The 6th International Conference on Remediation of Chlorinated and Recalcitrant Compounds

Remediation Costing and Interim Measures Selection for NASA's Launch Complex 34

 $\mathbf{08}$

May 19

Michael Deliz, P.G.

Jim Langenbach, P.E. Geosyntec[▶]

NASA LC34 Team:

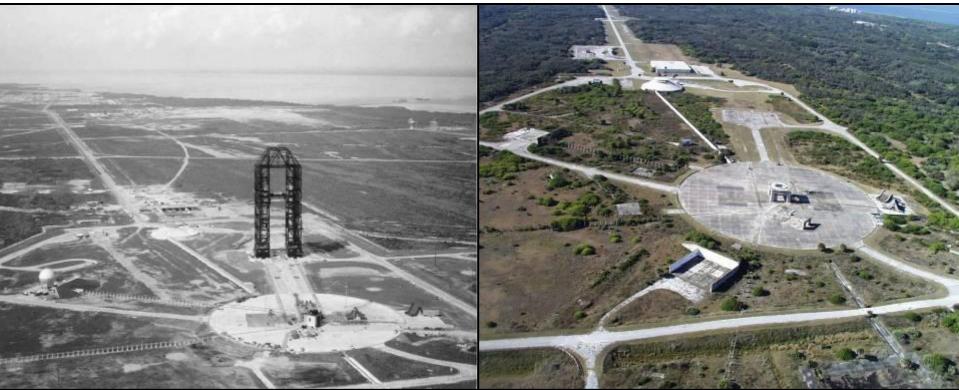
- Geosyntec (source characterization, modeling, technology evaluations)
- Tetra-Tech NUS (Data management, dissolved plume assessment/monitoring, technology evaluations)
- LFR (technology evaluations, previous pilot study technical evaluations)
- GeoTrans (model review, technology considerations)

Lesson Learned – A Team of 8 Professional Engineers and 7 Geologists can make for some very loooong conference calls

Goals / Overview

Kennedy Space Center Center Operations Directorate

- Site History
- Site-specific Considerations
 - Location
 - Groundwater flow
 - DNAPL distribution and magnitude
 - Hydrogeologic setting
 - Remediation reality
- Technology Evaluations/Costing
- Costing Evaluation Ramifications
- Path Forward



