              |
|                                         |                                         | 10:59        |               |              |          |          |                    |                |
| Countywide                              | 12/14/2009                              | pm           | Flash Flood   | 0            | 0        | 0        | \$0                | \$0            |
| Countywide                              | 12/15/2009                              | 1:58<br>am   | Flash Flood   | 0            | 0        | 0        | \$0                | \$0            |
| Countywide                              | 12/13/2009                              | 5:43         | Flasii Flood  | 0            | 0        | 0        | φυ                 | φυ             |
| Countywide                              | 12/15/2009                              | am           | Flood         | 0            | 0        | 0        | \$0                | 0              |
| , , , , , , , , , , , , , , , , , , , , |                                         | 2:57         |               |              |          | _        | * -                | _              |
| Countywide                              | 12/18/2009                              | am           | Flood         | 0            | 0        | 0        | \$0                | \$0            |
|                                         |                                         | 5:45         |               |              |          |          |                    |                |
| Countywide                              | 3/11/2010                               | am           | Flash Flood   | 0            | 0        | 0        | \$0                | \$0            |
|                                         | 0/40/6343                               | 11:13        |               |              |          |          | Φ0                 |                |
| Countywide                              | 2/12/2012                               | pm           | Flash Flood   | 0            | 0        | 0        | \$0                | 0              |
| Countywide                              | 9/04/2012                               | 12:30        | Flash Flood   | 0            | 0        | 0        | \$0                | \$0            |
| Countywide                              | 3/04/2012                               | pm<br>1:26   | i lasti Floud | 0            | 0        | 0        | ΨΟ                 | ΨΟ             |
| Countywide                              | 9/04/2012                               | pm           | Flash Flood   | 0            | 0        | 0        | \$0                | \$0            |
| 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | , ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 1 12:00      | 1             | <u></u>      | 0        | 0        | \$324,000          | \$0            |
|                                         |                                         |              |               |              | I U      | I U      | φ324,000           | φυ             |

There were no deaths from flooding reported in the database. The flooding wipes out most of the secondary roads in the county. In terms of property damage, the worst flood in recent history for which there is complete damage estimates, occurred in 1998.

During this flood, a dam was broken near Dozier. The Storm Events Database contained the following report about this event:

Table 4-8. Flood Events Provided by the HMPC

| Location   | Date | Time    | Type  | Magnitude | Deaths | Injuries | Property<br>Damage | Crop<br>Damage |
|------------|------|---------|-------|-----------|--------|----------|--------------------|----------------|
| Countywide | 1990 | Unknown | Flood | N/A       | 0      | 0        | Unknown            | Unknown        |
| Countywide | 1993 | Unknown | Flood | N/A       | 0      | 0        | Unknown            | Unknown        |
| Countywide | 1995 | Unknown | Flood | N/A       | 0      | 0        | Unknown            | Unknown        |

**Community Impacts.** Floods are capable of undermining buildings and bridges, eroding shorelines and riverbanks, tearing out trees, washing out access routes, and causing loss of life and injuries. Floods occur in all 50 states and FEMA estimates that 9 million households and \$390 billion in property are at risk from flooding.

The measurement used to determine the limits of the floodplain was developed with the enactment of the National Flood Insurance Program of 1968 (NFIP). Under the NFIP it was determined that the base standard was the 100-year or "base flood". This means that the limits of the flood plain are set by the limits of a rain event that has a 1% annual chance of occurrence. There are established techniques for determining the base flood limits. These techniques have been used to develop Flood Insurance Rate Maps or FIRMs. FIRMs illustrate elevation of the base flood and the 500-year event (0.2% annual chance of occurrence) in areas where a model has been developed.

**Location** The Flood Insurance Rate Maps for Crenshaw County are available for review in the EMA office. In the past, flooding problems have occurred in Dozier, as described above, and in Highland Home and Luverne, where roads flooded in 2001 and 2002. Other communities subject to flooding events within the county are the communities of Mulberry and Holiday and the Town of Glenwood. The Conecuh River and Patsaliga Creek, the major drainage systems for the county, occasionally flood in rural areas.

**Extent** Crenshaw County experiences moderate flooding. The extent of each flood varies according to rainfall, the flow of storm water and the capacity of the receiving channel to discharge.

**Repetitive Flood Insurance Losses.** A repetitive loss property is one that has two or more flood insurance claims with the NFIP. Crenshaw County has no repetitive loss properties to date.

**Probability of Future Occurrences.** Based on the flood events since 1990 contained in the Storm Events Database, Crenshaw County may expect about 1.75 flash or riverine floods per year. Average annual damages are estimated at \$81,000. Although we can extract data and probability of occurrence from historical information, they do not necessarily predict future occurrences.

# 4.7 Droughts/Heat Waves

**Hazard Description.** Temperatures that hover ten degrees or more above the average high for the region and last for several weeks are defined as extreme heat. Humid or muggy conditions occur when a "dome" of high atmospheric pressure traps hazy, damp air near the ground. The combination of high temperatures and humid conditions increase the level of discomfort and the potential for danger to humans. Droughts occur when a long period passes without any substantial rainfall. A heat wave combined with a drought is a very dangerous situation.

**Hazard Profile.** Crenshaw County experienced a heat wave in July 2000. The Storm Events Database reports that in the community of Highland Home the temperature was 100 degrees or higher five days during the month. The highest temperature recorded during this period was 103 degrees. Although no damage estimates are available, several wildfires were reported and some crops affected.

|            | Table 4-10. Heat Waves Since 1995, Crenshaw County |       |                   |           |        |          |                    |                |  |  |
|------------|----------------------------------------------------|-------|-------------------|-----------|--------|----------|--------------------|----------------|--|--|
| Location   | Date                                               | Time  | Туре              | Magnitude | Deaths | Injuries | Property<br>Damage | Crop<br>Damage |  |  |
|            |                                                    | 12.01 |                   | <b>,</b>  |        |          | <b>6</b> -         |                |  |  |
| Countywide | 7/1/2000                                           | 12:01 | Excessive<br>Heat | 0         | 0      | 0        | \$0                | \$0            |  |  |
| Countywide | //1/2000                                           | a.m.  | пеат              | U         | U      | U        | \$0                | \$0            |  |  |
|            |                                                    | 8:00  |                   |           |        |          |                    |                |  |  |
| Countywide | 8/8/2007                                           | a.m.  | Heat              | 0         | 0      | 0        | \$0                | \$0            |  |  |
|            | TOTALS 0 0 \$0 \$0                                 |       |                   |           |        |          |                    |                |  |  |

Source: NOAA; <a href="http://www4.ncdc.noaa.gov/cgi-win/wwcgi.dll?wwevent~storms">http://www4.ncdc.noaa.gov/cgi-win/wwcgi.dll?wwevent~storms</a>

**Community Impacts.** The human risks associated with extreme heat include heatstroke, heat exhaustion, and heat syncope, heat cramps. A description of each of these conditions follows:

- <u>Heatstroke</u> is considered a medical emergency and is often fatal. It exists when rectal temperature rises above 105°F as a result of environmental temperatures. Patients may be delirious, stuporous, or comatose. The death-to-care ratio in reported cases averages about 15%.
- <u>Heat Exhaustion</u> is much less severe than heatstroke. The body temperature may be normal or slightly elevated. A person suffering from heat exhaustion may complain of dizziness, weakness or fatigue. The primary cause of heat exhaustion is fluid and electrolyte imbalance. The normalization of fluids will typically alleviate the situation.
- <u>Heat Syncope</u> is typically associated with exercise by people who are not acclimated to exercise. The symptom is a sudden loss of consciousness. Consciousness returns promptly when the person lies down. The cause is primarily associated with circulatory instability as a result of heat. The condition typically causes little or no harm to the individual.
- <u>Heat Cramps</u> are typically a problem for individuals who exercise outdoors but are unaccustomed to heat. Similar to heat exhaustion it is thought to be a result of a mild imbalance of fluids and electrolytes.

In 1979 R. G. Steadman, a meteorologist, developed the heat index, which is a relationship between dry bulb temperatures at different humidities and the skin's resistance to heat and moisture transfer. Utilizing Steadman's heat index Table 4-9 was developed to show the risk associated with different temperatures.

Table 4-9. Heat Index/Heat Disorders

| Danger<br>Category    | Heat Disorder                                                                                                          | Apparent<br>Temp. (°F) |
|-----------------------|------------------------------------------------------------------------------------------------------------------------|------------------------|
| IV Extreme<br>Danger  | Heatstroke or sunstroke imminent.                                                                                      | >130                   |
| III Danger            | Sunstroke, heat cramps, or heat exhaustion likely; heat stroke possible with prolonged exposure and physical activity. | 105-130                |
| II Extreme<br>Caution | Sunstroke, heat cramps, and heat exhaustion possible with prolonged exposure and physical activity.                    | 90-105                 |
| I Caution             | Fatigue possible with prolonged exposure and physical activity.                                                        | 80-90                  |

Source: National Weather Service, 2008

Extreme heat often brings about drought. Risks associated with drought include, effects to the water supply, impact on agriculture, increase in wildfires, negative impact on hydroelectric power and other activities dependent upon water such as recreation and navigation.

**Location** Droughts and heat waves have a county-wide impact.

**Extent** The duration, the size and location of the affected area, and the degree of moisture insufficiency are the depending factors on the severity of a drought. Droughts cause the most damage in wooded rural and agricultural areas, where droughts raise the risk and severity of wildfires. Rural communities whose water supplies depend on subsurface aquifer systems suffer reduced water resources during droughts; these communities should have plans to ration water or seek alternative sources.

**Probability of Future Occurrences.** Due to a lack of data, average annual occurrences and damage estimates cannot be determined. Crenshaw County falls in an area that may experience humid, short droughts and extreme summer heat. Though historically not a major problem, the region is susceptible to extreme drought conditions.

### 4.8 Hurricanes

**Hazard Description.** A "tropical cyclone" is a generic term for a cyclonic, low-pressure system over tropical or sub-tropical waters. Tropical cyclones with maximum sustained winds of 38 mph or less are called tropical depressions. A tropical storm is a cyclone with maximum sustained winds at or greater than 39 mph but at or less than 74 mph, and a tropical storm with winds that have reached a constant speed of 74 miles per hour or more is a hurricane.

**Hazard Profile.** Though the center of Crenshaw County is located approximately 152.3 miles from the Gulf of Mexico, hurricanes and tropical storms sometimes bring high winds and heavy rains to the area as they move north. Table 4-10 lists the major hurricanes/tropical storms that have impacted Crenshaw County and Southwest Alabama over the last eight years. Damage estimates are for the entire region.

Crenshaw County has received periodic, scattered damage from hurricanes and tropical storms for many years. The three events shown in the table below caused flash flooding of low-lying areas and damage to trees and power lines. By far the worst of these was Hurricane Georges in 1998 that devastated Mobile and Baldwin Counties. However, it was still a powerful storm when it reached Crenshaw County. Crenshaw County experienced Hurricane Ivan in 2004 and they also experienced the minimal impact of Hurricane Katrina in 2005.

|            | Table 4-10. Hurricanes/Tropical Storms Since 1995, Crenshaw County |             |                      |           |        |          |                    |                |  |  |
|------------|--------------------------------------------------------------------|-------------|----------------------|-----------|--------|----------|--------------------|----------------|--|--|
| Location   | Date                                                               | Time        | Туре                 | Magnitude | Deaths | Injuries | Property<br>Damage | Crop<br>Damage |  |  |
| Countywide | 10/03/1995                                                         | 1200        | Hurricane Opal       | N/A       | 0      | 0        | 48.0M              | 4.0M           |  |  |
| Countywide | 09/25/1998                                                         | 09:00<br>AM | Hurricane Georges    | N/A       | 1      | 0        | 174.2M             | 5.0M           |  |  |
| Countywide | 08/06/2001                                                         | 04:00<br>AM | Tropical Storm Barry | N/A       | 0      | 0        | 200K               | 0              |  |  |
| Countywide | 09/13/2004                                                         | O9:00<br>PM | Hurricane/ Ivan N/A  |           | 0      | 0        | 2.5B               | 25.0M          |  |  |
|            |                                                                    |             | TOTALS:              | 1         | 0      | 2.722B   | 34.0M              |                |  |  |

**Community Impacts.** Risks associated with coastal storms include storm tide, inland flooding, water force, wind velocity and coastal erosion. A tropical storm can also produce numerous thunderstorms and tornadoes.

Because of its proximity to the Gulf Coast, Crenshaw County is susceptible to the effects of hurricanes and tropical storms. The primary risks are damaging straight-line winds, formation of tornadoes and flooding. Ten percent of deaths in the United States that are associated with hurricanes are due to tornadoes.

**Location** Hurricanes and tropical storms have a multi-county impact; all of Crenshaw County is susceptible.

**Extent** Hurricanes pose the greatest threat to life and property, but tropical depressions and storms can also cause extensive damage and loss of life. On average, Dale County experiences a hurricane event once every year to every other year, with severe damage. Hurricanes can be accompanied by tropical storms, tropical depressions, severe storms, high winds, floods, and even tornadoes. The last recorded hurricane event for Dale County was a tropical storm in 2005. Tropical storms and depressions often bring torrential rains and flooding, that may outlive the storm itself by several days. A relatively weak tropical storm or depression may cause more damage than a high-intensity, fast-moving hurricane if the storm lingers long enough to saturate flood plains. Tornadoes may also form as a by-product of hurricanes, but not always. The threat of tornadoes expands the geographic scope of risk, because tornadoes can cause severe damage inland. Half of all hurricanes produce at least one tornado—typically within 12 hours of landfall and during daylight hours.