Site History

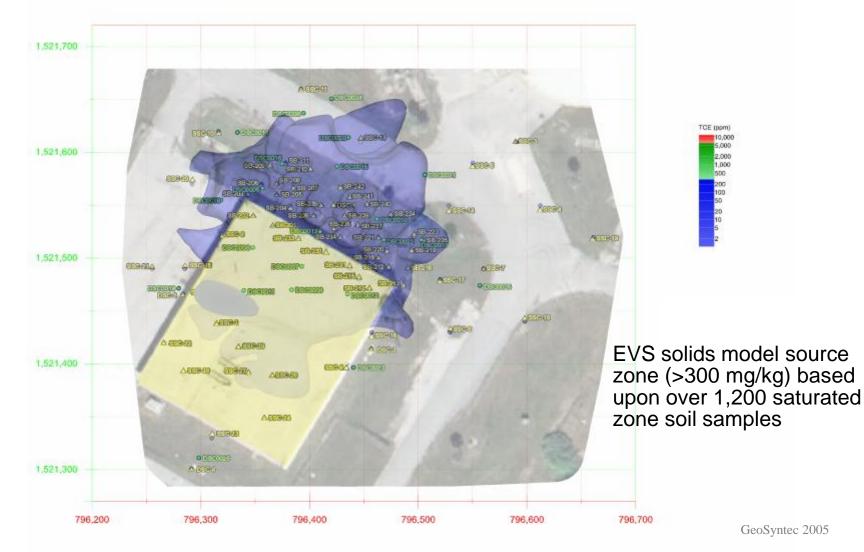
View From the Northeast

1961


2003

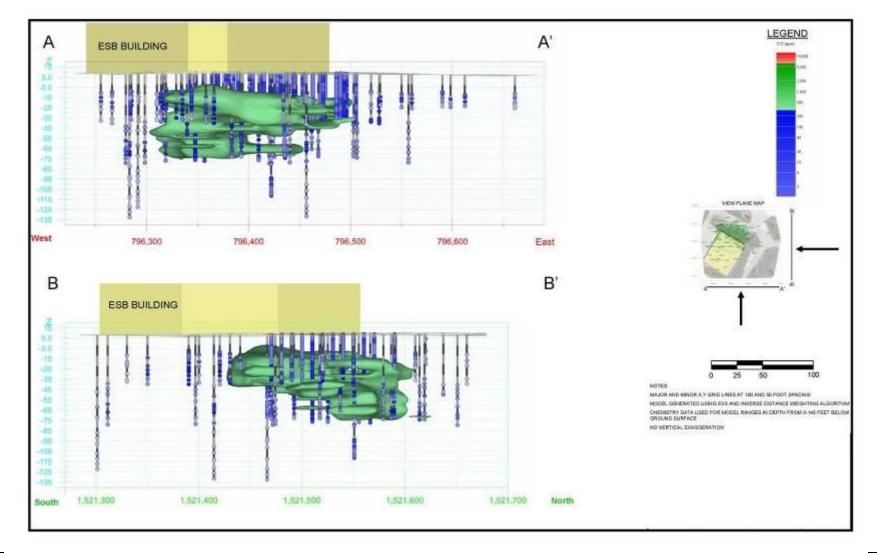
June 21, 2007

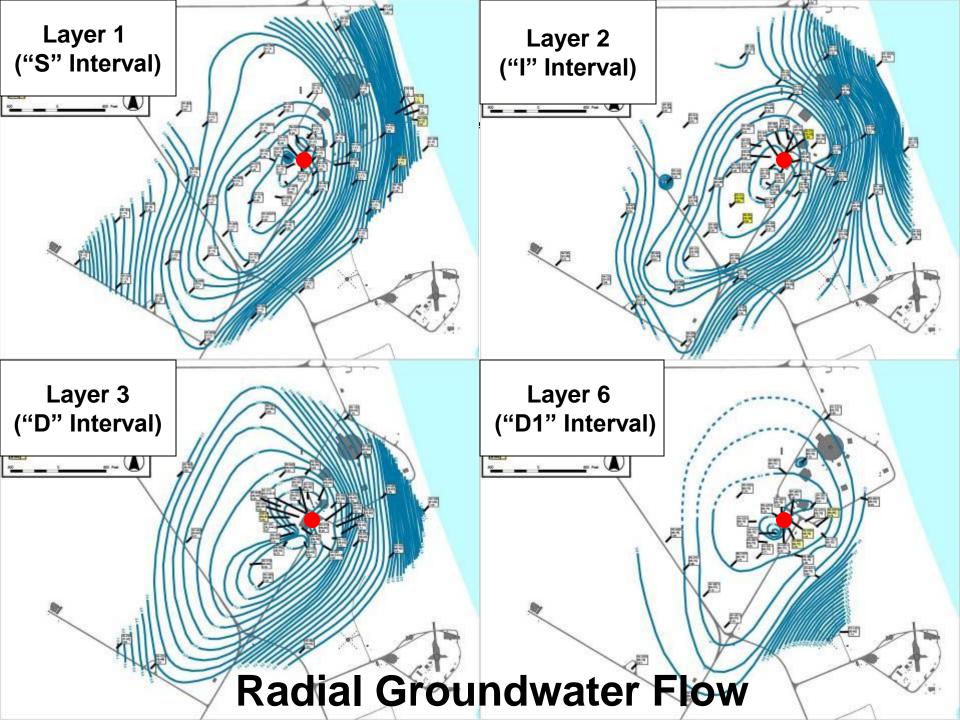
- Constructed between 1959 and 1961 for the Saturn 1 and 1B rocket program
 - Seven Saturn 1 and 1B launches from 1961-1968
 - Location of the Apollo 1 mishap
- Extensive cleaning of spaceflight components with trichloroethene (TCE)
- Following the success of Apollo 7 launch structures dismantled and buildings abandoned in place


consultants **RCRA Corrective Action History**

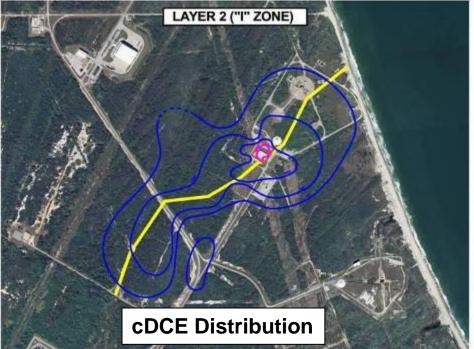
- 1994
 - Chlorinated solvent contamination discovered in groundwater
- 1996 2007
 - RCRA Facility Investigation & Corrective Measures Study
- Investigation Results
 - ~330 acres of groundwater negatively impacted by historic releases of chlorinated solvents (1 mile by ½ mile plume)
 - Source area groundwater contamination is present to 118 ft below land surface (bls)
 - Sand aguifer with inter-bedded silt, clay, and shell layers (8 Layers)
 - DNAPL (TCE) present between 18 ft & 80 ft bls
 - Shallow Zone <45 ft bls = 41,000 lbs TCE (saturated soil > 300 mg/kg)
 - Deep Zone >45 ft bls = 33,000 lbs TCE (sat. soil > 300 mg/kg)
 - Additional 12,000 lbs of TCE mass in "shell" of soil surrounding DNAPL (TCE sat. soil concentrations 100 - 300 mg/kg)

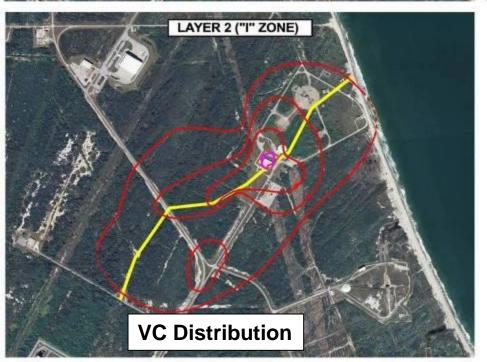
Geosyntec[▶]