**Probability of Future Occurrences.** Based on limited historical information from the Storm Events Database, a hurricane or tropical storm impacts the county every couple of years. Average annual damages for Crenshaw County are unavailable due to the fact that county by county damage estimates are not available. Although one can extract data and probability of occurrence from historical information, the risk of a

hurricane or tropical storm and the location of damage are random. The new hurricane and tropical storm occurrences were reviewed but did not add enough information to the Storm Events Database to change the probability of future occurrences. Therefore, no changes have been made to the probability of future hurricane and tropical storm occurrences for Crenshaw County since the previous plan.

# 4.9 Winter Storms/Freezes

**Hazard Description.** Winter storms and blizzards originate as mid-latitude depressions or cyclonic weather systems, sometimes following the meandering path of the jet stream. A blizzard combines heavy snowfall, high winds, extreme cold, and ice storms. The origins of the weather patterns that cause severe winter storms are primarily from four sources in the continental United States. Winter storms in the southeast region are usually a result of Canadian and Arctic cold fronts from the north and mid-western states combining with tropical cyclonic weather systems in the Gulf of Mexico.

**Hazard Profile.** Crenshaw County infrequently experiences winter storms and extreme cold periods, although crop damage has occurred from these events. Table 4-11 lists one such event dating from 2002. A snowstorm in March 2003 affected the entire state of Alabama but was not listed in the database for Crenshaw County

| Table 4-11. Winter Storm Events, Crenshaw County |                     |             |                 |           |        |          |                    |                |  |
|--------------------------------------------------|---------------------|-------------|-----------------|-----------|--------|----------|--------------------|----------------|--|
| Location                                         | Date                | Time        | Type            | Magnitude | Deaths | Injuries | Property<br>Damage | Crop<br>Damage |  |
| Countywide                                       | 01/02/2002          | 12:00<br>AM | Winter<br>Storm | N/A       | 0      | 0        | \$0                | \$0            |  |
|                                                  | TOTALS: 0 0 \$0 \$0 |             |                 |           |        |          |                    |                |  |

**Community Impacts.** Risks associated with winter storms are a direct correlation to the strength of the storm and the region's ability to handle a storm. The risks include loss of life due to cold and disruption of transportation routes, loss of electricity for extended periods, and impact on agriculture.

**Location** The entire county is equally at risk for winter storms and freezes.

**Extent** When winter storms/freezes due occur, they tend to be mild and brief. The average snowfall is 0.1 inches yearly and winter temperatures on average are above freezing. The Hazard Mitigation Planning Committee (HMPC) rated the extent of winter storms/freezes as a low threat among the natural hazards.

**Probability of Future Occurrences.** Due to a lack of data, average annual occurrences and damage estimates cannot be made. However, Crenshaw County does not have a considerable risk of a winter storm occurring, but it has a high threat of a winter storm adversely affecting the area. This is a direct result to the area's ability to handle a severe winter storm. Although they are rare, Crenshaw County is susceptible to winter storms.

#### 4.10 Wildfires

**Hazard Description.** There are four categories of wildfires that are experienced throughout the United States:

- Wild land fires, including brush fires
- Interface or intermix fires
- Firestorms
- Prescribed fires and prescribed natural fires

The two primary categories experienced in Crenshaw County are wild land fires and interface or intermix. Wild land fires are fueled exclusively by natural vegetation. Interface or intermix fires are fueled by both vegetation and the built up environment.

Three factors have a direct impact on wildfire formation: topography, fuel, and weather. Topography can have a powerful influence on wildfire behavior; slope, canyons, gulches. Hollows can greatly increase the rate of spread.

**Hazard Profile.** Table 4-12 shows the number of fires responded to and suppressed by the Crenshaw County forester's office and volunteer fire departments from 1995 to 2008. The fires listed are the number that required assistance by the Forestry Commission to control the blaze. The five year average is 28.8 fires, with a five year average of 4.5 acres burned per fire.

Table 4-12. Wildfires in Crenshaw County

| Year | # of Fires | Acres Burned |
|------|------------|--------------|
| 1995 | 22         | 17.8         |
| 1996 | 53         | 169.5        |
| 1997 | 28         | 65.0         |
| 1998 | 30         | 154.4        |
| 1999 | 15         | 88.1         |
| 2000 | 63         | 263.7        |
| 2001 | 27         | 158.5        |
| 2002 | 33         | 125.6        |
| 2003 | 6          | 5.6          |

**Community Impacts.** Wildfires can cause considerable damage and loss of life especially in areas where there is an interface between wild land and urban development. Crenshaw County has multiple fuel sources and is prone to drought and thunderstorms; therefore, wildfires are a significant risk. Furthermore, rural fire departments are almost exclusively made up of volunteers and usually have limited resources that are stretched during periods when numerous fires occur.

**Location** Primarily rural areas of the county are susceptible.

**Extent** The extent of wildfires depends on human development patterns, weather, and firefighting resources in the affected area. Dense clusters of wooden homes and other structures located near woodlands have the greatest potential for property damages and threats to life. These areas are prone to interface fires. Weather is the most important natural variable in wildfire formation. Droughts increase the inflammability of vegetation and make suppressing fires more difficult. The Alabama Forestry Commission monitors weather and issues alerts when conditions are ripe for wildfires. Firefighting resources can affect the severity of wildfires. Rural fire departments are almost exclusively made up of volunteers and usually have limited firefighting resources that are stretched during periods when numerous fires occur. These limited firefighting resources can compound the risk and extent of wildfire damages.

**Probability of Future Occurrences.** Based on historical information, Crenshaw County can expect an average of 30.9 significant wildfires per year that damage or destroy an average of 116.5 acres. The average area burned being approximately 3.7 acres. Current fire threats can be found on the Wildland Fire Assessment System website www.wfas.net. This website shows fire potential and provides a thirty day forecast. Although one can extract data and probability of occurrence from historical information, the risk of a wild fire occurring and the location of damage appear to be random.

# 4.11 Dam/Levee Failures

**Hazard Description.** Dam failures are potentially the worst flood events. A dam failure is usually the result of neglect, poor design, or structural damage caused by a major event such as an earthquake.

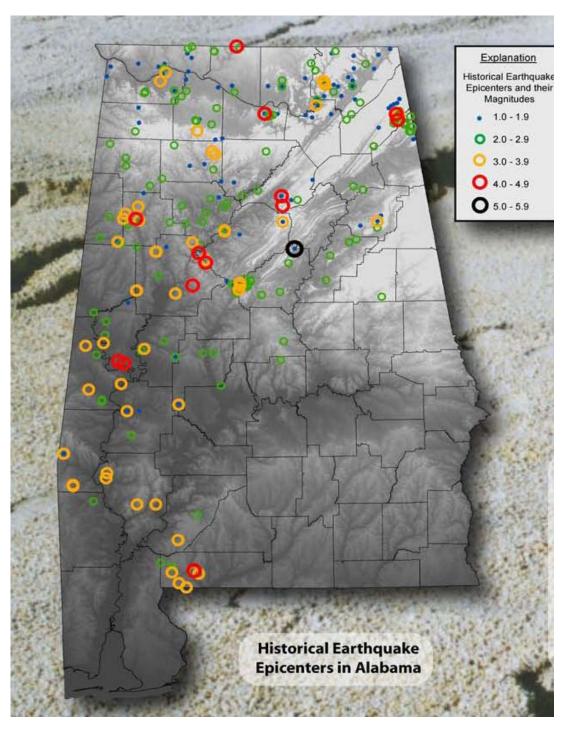
**Hazard Profile.** A dam on a pond near Dozier broke during a severe flood event in 1998. It resulted in the closing of U S Highway 29 near Dozier due to part of the highway being washed away. This is the only reported dam failure known in Crenshaw County.

**Community Impacts.** When a dam fails, a large quantity of water is suddenly released downstream, destroying anything in its path. The area impacted by the water emitted by dam failure would encounter the same risks as those in a flood zone during

periods of flooding. The area directly affected by the water released during a dam failure is not county wide.

Location According to HAZUS, there are 17 identified dams in Crenshaw County; the Crenshaw County Lake Dam has a "high" hazard classification, the other dams include the B.C. Massey Dam, Bailey Dam, Bozeman Pond Dam, Bradleton Lake Dam, Bryce Smith Dam, Clark Lake Dam, E.S. Stewart Dam, Keelough Pond Dam, L.D. Thaggard Dam, L.E. Skipper Pond Dam, Magnolia Shores Lake Dam, Moody Lake Dam, R.D. Beasley Dam, R. Killough Dam, Rays Pond Dam, and Sluggs Dam. These classifications are assigned to a dam depending upon the urban development directly downstream of the dam and whether or not failure would result in serious economic loss. The classification is not an indication of the quality of the dam's construction.

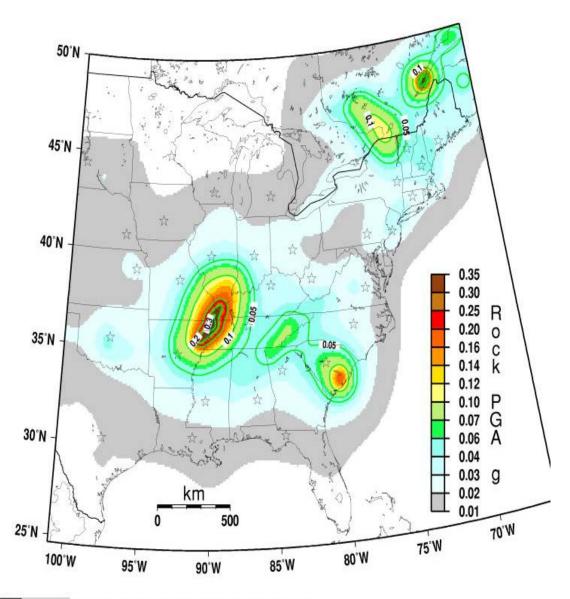
**Extent** with dam/levee failures are minimal, although if there was a dam failure, it would cause severe damage.


**Probability of Future Occurrences.** The risks associated with dam–levee failures to Crenshaw County are minimal

# 4.12 Earthquakes

**Hazard Description.** An earthquake is a sudden, rapid shaking of the earth caused by the breaking and shifting of rock beneath the earth's surface.

**Hazard Profile.** According to the Alabama Geological Survey, no earthquakes have been located in Crenshaw County in the 20<sup>th</sup> Century, as shown in Map 4-4.


Information provided by the USGS indicates a significant earthquake occurred on October 18, 1916, and was felt in five states. Although it was a large regional earthquake, there are no records of damage in Crenshaw County. Based on available information, other quakes felt in the county since 1916 have not caused any damages. See Map 4-4. Earthquakes in Alabama Since 1916 on the next page.



Map 4-4. Earthquakes in Alabama Since 1916 (Source: Geological Survey of Alabama)

**Community Impacts.** The USGS has developed a methodology for identifying an area's vulnerability to the occurrence of an earthquake. Areas are identified by their relative seismic risk. Crenshaw County is located in an area with peak acceleration between 5% and 6% with 10% probability of exceedance in 50 years. This is an area of slight risk as illustrated in Map 4-5.

# CEUS PGA 10%/50 years, 2008



GMT May 2 10:59 PGA 10%50yr PE using half-wt on NMSZ cluster models. Stars: state capitals.

Map 4-5. Earthquake Hazard Areas

In accordance with FEMA guidelines, an area with 3% or greater probability of exceedance in 50 years should be further assessed for vulnerability. In the case of Crenshaw County the risk is slight and falls short of the 3% threshold.

**Location** Although the risk of a significant earthquake occurring in Crenshaw County is small; the impact of a large regional earthquake could be significant. The entire county is equally at risk

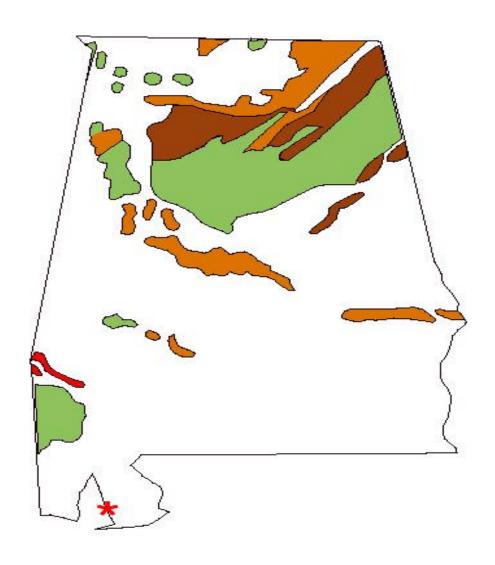
**Extent** According to the Geological Survey of Alabama (GSA), recent seismograph records indicate that earthquakes in Alabama are frequent but not strong enough to be felt on the land surface. Earthquakes can occur anywhere at any time in Alabama, but most are likely to do little or no damage.

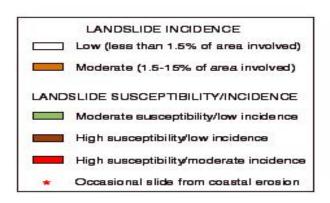
**Probability of Future Occurrences.** Although insufficient data exists to predict the future probability of an earthquake occurring in Crenshaw County, the risk of a significant, damage-causing earthquake in the county is minimal.

# 4.13 Landslides

**Hazard Description.** A "landslide" is the downward and outward movement of slope-forming materials acting under the force of gravity. The term covers a broad category of events, including mudflows, mudslides, debris flows, rock falls, rockslides, debris avalanches, debris slides and earth flows. Landslides may consist of natural rock, soil, artificial fill, or combinations of these materials. Landslides are classified by type of movement, including; slides, flows, lateral spreads, falls and topples.

**Hazard Profile.** Crenshaw County has had one human-induced landslide near Highway 97 in the northern part of the county. No defined area of the county has demonstrated susceptibility to landslides.


**Community Impacts.** The effects of landslides are often misrepresented as being the result of the landslide's trigger event, such as a flood, earthquake, volcanic eruption, hurricane, or coastal storm. The impact from a landslide can include loss of life, damage to buildings, lost productivity, disruption in utilities and transportation systems, and reduced property values. According to FEMA 25 – 50 people die annually from landslides in the United States.


**Location** Crenshaw County is not susceptible to landslides caused by topography or geology. However, areas experiencing new development may become prone to landslides. In these cases, slope failures primarily occur due to improper excavation and failure to protect recently excavated slopes.

**Extent** Slope failures primarily occur due to improper excavation and failure to protect recently excavated slopes. Proper soil management and careful construction can be sharply mitigate the extent of potential landslides and prevent their occurrence

altogether in most cases. Heavy rainfall and flooding can precipitate and exacerbate landslides, making the extent of potential damage from landslides in an area difficult to predict.

**Probability of Future Occurrences.** The topography and geology of Crenshaw County are not susceptible to the effects of landslides. Typical slope failures may still occur but are primarily the result of development. Crenshaw County is not located in an area susceptible to landslides, as illustrated in Map 4-6. Landslide Hazard Areas, State of Alabama on the next page.





Source: U.S. Geological Survey

Map 4-6. Landslide Hazard Areas, State of Alabama

# 4.14 Vulnerability Assessment: Identification of Assets

This section assesses vulnerability of types and numbers of existing buildings and critical facilities (including infrastructure) located within each identified hazard area. The only identified hazard, which is area specific within the county, is flooding. Consequently, all buildings and critical facilities are exposed to all remaining hazards. The vulnerability assessment has not changed since the last mitigation plan, therefore no changes where made.

The building counts and values are taken from the HAZUS 2007 databases, as data availability is limited.

Designation of a facility as critical is based on the HAZUS definitions, as follows:

- <u>Essential Facilities.</u> These facilities are critical to the health and welfare of the entire county population and are essential following hazard events, including emergency response facilities (police, fire, and emergency management), medical care facilities (hospitals and other care facilities), schools, and shelters for evacuation.
- <u>Lifeline Utility Systems.</u> These facilities are essential lifelines that include potable water, wastewater, natural gas, electric, and communications systems. HAZUS data is not available for this county.
- <u>Transportation Systems.</u> These facilities include highways, bridges, railways, and waterways.
- <u>High Potential Loss Facilities.</u> These facilities include military installations and high potential loss dams.
- <u>Hazardous Materials Facilities.</u> These facilities may pose a threat if disrupted by natural hazards and include hazardous industrial chemicals, explosives, flammables, toxins, and radioactive materials.

# **Building Assets.**

The county has over 8,000 buildings valued at over \$600 million. All of the buildings are at risk for natural hazards damages.

**Table 4-13. Total County Building Inventory** 

|             |                    | Numl       | ber of Building | s by Type |            |           |       |  |  |
|-------------|--------------------|------------|-----------------|-----------|------------|-----------|-------|--|--|
| Residential | Commercial         | Industrial | Agriculture     | Religious | Government | Education | Total |  |  |
| 7,629       | 262                | 82         | 46              | 39        | 21         | 8         | 8,087 |  |  |
| Source: HAZ | Source: HAZUS 2007 |            |                 |           |            |           |       |  |  |

Table 4-14. Value of Buildings in County (\$ Building Value in \$1,000's)

|             |                    | Val        | ue by Type of | Building  |            |           |         |  |  |  |
|-------------|--------------------|------------|---------------|-----------|------------|-----------|---------|--|--|--|
| Residential | Commercial         | Industrial | Agriculture   | Religious | Government | Education | Total   |  |  |  |
| 516,290     | 75,689             | 37,121     | 7,124         | 18,540    | 5,640      | 4,612     | 665,016 |  |  |  |
| Source: HA  | Source: HAZUS 2007 |            |               |           |            |           |         |  |  |  |

### **Critical Facilities**

The maps on the following pages show the distribution of critical facilities throughout the county including communication, medical care, police and fire, hazardous material and school facilities. These facilities are shown in relation to the flood boundaries where applicable. The facilities shown are those provided from the HAZUS 2007 database and may not be representative of all stations in the county. Shelter data is not available through HAZUS 2007.

Communication facilities are important resources for a community to have available. It allows administrators direct access to the public for announcements, education and alerts regarding hazards. Crenshaw County has two broadcasting towers. The county has one FM and one television tower located in the southern portion of the county.

The county has an emergency response system. These facilities are located throughout the county. Some of the volunteer stations have medical rescue capability.

Hazardous material facilities contain substances that can pose significant hazards because of their toxicity, radioactivity, flammability, explosiveness and/or reactivity. Significant casualties and/or property damage could occur from a single hazardous materials release induced by a flood, earthquake or other unforeseen hazard. Map 4-9 depicts that location of hazardous sites in 2007. A current listing of hazardous materials and their locations are on file at the EMA.

Crenshaw County has three medical facilities, including one hospital and two medical centers. The Crenshaw Baptist Hospital is classified as a medium hospital by HAZUS 2007 and has approximately 52 beds. The other two facilities do not have listings regarding size. .

Crenshaw County has school systems located in all parts of the county around urbanized areas. The locations of the schools are an important resource for the public as they are often used as shelters during times of disasters.

# **4.15** Vulnerability Assessment: Impacts on Population, Buildings, Critical Facilities; Estimated Losses

Tables 4-15, 4-16 and 4-17 depict populations and buildings in Crenshaw County that is vulnerable to each natural hazard. It is estimated that the entire population is vulnerable to tornadoes, drought, hail, wildfire, lightning, hurricanes, thunderstorms, winter storms, and earthquakes. It is estimated that 2% of the population and buildings are vulnerable to flooding and an undetermined amount are susceptible to dam failure, landslides, and sinkholes.

# **Impact on Population.**

| Table 4-15. Po | Table 4-15. Population Vulnerable to Natural Hazards  Hazard Population Households |                    |  |  |  |  |  |  |  |
|----------------|------------------------------------------------------------------------------------|--------------------|--|--|--|--|--|--|--|
| Hazard         | Population                                                                         | Households         |  |  |  |  |  |  |  |
| Flood          | 273                                                                                | 112                |  |  |  |  |  |  |  |
| Tornado        | 13, 665                                                                            | 5,577              |  |  |  |  |  |  |  |
| Drought        | 13, 665                                                                            | 5,577              |  |  |  |  |  |  |  |
| Hail           | 13, 665                                                                            | 5,577              |  |  |  |  |  |  |  |
| Wildfire       | 13, 665                                                                            | 5,577              |  |  |  |  |  |  |  |
| Lightning      | 13, 665                                                                            | 5,577              |  |  |  |  |  |  |  |
| Hurricane      | 13, 665                                                                            | 5,577              |  |  |  |  |  |  |  |
| Thunderstorm   | 13, 665                                                                            | 5,577              |  |  |  |  |  |  |  |
| Landslide      | 0                                                                                  | 0                  |  |  |  |  |  |  |  |
| Winter storm   | 13, 665                                                                            | 5,577              |  |  |  |  |  |  |  |
| Earthquake     | 13, 665                                                                            | 5,577              |  |  |  |  |  |  |  |
| Dam Failure    | Data not available                                                                 | Data not available |  |  |  |  |  |  |  |

Source: Census 2000 (Flood estimates based on 2% of total)

# Impact on Buildings.

Table 4-16. Number of Buildings Exposed to Hazards

| Hazard    |             | Type of Building |            |             |           |       |           |       |  |  |  |
|-----------|-------------|------------------|------------|-------------|-----------|-------|-----------|-------|--|--|--|
| Huzuru    | Residential | Commercial       | Industrial | Agriculture | Religious | Gov't | Education | Total |  |  |  |
| Flood     | 111         | 2                | 1          | 1           | 1         | 1     | 1         | 118   |  |  |  |
| Tornado   | 7,629       | 262              | 82         | 46          | 39        | 21    | 8         | 8,087 |  |  |  |
| Drought   | 7,629       | 262              | 82         | 46          | 39        | 21    | 8         | 8,087 |  |  |  |
| Hail      | 7,629       | 262              | 82         | 46          | 39        | 21    | 8         | 8,087 |  |  |  |
| Wildfire  | 7,629       | 262              | 82         | 46          | 39        | 21    | 8         | 8,087 |  |  |  |
| Lightning | 7,629       | 262              | 82         | 46          | 39        | 21    | 8         | 8,087 |  |  |  |

**Table 4-16. Number of Buildings Exposed to Hazards** 

| Hazard       | Type of Building |            |            |             |           |       |           |       |  |
|--------------|------------------|------------|------------|-------------|-----------|-------|-----------|-------|--|
| THE LITTE    | Residential      | Commercial | Industrial | Agriculture | Religious | Gov't | Education | Total |  |
| Hurricane    | 7,629            | 262        | 82         | 46          | 39        | 21    | 8         | 8,087 |  |
| Thunderstorm | 7,629            | 262        | 82         | 46          | 39        | 21    | 8         | 8,087 |  |
| Landslide    | 0                | 0          | 0          | 0           | 0         | 0     | 0         | 0     |  |
| Winter storm | 7,629            | 262        | 82         | 46          | 39        | 21    | 8         | 8,087 |  |
| Earthquake   | 7,629            | 262        | 82         | 46          | 39        | 21    | 8         | 8,087 |  |

Source: HAZUS 2007 (Flood estimates based on 2% of total and rounded)

Table 4-17. Value of Buildings Exposed to Hazards (\$ Building Value in \$1,000's)

| (\psi Duncing value in \psi 1,000 b) |                  |            |            |             |           |       |           |         |  |
|--------------------------------------|------------------|------------|------------|-------------|-----------|-------|-----------|---------|--|
| Hazard                               | Type of Building |            |            |             |           |       |           |         |  |
| Hazaru                               | Residential      | Commercial | Industrial | Agriculture | Religious | Gov't | Education | Total   |  |
| Flood                                | 8,372            | 1,683      | 826        | 25          | 1,075     | 240   | 306       | 12,527  |  |
| Tornado                              | 671,393          | 74,711     | 37,121     | 7,124       | 18,540    | 5,640 | 4,612     | 819,141 |  |
| Drought                              | 671,393          | 74,711     | 37,121     | 7,124       | 18,540    | 5,640 | 4,612     | 819,141 |  |
| Hail                                 | 671,393          | 74,711     | 37,121     | 7,124       | 18,540    | 5,640 | 4,612     | 819,141 |  |
| Wildfire                             | 671,393          | 74,711     | 37,121     | 7,124       | 18,540    | 5,640 | 4,612     | 819,141 |  |
| Lightning                            | 671,393          | 74,711     | 37,121     | 7,124       | 18,540    | 5,640 | 4,612     | 819,141 |  |
| Hurricane                            | 671,393          | 74,711     | 37,121     | 7,124       | 18,540    | 5,640 | 4,612     | 819,141 |  |
| Thunderstorm                         | 671,393          | 74,711     | 37,121     | 7,124       | 18,540    | 5,640 | 4,612     | 819,141 |  |
| Landslide                            | 0                | 0          | 0          | 0           | 0         | 0     | 0         | 0       |  |
| Winter storm                         | 671,393          | 74,711     | 37,121     | 7,124       | 18,540    | 5,640 | 4,612     | 819,141 |  |

Source: HAZUS 2007 (Flood estimates based on 2% of total)

**Impact on Critical Facilities.** Critical facilities subject to flooding are shown on the maps in the previous section. All critical facilities are subject to all other natural hazard disasters.

**Estimated Losses.** Table 4-18 provides general estimates of property damage that might result from each of the identified hazards. These are very gross estimates of property damages and should only be interpreted as indicators of the degree of damage possible. The figures are based solely on past occurrences, as described in the hazard identification section of this chapter. More accurate methods are available to assess damages, particularly the Corps of Engineers Flood Damage Assessment (HEC-FDA) model, FEMA's Benefit-Cost Modules, and the HAZUS loss estimation software. As a follow up to this plan, the County intends to conduct more detailed loss estimates, applying the latest version of HAZUS-MH for multi-hazard assessments as was done with this revised plan.