Kennedy Space Center Center Operations Directorate

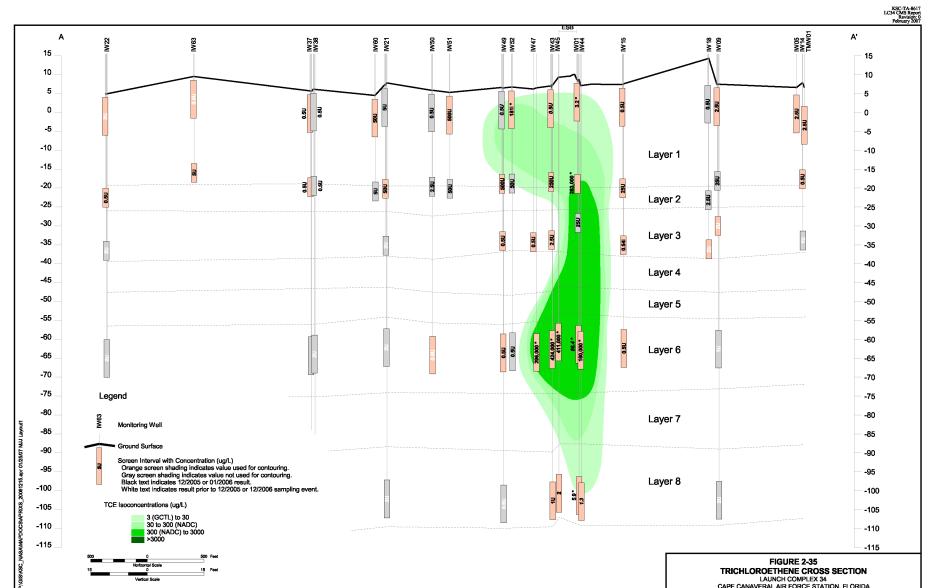


DNAPL Source Zone


Center Operations Directorate

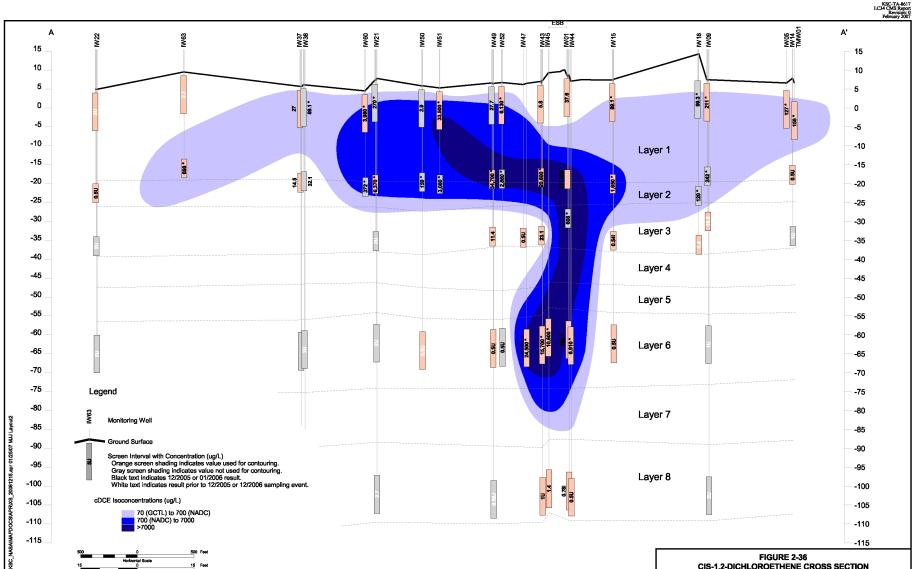


Geosyntec[▷]


INSERT A LEGEND OR PHOTO HERE

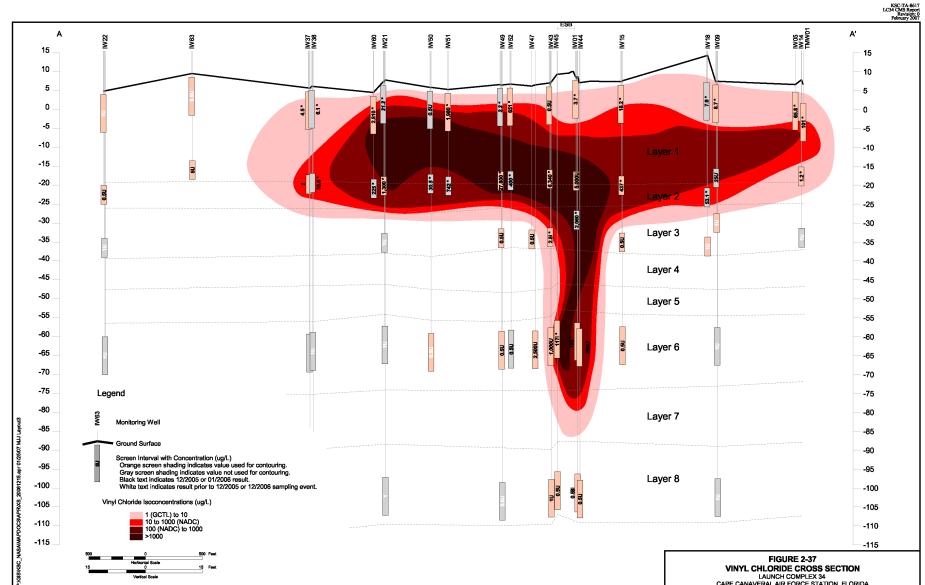
consultants **Cross Section SW to NE - TCE**

Geosyntec▷


Center Operations Directorate

Cross Section SW to NE - cDCE

Center Operations Directorate


CIS-1,2-DICHLOROETHENE CROSS SECTION LAUNCH COMPLEX 34 CAPE CANAVERAL AIR FORCE STATION. FLORIDA

Geosyntec▷

Geosyntec▷ consultants **Cross Section SW to NE - VC**

Center Operations Directorate

Critical Points Regarding Site Impacts

No complete exposure pathway

- Site located on a barrier island
- Highly unlikely source of future potable groundwater
- No surface water present within plume footprint
- Engineering Support Building removed (slab left behind)
- Radial groundwater flow from source area
- Significant mass, ~100,000 lbs
- Large variations in hydraulic conductivity (1x10⁻³ cm/sec to 1x10⁻⁸ cm/sec
- DNAPL extending to 80 ft bls
- 40+ yr old release