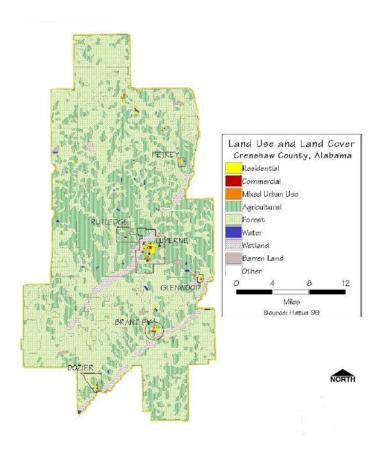
| Table 4-18. Annual Property Damage Estimates |     |          |               |  |  |  |
|----------------------------------------------|-----|----------|---------------|--|--|--|
| Hazard                                       | Low | Expected | High          |  |  |  |
| Tornado                                      | \$0 | \$73,000 | \$2.5 Million |  |  |  |
| Severe Storm                                 | \$0 | \$60,875 | \$250,000     |  |  |  |
| Flood                                        | \$0 | \$81,000 | \$300,000     |  |  |  |
| Winter Storm/Freeze                          | \$0 | N/A      | N/A           |  |  |  |
| Hurricane                                    | \$0 | N/A      | N/A           |  |  |  |
| Drought/Heat Wave                            | \$0 | N/A      | N/A           |  |  |  |
| Wildfire                                     | \$0 | N/A      | N/A           |  |  |  |
| Dam/Levee Failure                            | \$0 | N/A      | N/A           |  |  |  |
| Landslide                                    | \$0 | N/A      | N/A           |  |  |  |
| Earthquake                                   | \$0 | N/A      | N/A           |  |  |  |

Source: NOAA Property Damage Estimates at <a href="http://www4.ncdc.noaa.gov/cgi-win/wwcgi.dll?wwevent~storms">http://www4.ncdc.noaa.gov/cgi-win/wwcgi.dll?wwevent~storms</a>

# 4.16 Vulnerability Assessment: Analysis of Development Trends

As shown in Tables 4-19 and 4-20, Crenshaw County's population increased 0.2% during the decade 1990-2000. The City of Luverne and Town of Rutledge showed positive growth in population. In 2003, a Tier 1 auto parts manufacturer signed a contract to open a facility in Luverne. The company, Shin Young Metals, supplies parts for the new Hyundai Plant in nearby Hope Hull, Alabama.

| Table 4-19. Historical and Projected Population Growth Trends, 1980-2025 |                        |                  |  |  |  |  |
|--------------------------------------------------------------------------|------------------------|------------------|--|--|--|--|
|                                                                          | <b>Crenshaw County</b> | State of Alabama |  |  |  |  |
|                                                                          | Histo                  | orical           |  |  |  |  |
| 1980 Population                                                          | 14,110                 | 3,893,888        |  |  |  |  |
| 1990 Population                                                          | 13,635                 | 4,047,587        |  |  |  |  |
| Percent Change 1980-1990                                                 | -3.4                   | 3.8              |  |  |  |  |
| Number Change 1980-1990                                                  | -475                   | 146,699          |  |  |  |  |
| 2000 Population                                                          | 13,665                 | 4,447,100        |  |  |  |  |
| Percent Change 1990-2000                                                 | 0.2                    | 10.1             |  |  |  |  |
| Number Change 1990-2000                                                  | 30                     | 406,513          |  |  |  |  |
|                                                                          | Proje                  | ected            |  |  |  |  |
| 2005 Population                                                          | 13,676                 | 4,644,503        |  |  |  |  |
| 2015 Population                                                          | 13,738                 | 5,028,045        |  |  |  |  |
| 2025 Population                                                          | 13,714                 | 5,385,997        |  |  |  |  |
| Percent Change 2000-2025                                                 | 0.4                    | 21.1             |  |  |  |  |
| Number Change 2000-2025                                                  | 49                     | 938,897          |  |  |  |  |


Source: Alabama State Data Center, the University of Alabama

**Table 4-20. Population Growth Trends** 

| Jurisdiction | 2000<br>Population | 2010<br>Population | Number<br>Change | Percent<br>Change |
|--------------|--------------------|--------------------|------------------|-------------------|
| Crenshaw Co. | 13,635             | 13,906             | 30               | 0.2%              |
| Luverne      | 2,635              | 2800               | 117              | 4.63%             |
| Brantley     | 920                | 809                | -111             | 12.07%            |
| Dozier       | 391                | 329                | -62              | 15.86%            |
| Rutledge     | 476                | 467                | 39               | 7.71%             |
| Glenwood     | 191                | 187                | -4               | 2.09%             |
| Petrey       | 63                 | 58                 | -5               | 7.94%             |

Source: Census 2010

Little population change is forecast for Crenshaw County to the year 2025. There has been speculation of incorporating the Highland Home Community. In the future, Crenshaw County should attract more industry supplying the nearby Hyundai plant. Map 4-12 on the next page shows the land use in the county from 2010.



HAZUS 2010

Map 4-12. Land Use and Land Cover, Crenshaw County

# 4.17 Multi-Jurisdictional Risk Assessment

In Table 4-21 the jurisdictions are ranked in terms of risk of natural hazards. All jurisdictions are equally at risk for tornadoes, severe storms, earthquakes, wildfires, extreme cold, winter storms, drought and extreme heat. The jurisdictions have varying degrees of risk pertaining to flooding and landslides. The Towns of Dozier, Glenwood and the Mulberry Community and Holiday Settlement are most at risk for flooding. The risk associated with each hazard depends upon topography, geology and density of development. Table 4-21 shows the risk by jurisdiction with 1=highest risk and 10=lowest risk.

Table 4-21. Multi-Jurisdictional Risk Assessment

| Jurisdiction  | Crensh. Co. | Luverne | Brantley | Dozier | Rutledge | Glenwood | Petrey |
|---------------|-------------|---------|----------|--------|----------|----------|--------|
| Tornado       | 1           | 2       | 1        | 2      | 1        | 2        | 1      |
| Severe Storm  | 2           | 3       | 2        | 3      | 2        | 3        | 2      |
| Flood         | 3           | 1       | 3        | 1      | 3        | 1        | 3      |
| Drought/Heat  | 4           | 6       | 6        | 6      | 6        | 6        | 6      |
| Hurricanes    | 5           | 4       | 4        | 4      | 4        | 4        | 4      |
| Winter/Freeze | 6           | 5       | 5        | 5      | 5        | 5        | 5      |
| Wildfire      | 7           | 7       | 7        | 7      | 7        | 7        | 7      |
| Dam Failure   | 8           | 8       | 8        | 8      | 8        | 8        | 8      |
| Earthquake    | 9           | 9       | 9        | 9      | 9        | 9        | 9      |
| Landslide     | 10          | 10      | 10       | 10     | 10       | 10       | 10     |

# **Chapter 5 Mitigation Strategies**

### **5.1** Purpose of the Mitigation Strategies

The mitigation strategies presented in this chapter provide a long-range blueprint for all participating communities within Crenshaw County to consolidate their resources and efforts to cooperatively reduce the potential losses identified in the risk assessment. Additional mitigation strategies have been included in this plan, including those on community shelters and generators with protective covering. This chapter presents a shared vision and comprehensive, long-range plan of goals, objectives, and available mitigation measures for all participants in the planning process. Those short-range mitigation measures supported by each community over the next five-year planning cycle are presented in Chapter 6 - Community Action Programs.

# 5.2 Steps in Developing the Strategies

\_At its organizational meeting, the Hazard Mitigation Planning Committee (HMPC) adopted a mission statement and a shared vision for disaster resistance among all communities within the county. These statements were prepared with *Committee Exercise #1 - Mission/Vision Statements*. Refer to Section 3.2, Hazard Mitigation Planning Committee, for the Mission Statement. Section 5.6 presents the Vision Statement for the committee.

At subsequent committee meetings, each jurisdiction completed risk and capabilities assessments. Committee Exercise #2 - Hazard Identification was used to generally identify the natural hazard threats to each community and the probability or risks of future occurrences. More detailed research and analyses of the risks supplemented the committee exercise, and the committee reviewed the results. The next exercise, Committee Exercise #3 - Hazard Profiles, compiled the records of past natural hazard events. This exercise was completed through evaluation of available data, such as local damage reports, news accounts, and FEMA disaster declaration records, as well as committee members' recollections of past events. Committee Exercise #4 - Capabilities Assessment for Hazard Mitigation was completed by each jurisdiction to determine existing capabilities to implement mitigation measures. The committee representatives examined the regulatory tools, staff resources, funding, and other capabilities of each jurisdiction.

The "Issues and Opportunities" – major problems and opportunities facing each community's mitigation efforts – were derived from the risk and capability assessments, committee discussions, public participation, and interagency coordination activities. The statements of issues and opportunities form the basis for determining appropriate mitigation measures for each community, given their particular risks and capabilities.

Committee Exercise #5 - Alternative Mitigation Measures, was used by the committee to select among the broad range of alternatives that might be available to each community. Through this exercise, goals were established for high-risk natural hazards and each of the

six categories of mitigation activities. Mitigation program objectives define achievable targets that are consistent with goals. The committee evaluated the alternative mitigation measures that would advance the goal and selected the preferred measures that would best address each issue. The committee also identified the most critical natural hazard issues in each jurisdiction and recommended mitigation projects for potential FEMA funding.

Finally, the committee completed the Mitigation Action Program that schedules the implementation of mitigation measures. The action program for each participating community assigns implementation responsibility, sets a timeline, identifies funding needs, and establishes the priority for implementation (See chapter 6). Figure 5.1 illustrates the process and components that lead to the Mitigation Strategies and Mitigation Action Program.

The HMPC sought participation from the public and coordinated its efforts with other agencies. This was accomplished through open committee meetings, access to the project surveys, public meetings, media announcements and public hearings prior to the plan's adoption. Results of the exercises and sign-in sheets and minutes from meetings are available in the EMA office.

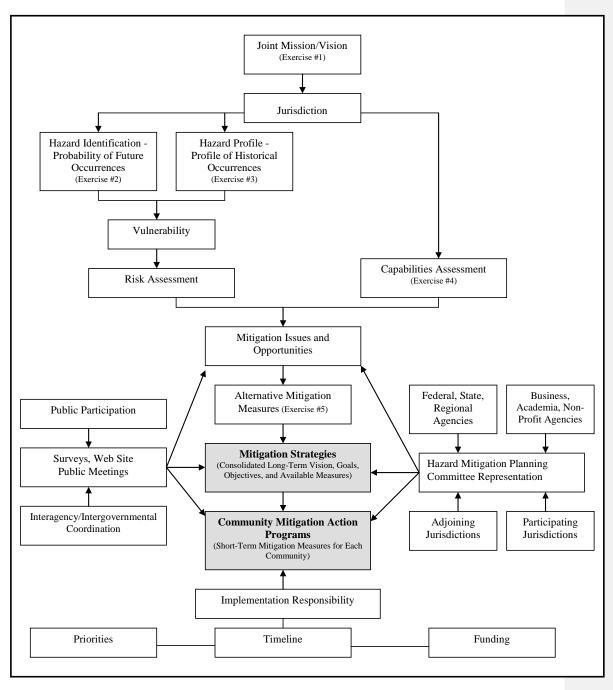



Figure 5-1. Steps in the Development of the Mitigation Strategies and Action Programs

# **5.3** The Planning Approach

The planning approach presented here follows the six categories of a comprehensive hazard mitigation program. These program categories have been developed by FEMA for managing a successful mitigation program and are used here as guidelines for identifying and selecting among alternative mitigation measures.

- 1. **Prevention.** Adopting and administering ordinances, regulations, and programs that manage the development of land and buildings to minimize risks of loss due to natural hazards.
- 2. Property Protection. Protecting structures and their occupants and contents from the damaging effects of natural hazard occurrences, including retrofitting existing structures to increase their resistance to damage and exposure of occupants to harm; relocating vulnerable structures and occupants from natural hazard locations; and conversion of developed land to permanent open space through acquisition and demolition of existing structures.
- **3. Public Education and Outreach.** Educating and informing the public about the risks of natural hazards and the techniques available to reduce threats to life and property.
- **4. Natural Resources Protection.** Preserving and restoring the beneficial functions of the natural environment to promote sustainable community development that balances the constraints of nature with the social and economic demands of the community.
- **5. Emergency Services.** Responding to and recovering from a natural hazard disaster.

—Structural Projects. Engineering structural modifications to natural systems and public-infrastructure to reduce the potentially damaging impacts of a natural hazard on a community.

# 5. Mitigation Issues and Opportunities

The mitigation measures of this plan respond to the issues and opportunities listed in this section. These statements summarize the principal natural hazard issues and mitigation opportunities and are based upon the findings of the risk assessment and capability assessment, participation by members of the HMPC at committee meetings and through planning exercises, the results of the public survey, public participation at community meetings, and coordination among interested agencies.

#### Prevention

 Tornadoes, severe storms and floods are the most threatening hazards to Crenshaw County communities. Formatted: Bullets and Numbering

- No Crenshaw County municipalities practice comprehensive planning.
- The county expects a slight population increase of 0.2%.
- A large number of areas depicted on the Flood Insurance Rate Maps are designated "Approximate" zones where no detailed studies and flood elevation data exist.
- Unincorporated Crenshaw County, Luverne, Brantley, Glenwood, and Dozier are the only jurisdictions that participate in the NFIP.
- The Town of Petrey has special flood hazard areas identified but do not participate in the NFIP.
- Rutledge does not have any special flood hazard areas identified.

#### **Property Protection**

- Standard homeowner and business insurance policies do not cover flood damages.
- Many older homes and buildings located in flood plains are not protected from flooding.

#### Public Education and Outreach

- Real estate agents and property owners have a continuing need for flood map information.
- The public is generally unaware of risks associated with hazards and the mitigation measures available for property protection.
- Local libraries are available to serve as repositories for information on hazards and methods of protection.
- Technical assistance materials are available through FEMA to assist property owners on alternative property protection measures.
- School environmental education programs provide excellent opportunities for public education on hazard mitigation alternatives.
- A multitude of public outreach opportunities and resources are available.
- Public information activities are among the least expensive mitigation measures and often the most effective.

# Natural Resources Protection

- Stream and river banks and riparian zones help manage floods and filter runoff.
- Accidental or intentional dumping of household and commercial items, such as household garbage, tires, shopping carts, and landscape debris, can obstruct flows.
- Storm-damaged trees resulting from hurricanes, tornadoes, severe thunderstorms, and wind storms - can clog streets and access routes during periods of disaster response, obstruct the natural discharge of flood waters, disrupt utility services, increase debris removal, damage property, and increase disaster recovery costs.

### **Emergency Services**

- Weather radios in homes and businesses provide inexpensive means for advance warning.
- Generators to critical facilities provide uninterrupted service to the public.

#### Structural Projects

 Regular maintenance of streams and drainage ways is critical to their effective operation for storm water discharge.

### **<u>5.5</u>** Existing Natural Hazard Mitigation Activities

This plan expands upon and improves existing local mitigation activities as described in this section.

### **NFIP Participation**

Crenshaw <u>County</u>, the City of Luverne, Town of Brantley, Town of Glenwood, and the Town of Dozier participate in the <u>National Flood Insurance Program (NFIP)</u>. <u>Table 5-1</u> <u>lists their date of entry into the program</u>.

**Table 5-1. National Flood Insurance Program Participants** 

| Community Name                         | <b>Date of Entry into the NFIP</b> |
|----------------------------------------|------------------------------------|
| Crenshaw County (Unincorporated Areas) | 07/17/86                           |
| City of Luverne                        | 06/24/77                           |
| Town of Dozier                         | 03/01/95                           |
| Town of Brantley                       | 07/05/05                           |
| Town of Glenwood                       | 12/30/03                           |
| Town of Petery                         | 10/162009                          |

The Town of Petrey has special flood hazard areas identified but do not participate in the NFIP. Rutledge does not have flood hazard areas identified nor does it participate in the NFIP.

# **Existing Capabilities**

In response to *Committee Exercise #4, Capability Assessment for Mitigation Plan Implementation*, jurisdictions noted regulatory tools, staff/personnel resources, and available funding sources. The results are maintained in the EMA office, and a summary of regulatory tools is presented in Table 5-2.

Table 5-2. Planning and Regulatory Tools by Jurisdiction

| Jurisdiction     | Comprehensive<br>Plan <sup>1</sup> | Capital<br>Improvement<br>Plan <sup>2</sup> | Zoning<br>Ordinance | Building Codes | Flood Plain<br>Regulations |
|------------------|------------------------------------|---------------------------------------------|---------------------|----------------|----------------------------|
| Crenshaw County  | -                                  | -                                           | -                   | -              | X                          |
| City of Luverne  | -                                  | -                                           | X                   | X              | X                          |
| Town of Brantley | -                                  | -                                           | X                   | -              | -                          |
| Town of Rutledge | -                                  | -                                           | X                   | -              | -                          |
| Town of Dozier   | •                                  |                                             | •                   | •              | X                          |
| Town of Glenwood | -                                  |                                             | •                   | -              | -                          |
| Town of Petrey   | -                                  | -                                           | -                   | -              | -                          |

#### Notes:

- 1. A *Comprehensive Plan* is a current and active plan for managing existing and future growth and development throughout the jurisdiction.
- A Capital Improvement Plan is a five- to six-year plan for capital facilities improvements tied directly to the comprehensive plan.

### **5.64** Vision Statement

#### A Vision for Disaster Resistance

Crenshaw County and its municipalities envision active resistance to the threats of nature to human life and property through publicly supported mitigation measures with proven results. The communities within Crenshaw County commit to reduce the exposure and risk of natural hazards by activating all available resources through cooperative intergovernmental and private sector initiatives and augmenting public knowledge and awareness.

# 5.7 Comprehensive Mitigation Strategies

This section presents the long-term strategies for mitigation of natural hazards. Each locality within Crenshaw County derives its five-year mitigation action program (see Chapter 6 - Community Mitigation Action Programs) from the program goals, objectives, and available long-term mitigation measures presented here.

- **1 Goal for Prevention.** Manage the development of land and buildings to minimize risks of loss due to natural hazards.
  - 1.1 <u>Flood Plain Management Regulations.</u> Effectively administer and enforce local floodplain management regulations.

#### Mitigation Measures:

- 1.1.1 For the Town of Petrey which has had special flood hazard areas identified but are not members of the NFIP, enact flood hazard prevention ordinances and establish them as regular members of the NFIP. Participation in the NFIP by the Town of Rutledge is encouraged.
- 1.1.2 Train local flood plain managers through programs offered through the State Flood Plain Manager.
- 1.1.3 Maintain a library of technical assistance and guidance materials to support the local flood plain manager.
- 1.2 <u>Building and Technical Codes.</u> Review local codes for effectiveness of standards to protect buildings and infrastructure from hazard damages.

## Mitigation Measure:

- 1.2.1 Promote good construction practices and proper code enforcement to eliminate most structural problems during natural hazard events.
- 1.3 <u>Community Shelters and Safe Rooms.</u> Ensure the protection of communities from tornadoes and severe storms.

## Mitigation Measures:

- 1.3.1 Encourage the construction of safe rooms within new public buildings, such as new schools, libraries, community centers, and other public buildings where feasible.
- 1.3.2 Retrofit public schools with community shelters.
- 1.3.3 Encourage the construction of safe rooms in new and existing construction.
- 1.3.4 Distribute FEMA Publication 320 <u>Taking Shelter from the Storm: Building a Safe Room in Your House</u> to local homebuilders.

- 1.3.5 Encourage the utilization of a generator with a protective cover meeting FEMA 361 Guidelines with all community shelters.
- 1.4 <u>Detailed Plans and Targeted Studies.</u> Conduct special studies, as needed, to identify hazard risks and mitigation measures.

Mitigation Measure:

- 1.4.1 Seek a countywide update of all FIRMs in digital format, with an emphasis on detailed studies of developed and developing areas with elevations provided and floodways delineated.
- **2 Goal for Property Protection.** Protect structures and their occupants and contents from the damaging effects of natural hazards.
  - 2.1 <u>Building Retrofits.</u> Encourage retrofitting of older homes constructed before the enactment of flood plain regulations (pre-FIRM buildings) to safeguard against damages.

Mitigation Measure:

- 2.1.1 Seek funding sources, such as Community Development Block Grant funds, to assist low income home owners with building retrofits to protect against flood damage.
- 2.2 <u>Insurance</u>. Maintain insurance riders for flood damages.

Mitigation Measure:

- 2.2.1 Promote the purchase of flood insurance coverage by property owners and renters in high-risk flooding areas.
- 3 Goal for Public Education and Outreach. Educate and inform the public about the risks of hazards and the techniques available to reduce threats to life and property.
  - 3.1 <u>Map Information</u>. Increase public access to Flood Insurance Rate Map (FIRM) information.

Mitigation Measure:

3.1.1 Publicize the availability of FIRM information to real estate agents, builders, developers, and homeowners through local trade publications and newspaper announcements.

3.2 <u>Outreach Projects.</u> Conduct regular public events to inform the public of hazards and mitigation measures.

Mitigation Measure:

- 3.2.1 Promote mitigation and severe weather awareness, through an annual severe weather awareness event.
- 3.3 <u>Library.</u> Use local library resources to educate the public on hazard risks and mitigation alternatives.

Mitigation Measure:

- 3.3.1 Obtain free publications from FEMA, NWS, USGS, and other federal and state agencies and place these materials in local libraries.
- 3.4 <u>Environmental Education.</u> Use school resources for public education on hazards and mitigation measures.

Mitigation Measure:

- 3.4.1 Distribute hazard mitigation brochures to area schools for distribution to students.
- **4 Goal for Natural Resources Protection.** Preserve and restore the beneficial functions of the natural environment to promote sustainable community development that balances the constraints of nature with the social and economic demands of the community.
  - 4.1 <u>Urban Forestry Programs.</u> Maintain a healthy forest that can help mitigate the damaging impacts of flooding, erosion, landslides, and wild fires within urban areas.

Mitigation Measure:

4.1.1 Seek technical assistance through the Alabama Cooperative Extension System and/or the Alabama Forestry Commission with Best Management Practices (BMPs) for channel and drainage system maintenance.

- **5 Goal for Emergency Services.** Improve the efficiency, timing, and effectiveness of response and recovery efforts for natural hazard disasters.
  - 5.1 Disaster Warning. Improve public warning systems.

Mitigation Measure:

- 5.1.1 Upgrade the county's siren system.
- 5.2 <u>Weather Radios.</u> Improve public access to weather alerts.

Mitigation Measures:

- 5.2.1 Support the Alabama Skywarn Foundation's efforts to distribute weather radios to low-income households, especially in rural areas outside of siren coverage areas.
- 5.2.2 Promote the use of weather radios in households and businesses.
- 5.3 <u>Generators to Critical Facilities.</u> Improve uninterrupted service to the public through critical facilities.

Mitigation Measure:

- 5.3.1 Promote the addition of a generator to all critical facilities.
- 5.3.2 Seek funding for generators to all critical facilities.
- **6 Goal for Structural Projects.** Apply engineered structural modifications to natural systems and public infrastructure to reduce the potentially damaging impacts of hazards, where feasible, cost effective, and environmentally suitable.
  - 6.1 <u>Drainage System Maintenance.</u> Improve maintenance programs for streams and drainage ways.

Mitigation Measure:

6.1.1 Prepare and implement standard operating procedures for drainage system maintenance.

# Chapter 6 Community Mitigation Action Programs

# **6.1** Purpose of the Community Mitigation Action Programs

This chapter presents the five-year mitigation action programs for each participating community and a listing of proposed priority projects to be considered for funding over the five-year planning cycle by FEMA grant programs. The mitigation action program of each jurisdiction assigns priority for implementation of each measure, lead responsibility for implementation, and the time frame for implementation. For each mitigation measure, the program goal, program objectives, hazard(s) addressed, and the possible funding sources for all measures are also noted in the tables. The overall intent of these mitigation action programs and priority projects is to reduce the effects of each hazard, with a special emphasis on new and existing buildings and infrastructure. The key to abbreviations used in the tables may be found at the end of this chapter.

# **6.2** Prioritization of Mitigation Actions

The Hazard Mitigation Planning Committee established the process described in this section to guide its selection and prioritization of available mitigation measures to be included within each community's mitigation action program.

### **Plan consistency**

In selecting among available mitigation measures, the Planning Committee evaluated the consistency of each available mitigation measure with the long-term mitigation strategy - the vision, goals, and objectives presented in this plan. Each of the prioritized measures are intended to advance the shared vision, goals, and objectives and respond to the issues and opportunities set forth in this plan by all of the participating localities. Further, the Committee has determined that all of the mitigation measures selected for each jurisdiction's community action program are fully consistent with established community goals and plans currently in force and with comments and concerns presented through public participation and interagency coordination efforts of the planning process.

#### **Prioritization criteria**

The Planning Committee prioritized the available mitigation measures and projects according to the following principal criteria:

#### 1. Economic Considerations.

a. Availability of funds. Will the measure require Federal or other outside funding sources? Are local funds available? Can in-kind services reduce local obligations? What is the projected availability of required funds during the timeframe for implementation? Where funding is not

- apparently available, should the project still be considered but at a lower priority?
- b. Benefits to be derived from the proposed measure. Will the measure likely reduce dollar losses from property damages in the event of a hazard? To what degree?
- c. Costs. Are the costs reasonable in relation to the likely benefits? Do economic benefits to the community outweigh estimated project costs? What cost reduction alternatives might be available?
- d. Economic feasibility. Have the costs and benefits of the preferred measure been compared against other alternatives? What is the economic impact of the no-action alternative? Is this the most economically effective solution?
- e. Impact on local economy. Will the proposed measure improve local economic activities? What impact might the measure have on the tax base?
- f. Economic development goals. Will the proposal advance the overall economic goals and objectives of the community?

#### 2. Social Considerations.

- a. *Environmental justice*. Will the proposed measure be socially equitable to minority, disadvantaged, and special needs populations, such as the elderly and handicapped?
- b. Neighborhood impact. Will the measure disrupt established neighborhoods or improve quality of life for affected neighborhoods?
- *c. Community support.* Is the measure consistent with community values? Will the affected community support the measure?
- d. Impact on social and cultural resources. Does the measure adversely affect valued local resources or enhance those resources?

#### 3. Environmental Considerations.

- a. National Environmental Policy Act (NEPA). Will the measure be consistent with Federal NEPA criteria? How will the measure affect environmental resources, such as land, water, air, wildlife, vegetation, historic properties, archaeological sites, etc.? Can potentially adverse impacts be sufficiently mitigated through reasonable methods?
- b. State and local environmental regulations. Will the measure be in compliance with State and local environmental laws, such as flood plain management regulations, water quality standards, and wetlands protection criteria?
- c. Environmental conservation goals. Will the proposal advance the overall environmental goals and objectives of the community?

4.

# Administrative, Legal, and Political Considerations.

- a. Staffing. Does the jurisdiction have adequate staff resources and expertise to implement the measure? Will additional staff, training, or consultants be necessary? Can local funds support staffing demands? Will the measure overburden existing staff loads?
- b. *Maintenance*. Does the jurisdiction have the capabilities to maintain the proposed project once it is completed? Are staff, funds, and facilities available for long-term project maintenance?
- c. *Timing*. Can the measure be implemented in a timely manner? Are the timeframes for implementation reasonable?
- d. Legal authority. Does the jurisdiction have the legal authority to implement the measure? What are the legal consequences of taking action to implement the measure as opposed to an alternative action or taking no action? Will new legislation be required?
- e. Political support. Does the local governing body support the proposed measure? Does the public support the measure? Do stakeholders support the measure? What advocates might facilitate implementation of the proposal?

#### 5. Technical Considerations.

*Technical feasibility.* Is the proposal technically possible? Are there technical issues that remain? Does the measure effectively solve the problem or create new problems? Are there secondary impacts that might be considered? Have professional experts been consulted?

#### **Cost-Benefit Review**

Priority mitigation projects will only be implemented if the benefits are maximized and outweigh the associated costs of the proposed projects. The Planning Committee performed a general evaluation of each mitigation measure, which might require FEMA funds. The Committee weighed the estimated costs for each mitigation measure against the projected benefits to be derived. For example, a project to acquire properties within the flood plain would provide the following benefits: (1) the project eliminates flood damages to of acquired properties, (2) the project reduces flood response costs, (3) the project reduces flood insurance claims, and (4) the project could increase the Community Rating System (CRS). A more detailed benefit-cost analysis will be required for each priority project to determine economic feasibility during the project planning phase. Projects will also require a more detailed evaluation for eligibility and feasibility including social impact, environmental impact, technical feasibility and other criteria that measure project effectiveness. This detailed evaluation of projects will be performed in the pre-application phase of a grant request. Further, project implementation will be subject to the availability of FEMA grants and other sources of funds from year-to-year.