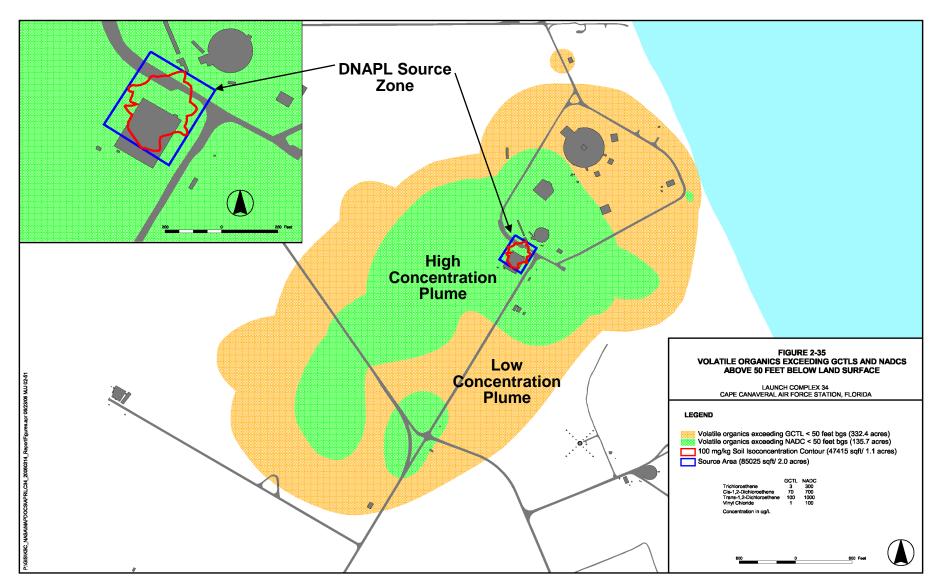
Geosyntec[▶]

Geosyntec[▶]

Critical Points Regarding Site Impacts

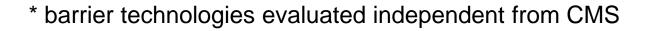
Center Operations Directorate

- DNAPL source area encompasses ~2 acres (no recoverable product present)
- Dissolved groundwater plume of ~330 acres
- Groundwater modeling results
 - No Action >900 yrs to reach MCLs
 - 85% DNAPL Source Removal and Dissolved Plume Hydraulic Control – 750 yrs to reach MCLs
 - > 99% DNAPL Source Removal (feasible?) and Dissolved Plume Hydraulic Control – 250 yrs to reach MCLs
- So how much so do you spend to reduce the cleanup timeframe from "very long" to "long" on a barrier island with no exposure pathway?


Technology Screening

- Divided site into three areas
 - DNAPL Source Zone (DSZ)
 - High Concentration Plume
 - Low Concentration Plume
- Aquifer was split vertically based upon technology limitations and lithology (<55 ft bls and 55-85 ft bls)
- Presentation focuses on DSZ

Treatment Zones



Retained Technologies

DNAPL Source Zone

- Hydraulic containment via P&T to 85 ft bls
- Permeable Reactive Barrier to 85 ft bls
- Enhanced Bioremediation to 85 ft bls
- Excavation to 55 ft bls/Enhanced Bioremediation 55-85 ft bls
- Large Diameter Auger (LDA)/Steam/Iron to 55 ft bls/ Enhanced Bioremediation to 85 ft bls
- ZVI Clay or Slurry Wall Barrier to 85 ft bls*

Costing

- CMS and/or FS costs are typically presented as +50% to -30% and NPV is utilized
 - LC34 costs were based upon vendor quotes and/or best practical engineering estimates
- Net Present Value (NPV)
 - Required approach for presenting costing pursuant to NASA's HSWA permit
 - Issue with NPV not consistent with NASA funding approach
 - Implies full upfront cleanup funding
 - NASA funds projects annually, therefore NPV can underestimate actual costs
- Non-Discounted "Pay As you Go" Dollars
 - May be more representative of the actual cost to implement a cleanup
 - Important in projects with ongoing O&M&M