# **6.3** Available Mitigation Measures

The Mitigation Action Program tables for each community reference "Mitigation Measures" by number to the comprehensive mitigation strategies contained in section 5.7 of chapter 5. All of the available mitigation measures presented in chapter 5 are again listed in this section for ease of reference. Each Community Mitigation Action Program lists only those mitigation measures endorsed by that particular jurisdiction. There are no changes to the mitigation measures. Crenshaw County has placed weather sirens throughout the county as well as 5 community safe rooms. These measures where left in the property list by the planning comity because there is a continued need for more of them. All other measures not implemented was due to a lack of funding.

**Table 6-1. Mitigation Measures** 

| Mitigation<br>Measure # | Goal       | Program<br>Objective                     | Mitigation Measure                                                                                                                                                                                                                                                                      |
|-------------------------|------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.1.1                   | Prevention | Flood Plain<br>Management<br>Regulations | For the Towns of Petrey and Brantley which have had special flood hazard areas identified but are not members of the NFIP, enact flood hazard prevention ordinances and establish them as regular members of the NFIP. Participation in the NFIP by the Town of Rutledge is encouraged. |
| 1.1.2                   | Prevention | Flood Plain<br>Management<br>Regulations | Train local flood plain managers through programs offered through the State Flood Plain Manager.                                                                                                                                                                                        |
| 1.1.3                   | Prevention | Flood Plain<br>Management<br>Regulations | Maintain a library of technical assistance and guidance materials to support the local flood plain manager.                                                                                                                                                                             |
| 1.2.1                   | Prevention | Building and<br>Technical Codes          | Promote good construction practices and proper code enforcement to eliminate most structural problems during natural hazard events.                                                                                                                                                     |
| 1.3.1                   | Prevention | Community<br>Shelters and<br>Safe Rooms  | Encourage the construction of safe rooms within new public buildings, such as new schools, libraries, community centers, and other public buildings where feasible.                                                                                                                     |
| 1.3.2                   | Prevention | Community<br>Shelters and<br>Safe Rooms  | Retrofit public schools with community shelters.                                                                                                                                                                                                                                        |
| 1.3.3                   | Prevention | Community<br>Shelters and<br>Safe Rooms  | Encourage the construction of safe rooms in new and existing construction.                                                                                                                                                                                                              |

| Mitigation<br>Measure # | Goal                                   | Program<br>Objective                      | Mitigation Measure                                                                                                                                                                                               |
|-------------------------|----------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.3.4                   | Prevention                             | Community<br>Shelters and<br>Safe Rooms   | Distribute FEMA Publication 320 - <u>Taking Shelter</u><br><u>From the Storm: Building a Safe Room in Your House</u><br>– to local homebuilders.                                                                 |
| 1.3.5                   | Prevention                             | Community<br>Shelters and<br>Safe Rooms   | Encourage the utilization of a generator with a protective cover meeting FEMA 361 Guidelines with all community shelters.                                                                                        |
| 1.4.1                   | Prevention                             | Detailed Plans<br>and Targeted<br>Studies | Seek a countywide update of all FIRMs in digital format, with an emphasis on detailed studies of developed and developing areas with elevations provided and floodways delineated.                               |
| 2.1.1                   | Property<br>Protection                 | Building<br>Retrofits                     | Seek funding sources, such as Community Development Block Grant funds, to assist low income home owners with building retrofits to protect against flood damage.                                                 |
| 2.2.1                   | Property<br>Protection                 | Insurance                                 | Promote the purchase of flood insurance coverage by property owners and renters in high-risk flooding areas.                                                                                                     |
| 3.1.1                   | Public<br>Education<br>and<br>Outreach | Map Information                           | Publicize the availability of FIRM information to real estate agents, builders, developers, and homeowners through local trade publications and newspaper announcements.                                         |
| 3.2.1                   | Public<br>Education<br>and<br>Outreach | Outreach<br>Projects                      | Promote mitigation and severe weather awareness, through an annual severe weather awareness event.                                                                                                               |
| 3.3.1                   | Public<br>Education<br>and<br>Outreach | Library                                   | Obtain free publications from FEMA, NWS, USGS, and other federal and state agencies and deposit these materials with local libraries.                                                                            |
| 3.4.1                   | Public<br>Education<br>and<br>Outreach | Environmental<br>Education                | Distribute hazard mitigation brochures to area schools for distribution to students.                                                                                                                             |
| 4.1.1                   | Natural<br>Resource<br>Protection      | Urban<br>Forestry<br>Programs             | Seek technical assistance through the Alabama<br>Cooperative Extension System and/or the Alabama<br>Forestry Commission with Best Management<br>Practices (BMPs) for channel and drainage system<br>maintenance. |

| Mitigation<br>Measure #   | Goal                   | Program<br>Objective                                                                                                                                               | Mitigation Measure                                                                   |  |  |  |  |  |
|---------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--|--|--|--|--|
| 5.1.1 Emergen<br>Services |                        | Disaster<br>Warning                                                                                                                                                | Upgrade the county's siren system.                                                   |  |  |  |  |  |
| 5.2.1                     | Emergency<br>Services  | Support the Alabama Skywarn Foundation's efforts to distribute weather radios to low-income households, especially in rural areas outside of siren coverage areas. |                                                                                      |  |  |  |  |  |
| 5.2.2                     | Emergency<br>Services  | Weather Radios                                                                                                                                                     | Promote the use of weather radios in households and businesses.                      |  |  |  |  |  |
| 5.3.1                     | Emergency<br>Services  | Generators                                                                                                                                                         | Promote the addition of a generator to all critical facilities.                      |  |  |  |  |  |
| 5.3.2                     | Emergency<br>Services  | Generators                                                                                                                                                         | Seek funding for generators to all critical facilities.                              |  |  |  |  |  |
| 6.1.1                     | Structural<br>Projects | Structural<br>Projects                                                                                                                                             | Prepare and implement standard operating procedures for drainage system maintenance. |  |  |  |  |  |

# **6.4** Mitigation Action Programs

**Table 6-2. Crenshaw County Mitigation Action Program** 

|                         | CRENSHAW COUNTY MITIGATION ACTION PROGRAM |                                     |          |                        |            |          |                                   |  |  |  |
|-------------------------|-------------------------------------------|-------------------------------------|----------|------------------------|------------|----------|-----------------------------------|--|--|--|
| Mitigation<br>Measure # | Goal                                      | Program Objective                   | Priority | Lead<br>Responsibility | Hazard(s)  | Timeline | Possible Funding<br>Source        |  |  |  |
| 1.1.2                   | Prevention                                | Flood Plain Management Regulations  | High     | FPM                    | FL         | 2017     | EXIST                             |  |  |  |
| 1.1.3                   | Prevention                                | Flood Plain Management Regulations  | High     | FPM                    | FL         | 2017     | EXIST                             |  |  |  |
| 1.3.1                   | Prevention                                | Community Shelters and Safe Rooms   | High     | GOV                    | TO, SS, HU | 2017     | TBD                               |  |  |  |
| 1.3.2                   | Prevention                                | Community Shelters and Safe Room    | Low      | School Board,<br>GOV   | TO, SS, HU | 2015     | TBD                               |  |  |  |
| 1.3.3                   | Prevention                                | Community Shelters and Safe Room    | High     | EMA, BO                | TO, SS, HU | 2017     | TBD                               |  |  |  |
| 1.3.4                   | Prevention                                | Community Shelters and Safe Room    | High     | EMA, BO                | TO, SS, HU | 2017     | EXIST                             |  |  |  |
| 1.3.5                   | Prevention                                | Community Shelters and Safe Rooms   | High     | EMA, BO                | TO, SS, HU | 2017     | TBD                               |  |  |  |
| 1.4.1                   | Prevention                                | Detailed Plans and Targeted Studies | Low      | CE, FPM, EMA           | FL         | 2017     | FEMA Map Update<br>Program        |  |  |  |
| 2.1.1                   | Property Protection                       | Building Retrofits                  | Low      | FPM, EMA               | FL         | 2017     | CDBG,<br>HMGP/PDM<br>(Countywide) |  |  |  |
| 2.2.1                   | Property Protection                       | Insurance                           | High     | FPM, EMA               | FL         | 2017     | EXIST                             |  |  |  |
| 3.1.1                   | Public Education and<br>Outreach          | Map Information                     | Low      | FPM, EMA               | FL         | 2017     | EXIST                             |  |  |  |
| 3.2.1                   | Public Education and<br>Outreach          | Outreach Projects                   | High     | EMA                    | All        | 2017     | TBD                               |  |  |  |

|                         |                                  | CRENSHAW COUNTY MITIGA  | TION ACT | ION PROGR              | AM        |          |                                              |
|-------------------------|----------------------------------|-------------------------|----------|------------------------|-----------|----------|----------------------------------------------|
| Mitigation<br>Measure # | Goal                             | Program Objective       | Priority | Lead<br>Responsibility | Hazard(s) | Timeline | Possible Funding<br>Source                   |
| 3.3.1                   | Public Education and<br>Outreach | Library                 | High     | EMA                    | All       | 2017     | EXIST                                        |
| 3.4.1                   | Public Education and<br>Outreach | Environmental Education | High     | EMA                    | All       | 2017     | EXIST                                        |
| 4.1.1                   | Natural Resource<br>Protection   | Urban Forestry Programs | Low      | CE, FPM                | FL        | 2017     | TBD                                          |
| 5.1.1                   | Emergency Services               | Disaster Warning        | High     | <i>EMA</i>             | All       | 2017     | \$150,000<br>HMGP/AEMA<br>funds (Countywide) |
| 5.2.1                   | Emergency Services               | Weather Radios          | High     | ЕМА                    | All       | 2017     | \$10,000<br>HMGP/PDM<br>(Countywide)         |
| 5.2.2                   | Emergency Services               | Weather Radios          | High     | EMA                    | All       | 2017     | TBD                                          |
| 5.3.1                   | Emergency Services               | Generators              | High     | EMA                    | All       | 2017     | HMGP/PDM, TBD                                |
| 5.3.2                   | Emergency Services               | Generators              | High     | EMA                    | All       | 2017     | HMGP/PDM, TBD                                |
| 6.1.1                   | Structural Projects              | Structural Projects     | Low      | GOV, FPM               | FL        | 2017     | EXIST                                        |

**Table 6-3. Brantley Mitigation Action Program** 

|                         |                                  | BRANTLEY MITIGATION                 | N ACTION | <b>PROGRAM</b>         |               |          |                            |
|-------------------------|----------------------------------|-------------------------------------|----------|------------------------|---------------|----------|----------------------------|
| Mitigation<br>Measure # | Goal                             | Program Objective                   | Priority | Lead<br>Responsibility | Hazard(s)     | Timeline | Possible Funding<br>Source |
| 1.1.1                   | Prevention                       | Flood Plain Management Regulations  | High     | GOV                    | FL            | 2017     | EXIST                      |
| 1.3.1                   | Prevention                       | Community Shelters and Safe Rooms   | High     | GOV                    | TO, SS,<br>HU | 2017     | TBD                        |
| 1.3.2                   | Prevention                       | Community Shelters and Safe Room    | Low      | School Board,<br>GOV   | TO, SS,<br>HU | 2015     | TBD                        |
| 1.3.3                   | Prevention                       | Community Shelters and Safe Room    | High     | EMA, BO                | TO, SS,<br>HU | 2017     | TBD                        |
| 1.3.4                   | Prevention                       | Community Shelters and Safe Room    | High     | EMA, BO                | TO, SS,<br>HU | 2017     | EXIST                      |
| 1.3.5                   | Prevention                       | Community Shelters and Safe Rooms   | High     | EMA, BO                | TO, SS,<br>HU | 2017     | TBD                        |
| 1.4.1                   | Prevention                       | Detailed Plans and Targeted Studies | Low      | CE, FPM, EMA           | FL            | 2017     | FEMA Map<br>Update Program |
| 3.2.1                   | Public Education and<br>Outreach | Outreach Projects                   | High     | EMA                    | All           | 2017     | TBD                        |
| 3.3.1                   | Public Education and<br>Outreach | Library                             | High     | EMA                    | All           | 2017     | EXIST                      |
| 3.4.1                   | Public Education and Outreach    | Environmental Education             | High     | EMA                    | All           | 2017     | EXIST                      |
|                         |                                  |                                     |          |                        |               |          |                            |

|                         | BRANTLEY MITIGATION ACTION PROGRAM |                   |          |                        |           |          |                                                 |  |  |  |
|-------------------------|------------------------------------|-------------------|----------|------------------------|-----------|----------|-------------------------------------------------|--|--|--|
| Mitigation<br>Measure # | Goal                               | Program Objective | Priority | Lead<br>Responsibility | Hazard(s) | Timeline | Possible Funding<br>Source                      |  |  |  |
| 5.1.1                   | Emergency Services                 | Disaster Warning  | High     | EMA                    | All       | 2017     | \$150,000<br>HMGP/AEMA<br>funds<br>(Countywide) |  |  |  |
| 5.2.1                   | Emergency Services                 | Weather Radios    | High     | EMA                    | All       | 2017     | \$10,000<br>HMGP/PDM<br>(Countywide)            |  |  |  |
| 5.2.2                   | Emergency Services                 | Weather Radios    | High     | EMA                    | All       | 2017     | TBD                                             |  |  |  |
| 5.3.1                   | Emergency Services                 | Generators        | High     | EMA                    | All       | 2017     | HMGP/PDM,<br>TBD                                |  |  |  |
| 5.3.2                   | Emergency Services                 | Generators        | High     | EMA                    | All       | 2017     | HMGP/PDM,<br>TBD                                |  |  |  |