Corrective Measures Study Costs

Kennedy Space Center Center Operations Directorate

Treatment Zones and Alternatives	First Year Cost (Capital Cost + First Year O&M&M Cost)	Total Cost (First Year Cost + Total Non-Discounted O&M&M)	Total NPV (First Year Cost + Total O&M&M NPV)
DNAPL Source Zone			
Pump and Treat	\$1M	\$100M	\$4M
Permeable Reactive Barrier	\$12M	\$60M	\$15M
Enhanced Bioremediation	\$5M	\$45M	\$10M
Conventional Excavation to 55 feet bls, Enhanced Bioremediation 55-85 feet bls.	\$40 - \$50M	\$54M	\$42 - \$50M
LDA/Steam/Iron to 55 feet bls, Enhanced Bioremediation 55-85 feet bls	\$50 - \$70M	\$100M	\$55 – 75\$M
ZVI Clay or Slurry Wall Barrier to 85 ft bls (Containment - No Treatment Provided)	\$5 - \$6M	\$5 - \$7M (based upon 30 yrs)	\$5 - \$6M (based upon 30 yrs)

- Technologies such as PRB and/or Barrier Wall do not provide significant DSZ treatment
 - Primary objective is to control flux from DSZ
 - > Would likely require adding a technology that provides source treatment
- Highly aggressive technologies provide for significant DSZ mass reduction - however:
 - > Even 95% DSZ mass removal leaves 1,000's of pounds of mass in place
 - Time to MCLs still significant (centuries)
 - > Follow-up technology to provide remaining mass flux control likely required
- Hydraulic containment via P&T offers advantage of flux control (primary objective) and mass removal (secondary benefit) over time
- Hydraulic containment via P&T represents an active site management strategy that provides NASA with risk management at a low capital and annual cost
 - > System is not envisioned to operate for 100's of yrs as a final DSZ remedy
 - Technology can be potentially enhanced as a component of a final remedy (next step in the 'treatment train")

Geosyntec^L

P&T Technology Considerations

Center Operations Directorate

- Typically not considered suitable for achieving MCLs at DNAPL sites
 - > At LC34 no technology will rapidly achieve MCLs (100% mass removal)
 - > Represents an interim measure which can be supplemented in the future:
 - bio-recirculation, surfactants, oxidants, etc.
 - "treatment train" approach
- Considered an expensive technology due to ongoing annual O&M&M costs
 - Lowest capital costs and NPV costs (though not realistic)
 - Highest overall "pay as you go" costs
 - Annual O&M&M costs that are manageable
- Not considered a sustainable technology
 - NASA is evaluating providing 100% of energy requirements via solar/wind turbines
 - Electrical demand is not excessive (12 to 15 hp) compared to overall energy requirements of other aggressive technologies

Geosyntec[▶]

Technology Considerations

How much P&T does \$6 million buy at LC34?

- P&T/GAC @ 25,000 µg/L VOC influent: 42 yrs
- P&T/GAC @ 50,000 µg/L VOC influent: 37 yrs
- P&T/GAC @ 100,000 µg/L VOC influent: 26 yrs
- Advanced Oxidation Systems: 28 32 yrs
- As influent concentrations decline, O&M costs drop (offsetting inflation on annual O&M),
- At an influent concentration <10,000 µg/L and 35 gpm, off-gas treatment not required
 - reduction in annual costs of >\$40,000
 - significant savings benefit not factored into P&T analysis

Geosyntec[▶]

Corrective Measures Study Costs

P&T to provide hydraulic containment

- Primary objective is hydraulic containment of DSZ
- A byproduct of containment will be significant mass removal (tons per yr)
- Not anticipated as a m
- Hydraulic containment represents an active site management strategy that provides risk management at a low capital and annual cost
 - System is not envisioned to operate for 100's of yrs as a final DSZ remedy
 - Technology can be potentially enhanced as a component of a final remedy (next step in the treatment train)
- DNAPL will continue to "fuel" dissolved plume until source is deple

Selected Remedy

- System eliminates flux & can remove significant mass
- Allows time for new technologies to be developed

Cost

- Capital cost for implementation of the DNAPL Source Zone remedy will be ~\$1M with annual O M & M costs of \$150K
 - O M & M costs will be required for multiple decades and/or centuries
- Total CMS cost for the selected remedy for all three treatment zones is \$339M
 - Total does not include the supplemental assessments and groundwater "Hot Spot" treatments that are included in the proposed remedy for the High Concentration Plume
 - Additional "Hot Spot" treatment will reduce the time required for the entire plume to reach required cleanup levels