**Table 6-4. Dozier Mitigation Action Program** 

|                         |                                  | DOZIER MITIGATION A                 | CTION PR | OGRAM                  |               |          |                                   |
|-------------------------|----------------------------------|-------------------------------------|----------|------------------------|---------------|----------|-----------------------------------|
| Mitigation<br>Measure # | Goal                             | Program Objective                   | Priority | Lead<br>Responsibility | Hazard(s)     | Timeline | Possible Funding<br>Source        |
| 1.1.2                   | Prevention                       | Flood Plain Management Regulations  | High     | FPM                    | FL            | 2017     | EXIST                             |
| 1.1.3                   | Prevention                       | Flood Plain Management Regulations  | High     | FPM                    | FL            | 2017     | EXIST                             |
| 1.3.1                   | Prevention                       | Community Shelters and Safe Rooms   | High     | GOV                    | TO, SS,<br>HU | 2017     | TBD                               |
| 1.3.2                   | Prevention                       | Community Shelters and Safe Room    | Low      | School Board,<br>GOV   | TO, SS,<br>HU | 2017     | TBD                               |
| 1.3.3                   | Prevention                       | Community Shelters and Safe Room    | High     | EMA, BO                | TO, SS,<br>HU | 2017     | TBD                               |
| 1.3.4                   | Prevention                       | Community Shelters and Safe Room    | High     | EMA, BO                | TO, SS,<br>HU | 2017     | EXIST                             |
| 1.3.5                   | Prevention                       | Community Shelters and Safe Rooms   | High     | EMA, BO                | TO, SS,<br>HU | 2017     | TBD                               |
| 1.4.1                   | Prevention                       | Detailed Plans and Targeted Studies | Low      | CE, FPM, EMA           | FL            | 2017     | FEMA Map Update<br>Program        |
| 2.1.1                   | Property Protection              | Building Retrofits                  | Low      | FPM, EMA               | FL            | 2017     | CDBG,<br>HMGP/PDM<br>(Countywide) |
| 2.2.1                   | Property Protection              | Insurance                           | High     | FPM, EMA               | FL            | 2017     | EXIST                             |
| 3.1.1                   | Public Education and<br>Outreach | Map Information                     | Low      | FPM, EMA               | FL            | 2017     | EXIST                             |

|                         | DOZIER MITIGATION ACTION PROGRAM |                         |          |                        |           |          |                                              |  |  |  |
|-------------------------|----------------------------------|-------------------------|----------|------------------------|-----------|----------|----------------------------------------------|--|--|--|
| Mitigation<br>Measure # | Goal                             | Program Objective       | Priority | Lead<br>Responsibility | Hazard(s) | Timeline | Possible Funding<br>Source                   |  |  |  |
| 3.2.1                   | Public Education and<br>Outreach | Outreach Projects       | High     | EMA                    | All       | 2017     | TBD                                          |  |  |  |
| 3.3.1                   | Public Education and<br>Outreach | Library                 | High     | EMA                    | All       | 2017     | EXIST                                        |  |  |  |
| 3.4.1                   | Public Education and<br>Outreach | Environmental Education | High     | EMA                    | All       | 2017     | EXIST                                        |  |  |  |
| 4.1.1                   | Natural Resource<br>Protection   | Urban Forestry Programs | Low      | CE, FPM                | FL        | 2017     | TBD                                          |  |  |  |
| 5.1.1                   | Emergency Services               | Disaster Warning        | High     | EMA                    | All       | 2017     | \$150,000<br>HMGP/AEMA<br>funds (Countywide) |  |  |  |
| 5.2.1                   | Emergency Services               | Weather Radios          | High     | EMA                    | All       | 2017     | \$10,000<br>HMGP/PDM<br>(Countywide)         |  |  |  |
| 5.2.2                   | Emergency Services               | Weather Radios          | High     | EMA                    | All       | 2017     | TBD                                          |  |  |  |
| 5.3.1                   | Emergency Services               | Generators              | High     | EMA                    | All       | 2017     | HMGP/PDM, TBD                                |  |  |  |
| 5.3.2                   | Emergency Services               | Generators              | High     | EMA                    | All       | 2017     | HMGP/PDM, TBD                                |  |  |  |
| 6.1.1                   | Structural Projects              | Structural Projects     | Low      | GOV, FPM               | FL        | 2017     | EXIST                                        |  |  |  |

**Table 6-5. Glenwood Mitigation Action Program** 

|                         |                                  | GLENWOOD MITIGATION                 | ACTION   | PROGRAM                |               |          |                                   |
|-------------------------|----------------------------------|-------------------------------------|----------|------------------------|---------------|----------|-----------------------------------|
| Mitigation<br>Measure # | Goal                             | Program Objective                   | Priority | Lead<br>Responsibility | Hazard(s)     | Timeline | Possible Funding<br>Source        |
| 1.1.2                   | Prevention                       | Flood Plain Management Regulations  | High     | FPM                    | FL            | 2017     | EXIST                             |
| 1.1.3                   | Prevention                       | Flood Plain Management Regulations  | High     | FPM                    | FL            | 2017     | EXIST                             |
| 1.3.1                   | Prevention                       | Community Shelters and Safe Rooms   | High     | GOV                    | TO, SS,<br>HU | 2017     | TBD                               |
| 1.3.2                   | Prevention                       | Community Shelters and Safe Room    | Low      | School Board,<br>GOV   | TO, SS,<br>HU | 2017     | TBD                               |
| 1.3.3                   | Prevention                       | Community Shelters and Safe Room    | High     | EMA, BO                | TO, SS,<br>HU | 2017     | TBD                               |
| 1.3.4                   | Prevention                       | Community Shelters and Safe Room    | High     | EMA, BO                | TO, SS,<br>HU | 2017     | EXIST                             |
| 1.3.5                   | Prevention                       | Community Shelters and Safe Rooms   | High     | EMA, BO                | TO, SS,<br>HU | 2017     | TBD                               |
| 1.4.1                   | Prevention                       | Detailed Plans and Targeted Studies | Low      | CE, FPM, EMA           | FL            | 2017     | FEMA Map Update<br>Program        |
| 2.1.1                   | Property Protection              | Building Retrofits                  | Low      | FPM, EMA               | FL            | 2017     | CDBG,<br>HMGP/PDM<br>(Countywide) |
| 2.2.1                   | Property Protection              | Insurance                           | High     | FPM, EMA               | FL            | 2017     | EXIST                             |
| 3.1.1                   | Public Education and<br>Outreach | Map Information                     | Low      | FPM, EMA               | FL            | 2017     | EXIST                             |

|                         | GLENWOOD MITIGATION ACTION PROGRAM |                         |          |                        |           |          |                                              |  |  |  |
|-------------------------|------------------------------------|-------------------------|----------|------------------------|-----------|----------|----------------------------------------------|--|--|--|
| Mitigation<br>Measure # | Goal                               | Program Objective       | Priority | Lead<br>Responsibility | Hazard(s) | Timeline | Possible Funding<br>Source                   |  |  |  |
| 3.2.1                   | Public Education and<br>Outreach   | Outreach Projects       | High     | EMA                    | All       | 2017     | TBD                                          |  |  |  |
| 3.3.1                   | Public Education and<br>Outreach   | Library                 | High     | EMA                    | All       | 2017     | EXIST                                        |  |  |  |
| 3.4.1                   | Public Education and<br>Outreach   | Environmental Education | High     | EMA                    | All       | 2017     | EXIST                                        |  |  |  |
| 4.1.1                   | Natural Resource<br>Protection     | Urban Forestry Programs | Low      | CE, FPM                | FL        | 2017     | TBD                                          |  |  |  |
| 5.1.1                   | Emergency Services                 | Disaster Warning        | High     | EMA                    | All       | 2017     | \$150,000<br>HMGP/AEMA<br>funds (Countywide) |  |  |  |
| 5.2.1                   | Emergency Services                 | Weather Radios          | High     | EMA                    | All       | 2017     | \$10,000<br>HMGP/PDM<br>(Countywide)         |  |  |  |
| 5.2.2                   | Emergency Services                 | Weather Radios          | High     | EMA                    | All       | 2017     | TBD                                          |  |  |  |
| 5.3.1                   | Emergency Services                 | Generators              | High     | EMA                    | All       | 2017     | HMGP/PDM, TBD                                |  |  |  |
| 5.3.2                   | Emergency Services                 | Generators              | High     | EMA                    | All       | 2017     | HMGP/PDM, TBD                                |  |  |  |
| 6.1.1                   | Structural Projects                | Structural Projects     | Low      | GOV, FPM               | FL        | 2017     | EXIST                                        |  |  |  |

**Table 6-6. Luverne Mitigation Action Program** 

|                         |                                  | LUVERNE MITIGATION                  | ACTION F | PROGRAM                |               |          |                                   |
|-------------------------|----------------------------------|-------------------------------------|----------|------------------------|---------------|----------|-----------------------------------|
| Mitigation<br>Measure # | Goal                             | Program Objective                   | Priority | Lead<br>Responsibility | Hazard(s)     | Timeline | Possible Funding<br>Source        |
| 1.1.2                   | Prevention                       | Flood Plain Management Regulations  | High     | FPM                    | FL            | 2017     | EXIST                             |
| 1.1.3                   | Prevention                       | Flood Plain Management Regulations  | High     | FPM                    | FL            | 2017     | EXIST                             |
| 1.2.1                   | Prevention                       | Building and Technical Codes        | High     | ВО                     | All           | 2017     | EXIST                             |
| 1.3.1                   | Prevention                       | Community Shelters and Safe Rooms   | High     | GOV                    | TO, SS,<br>HU | 2017     | TBD                               |
| 1.3.2                   | Prevention                       | Community Shelters and Safe Room    | Low      | School Board,<br>GOV   | TO, SS,<br>HU | 2015     | TBD                               |
| 1.3.3                   | Prevention                       | Community Shelters and Safe Room    | High     | EMA, BO                | TO, SS,<br>HU | 2017     | TBD                               |
| 1.3.4                   | Prevention                       | Community Shelters and Safe Room    | High     | EMA, BO                | TO, SS,<br>HU | 2017     | EXIST                             |
| 1.3.5                   | Prevention                       | Community Shelters and Safe Rooms   | High     | EMA, BO                | TO, SS,<br>HU | 2017     | TBD                               |
| 1.4.1                   | Prevention                       | Detailed Plans and Targeted Studies | Low      | CE, FPM, EMA           | FL            | 2017     | FEMA Map Update<br>Program        |
| 2.1.1                   | Property Protection              | Building Retrofits                  | Low      | FPM, EMA               | FL            | 2017     | CDBG,<br>HMGP/PDM<br>(Countywide) |
| 2.2.1                   | Property Protection              | Insurance                           | High     | FPM, EMA               | FL            | 2017     | EXIST                             |
| 3.1.1                   | Public Education and<br>Outreach | Map Information                     | Low      | FPM, EMA               | FL            | 2017     | EXIST                             |

|                         | LUVERNE MITIGATION ACTION PROGRAM |                         |          |                        |           |          |                                              |
|-------------------------|-----------------------------------|-------------------------|----------|------------------------|-----------|----------|----------------------------------------------|
| Mitigation<br>Measure # | Goal                              | Program Objective       | Priority | Lead<br>Responsibility | Hazard(s) | Timeline | Possible Funding<br>Source                   |
| 3.2.1                   | Public Education and<br>Outreach  | Outreach Projects       | High     | EMA                    | All       | 2017     | TBD                                          |
| 3.3.1                   | Public Education and<br>Outreach  | Library                 | High     | EMA                    | All       | 2017     | EXIST                                        |
| 3.4.1                   | Public Education and<br>Outreach  | Environmental Education | High     | EMA                    | All       | 2017     | EXIST                                        |
| 4.1.1                   | Natural Resource<br>Protection    | Urban Forestry Programs | Low      | CE, FPM                | FL        | 2017     | TBD                                          |
| 5.1.1                   | Emergency Services                | Disaster Warning        | High     | EMA                    | All       | 2017     | \$150,000<br>HMGP/AEMA<br>funds (Countywide) |
| 5.2.1                   | Emergency Services                | Weather Radios          | High     | EMA                    | All       | 2017     | \$10,000<br>HMGP/PDM<br>(Countywide)         |
| 5.2.2                   | Emergency Services                | Weather Radios          | High     | EMA                    | All       | 2017     | TBD                                          |
| 5.3.1                   | Emergency Services                | Generators              | High     | EMA                    | All       | 2017     | HMGP/PDM, TBD                                |
| 5.3.2                   | Emergency Services                | Generators              | High     | EMA                    | All       | 2017     | HMGP/PDM, TBD                                |
| 6.1.1                   | Structural Projects               | Structural Projects     | Low      | GOV, FPM               | FL        | 2017     | EXIST                                        |

**Table 6-7. Petrey Mitigation Action Program** 

|                         | PETREY MITIGATION ACTION PROGRAM |                                     |          |                        |               |          |                                              |
|-------------------------|----------------------------------|-------------------------------------|----------|------------------------|---------------|----------|----------------------------------------------|
| Mitigation<br>Measure # | Goal                             | Program Objective                   | Priority | Lead<br>Responsibility | Hazard(s)     | Timeline | Possible Funding<br>Source                   |
| 1.1.1                   | Prevention                       | Flood Plain Management Regulations  | High     | GOV                    | FL            | 2017     | EXIST                                        |
| 1.3.1                   | Prevention                       | Community Shelters and Safe Rooms   | High     | GOV                    | TO, SS,<br>HU | 2017     | TBD                                          |
| 1.3.2                   | Prevention                       | Community Shelters and Safe Room    | Low      | School Board,<br>GOV   | TO, SS,<br>HU | 2015     | TBD                                          |
| 1.3.3                   | Prevention                       | Community Shelters and Safe Room    | High     | EMA, BO                | TO, SS,<br>HU | 2015     | TBD                                          |
| 1.3.4                   | Prevention                       | Community Shelters and Safe Room    | High     | EMA, BO                | TO, SS,<br>HU | 2015     | EXIST                                        |
| 1.3.5                   | Prevention                       | Community Shelters and Safe Rooms   | High     | EMA, BO                | TO, SS,<br>HU | 2015     | TBD                                          |
| 1.4.1                   | Prevention                       | Detailed Plans and Targeted Studies | Low      | CE, FPM, EMA           | FL            | 2017     | FEMA Map Update<br>Program                   |
| 3.2.1                   | Public Education and<br>Outreach | Outreach Projects                   | High     | EMA                    | All           | 2017     | TBD                                          |
| 3.3.1                   | Public Education and<br>Outreach | Library                             | High     | EMA                    | All           | 2017     | EXIST                                        |
| 3.4.1                   | Public Education and<br>Outreach | Environmental Education             | High     | EMA                    | All           | 2017     | EXIST                                        |
| 5.1.1                   | Emergency Services               | Disaster Warning                    | High     | EMA                    | All           | 2017     | \$150,000<br>HMGP/AEMA<br>funds (Countywide) |

|                         |                    | PETREY MITIGATION A | CTION P  | ROGRAM                 |           |          |                                      |
|-------------------------|--------------------|---------------------|----------|------------------------|-----------|----------|--------------------------------------|
| Mitigation<br>Measure # | Goal               | Program Objective   | Priority | Lead<br>Responsibility | Hazard(s) | Timeline | Possible Funding<br>Source           |
| 5.2.1                   | Emergency Services | Weather Radios      | High     | EMA                    | All       | Ongoing  | \$10,000<br>HMGP/PDM<br>(Countywide) |
| 5.2.2                   | Emergency Services | Weather Radios      | High     | EMA                    | All       | 2017     | TBD                                  |
| 5.3.1                   | Emergency Services | Generators          | High     | EMA                    | All       | 2015     | HMGP/PDM, TBD                        |
| 5.3.2                   | Emergency Services | Generators          | High     | EMA                    | All       | 2015     | HMGP/PDM, TBD                        |

**Table 6-8. Rutledge Mitigation Action Program** 

|                         | RUTLEDGE MITIGATION ACTION PROGRAM |                                     |          |                        |               |          |                                              |
|-------------------------|------------------------------------|-------------------------------------|----------|------------------------|---------------|----------|----------------------------------------------|
| Mitigation<br>Measure # | Goal                               | Program Objective                   | Priority | Lead<br>Responsibility | Hazard(s)     | Timeline | Possible Funding<br>Source                   |
| 1.1.1                   | Prevention                         | Flood Plain Management Regulations  | High     | GOV                    | FL            | 2005     | EXIST                                        |
| 1.3.1                   | Prevention                         | Community Shelters and Safe Rooms   | High     | GOV                    | TO, SS,<br>HU | Ongoing  | TBD                                          |
| 1.3.2                   | Prevention                         | Community Shelters and Safe Room    | Low      | School Board,<br>GOV   | TO, SS,<br>HU | Ongoing  | TBD                                          |
| 1.3.3                   | Prevention                         | Community Shelters and Safe Room    | High     | EMA, BO                | TO, SS,<br>HU | Ongoing  | TBD                                          |
| 1.3.4                   | Prevention                         | Community Shelters and Safe Room    | High     | EMA, BO                | TO, SS,<br>HU | Ongoing  | EXIST                                        |
| 1.3.5                   | Prevention                         | Community Shelters and Safe Rooms   | High     | EMA, BO                | TO, SS,<br>HU | Ongoing  | TBD                                          |
| 1.4.1                   | Prevention                         | Detailed Plans and Targeted Studies | Low      | CE, FPM, EMA           | FL            | Ongoing  | FEMA Map Update<br>Program                   |
| 3.2.1                   | Public Education and<br>Outreach   | Outreach Projects                   | High     | EMA                    | All           | Ongoing  | TBD                                          |
| 3.3.1                   | Public Education and<br>Outreach   | Library                             | High     | EMA                    | All           | 2004     | EXIST                                        |
| 3.4.1                   | Public Education and<br>Outreach   | Environmental Education             | High     | EMA                    | All           | Ongoing  | EXIST                                        |
| 5.1.1                   | Emergency Services                 | Disaster Warning                    | High     | EMA                    | All           | 2006     | \$150,000<br>HMGP/AEMA<br>funds (Countywide) |

|                         |                    | RUTLEDGE MITIGATION | ACTION   | PROGRAM                |           |          |                                      |
|-------------------------|--------------------|---------------------|----------|------------------------|-----------|----------|--------------------------------------|
| Mitigation<br>Measure # | Goal               | Program Objective   | Priority | Lead<br>Responsibility | Hazard(s) | Timeline | Possible Funding<br>Source           |
| 5.2.1                   | Emergency Services | Weather Radios      | High     | EMA                    | All       | Ongoing  | \$10,000<br>HMGP/PDM<br>(Countywide) |
| 5.2.2                   | Emergency Services | Weather Radios      | High     | EMA                    | All       | Ongoing  | TBD                                  |
| 5.3.1                   | Emergency Services | Generators          | High     | EMA                    | All       | Ongoing  | HMGP/PDM, TBD                        |
| 5.3.2                   | Emergency Services | Generators          | High     | EMA                    | All       | Ongoing  | HMGP/PDM, TBD                        |

**Table 6-9. Priority Projects for FEMA Funding** 

| Mitigation<br>Measure # | Project Description                                                                                                                                                                | Hazard(s)<br>Addressed | <b>Jurisdiction</b> (s)                             | Responsibility | Funding                                          |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------------------------|----------------|--------------------------------------------------|
| 1.4.1                   | Seek a countywide update of all FIRMs in digital format, with an emphasis on detailed studies of developed and developing areas with elevations provided and floodways delineated. | FL                     | Crenshaw<br>County, Dozier,<br>Luverne,<br>Glenwood | CE, FPM        | FEMA Map<br>Update<br>Program                    |
| 2.1.1                   | Seek funding sources, such as Community<br>Development Block Grant funds, to assist low<br>income home owners with building retrofits to<br>protect against flood damage.          | FL                     | All                                                 | FPM, EMA       | CDBG,<br>HMGP/PDM<br>(Countywide)                |
| 5.1.1                   | Upgrade the county's siren system.                                                                                                                                                 | EMA                    | All                                                 | EMA            | \$150,000<br>HMGP/<br>AEMA funds<br>(Countywide) |
| 5.2.1                   | Support the Alabama Skywarn Foundation's efforts to distribute weather radios to low-income households, especially in rural areas outside of siren coverage areas.                 | EMA                    | All                                                 | EMA            | \$10,000<br>HMGP/PDM<br>(Countywide)             |
| 5.3.1                   | Promote the addition of a generator to all critical facilities.                                                                                                                    | EMA                    | All                                                 | EMA            | HMGP/PDM/<br>TBD                                 |
| 5.3.2                   | Seek funding for generators to all critical facilities.                                                                                                                            | EMA                    | All                                                 | EMA            | HMGP/PDM/<br>TBD                                 |

# **Key to Abbreviations Used in Tables 6-1 through 6-9**

| Hazards           |                                      |  |  |
|-------------------|--------------------------------------|--|--|
| ALL               | All Hazards                          |  |  |
| DF                | Dam Failure                          |  |  |
| DH                | Drought/Heat Wave/Extreme Heat       |  |  |
| EQ                | Earthquake                           |  |  |
| FL                | Flood                                |  |  |
| H                 | Hurricane                            |  |  |
| L                 | Landslide                            |  |  |
| LS                | Land Subsidence/Sinkhole             |  |  |
| SS                | Severe Storm                         |  |  |
| TO                | Tornado                              |  |  |
| WC                | Winter Storm/Extreme Cold            |  |  |
| WF                | Wildfire                             |  |  |
| Responsible Party |                                      |  |  |
| BO                | Local Building Official              |  |  |
| EMA               | Crenshaw County EMA                  |  |  |
| FPM               | Local Flood Plain Manager            |  |  |
| CE                | County, City, or Town Engineer       |  |  |
| GOV               | Governing Body                       |  |  |
| TBD               | Responsible Party To Be Determined   |  |  |
| Timeline          |                                      |  |  |
| 200x              | Target Year for Implementation       |  |  |
| TBD               | Timeline TBD                         |  |  |
| Funding           |                                      |  |  |
| AEMA              | Alabama Emergency Management Agency  |  |  |
| CDBG              | Community Development Block Grant    |  |  |
| EXIST             | Existing Local Funds                 |  |  |
| HMGP              | FEMA Hazard Mitigation Grant Program |  |  |
| PDM               | FEMA Pre-Disaster Mitigation Program |  |  |
| TBD               | Funding To Be Determined             |  |  |

# Chapter 7 Plan Maintenance

# 7.1 The Planning Cycle

This chapter presents a continuous cycle for monitoring, evaluating and updating the plan; the process for incorporating mitigation strategies into other, ongoing planning activities; and methods for continuing public involvement. Continual plan maintenance ensures an active and relevant hazard mitigation planning process.

#### 7.2 Plan Maintenance Procedures

The Hazard Mitigation Planning Committee (HMPC) will oversee plan maintenance during the five-year framework of the Action Plan. The Crenshaw County EMA staff will continue to serve as the committee's facilitator, responsible for holding regularly-scheduled meetings, assigning specific tasks necessary to monitor and update the plan to committee members, and serving as the committee's liaison with those assigned implementation responsibilities in the Action Plan. The facilitator will also serve as the committee's liaison with participating municipalities and the Crenshaw County Commission. Any resident may request appointment to the committee through the EMA office or a committee member. New members may be nominated by any committee member and then approved by the committee.

After the revised plan is finalized and adopted, the committee will meet once per year to perform the following activities:

- Evaluate the effectiveness of previously-implemented mitigation actions
- Explain why any actions are not completed or behind schedule
- Address changing land use patterns and new developments
- Identify any changes in risk assessment and/or risk vulnerability

The facilitator will schedule the annual meeting at a time and location convenient to all committee members. All annual meetings will be advertised in the local newspaper and open to the public.

In the event modifications to the plan are warranted as a result of the annual review or other conditions, the committee will oversee and approve all revisions to the plan. Conditions warranting revisions to this plan include, but are not limited to, special opportunities for funding and/or response to a natural disaster. Before any revisions are submitted to the jurisdictions for adoption, a notice will be placed in the local newspaper, allowing an opportunity for the public to review the proposed amendments at the EMA offices, submit written comments, and present comments at a public meeting. The committee will then submit all revisions for adoption by jurisdictions affected by the changes. Those jurisdictions will hold a public hearing before adoption of the amendments. A copy of the plan's revisions will be submitted to all holders of the original plan in a timely manner.

At the end of the five-year cycle of the Action Program, the committee will oversee a major update to the plan that follows the federal planning criteria in effect at the time of the update. The updated plan will again be submitted to the AEMA and FEMA for approval.

# 7.3 Implementation through Existing Programs

This plan is adopted as a part of the <u>Crenshaw County Emergency Operations Plan</u>, which is administered through the EMA office. If any of the jurisdictions develop future plans that may have an affect on natural hazard planning, the findings of this plan would likewise need to be incorporated into that community's plan.

#### 7.4 Continued Public Involvement

A critical part of maintaining an effective and relevant natural hazards mitigation plan is ongoing public review and comment. Consequently, the HMPC is dedicated to direct involvement of its citizens in providing feedback and comments on the plan throughout the five-year implementation cycle.

To this end, a hard copy of the plan will be available for viewing at all appropriate agencies throughout the county; including, at a minimum, the Crenshaw County EMA Office, the office of the Crenshaw County Commission, the offices of the mayors, and the main public library. After adoption, a public information notice in the local newspaper will inform the public that the plan may be viewed at these locations.


Public meetings will be held when significant modifications to the plan are required or when otherwise deemed necessary by the HMPC. The public will be able to express their concerns, ideas and opinions about the plan at the meetings. At a minimum, public hearings will be held during the drafting stage of the five-year plan update and to present the final plan to the public before adoption.

#### 7.5 Ongoing Planning Needs

This 2013 <u>Crenshaw County, Alabama, Natural Hazards Mitigation Plan</u> establishes a new planning program for the county and its participating municipalities. However, planning does not end with the adoption of this initial plan. This planning program is a continuous process of profiling new natural hazard events; assessing vulnerabilities as new information arises and conditions change; monitoring changing assets and affected populations; and keeping current on evolving mitigation measures.

Moreover, the hazard profiles, vulnerability assessments, population characteristics, and inventories of critical facilities of this current plan were based on "best available data." "Best available data" is data that is readily available within the very brief plan development time period. This plan recognizes the limitations of such an approach to risk assessment and strategic planning. Improvements to the "best available data" can be made to better assess the risks and target mitigation strategies that best respond to the natural hazard issues within the county.

Therefore, it is the intent of the HMPC to establish an ongoing planning program, one that will strengthen the risk assessment process as better and more complete information is developed and revise the mitigation strategies as more effective measures might evolve.

