Geosyntec consultants

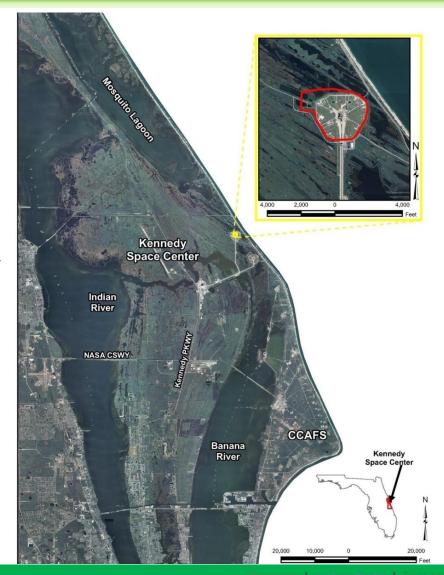
Sustainable Remediation via Solar-Powered In Situ Bioremediation

Jim Langenbach, PE Associate/Sr. Remediation Engineer

May 2009

Presentation Outline

- Site history and background
- System design and implementation
- System optimization
- Results and conclusion


Site History and

Implementation

Background

- LC39B is a 170 acre active launch pad facility – Shuttle Launch Pad
- Constructed in 1960's for Apollo/Saturn V rocket and retrofitted for shuttle in 1970's
- Pad is surrounded by wetland areas and Merritt Island National Wildlife Refuge

2009 Results

Results and

Optimization

Implementation

Site Background and History

- RCRA Facility Investigation completed in 2003 identified trichloroethene (TCE), cis-1,2dischloroethene (cDCE), and vinyl chloride (VC) in groundwater at concentrations above maximum contaminant levels
- Corrective Measures Study completed in 2004 and Corrective Measure Design completed in 2005

Results and Optimization

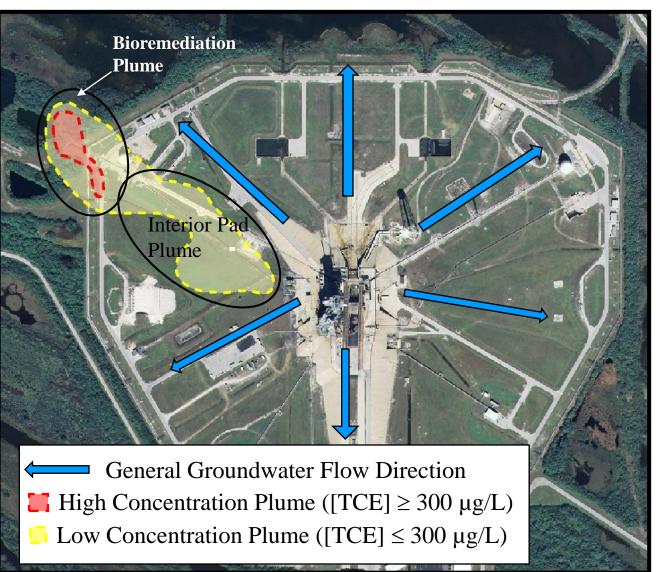
2009 Results

Slide 4

- Due to location, remedial approach required:
 - Mobility for any above-ground treatment systems
 - Preference for self-contained power source

 Active treatment of plume outside pad perimeter fence and actions to mitigate potential plume discharge to

eurtaco wator



Results and Optimization

2009 Results

LC39B Groundwater Plumes

Site History and Background	/i
Background	1)
	/

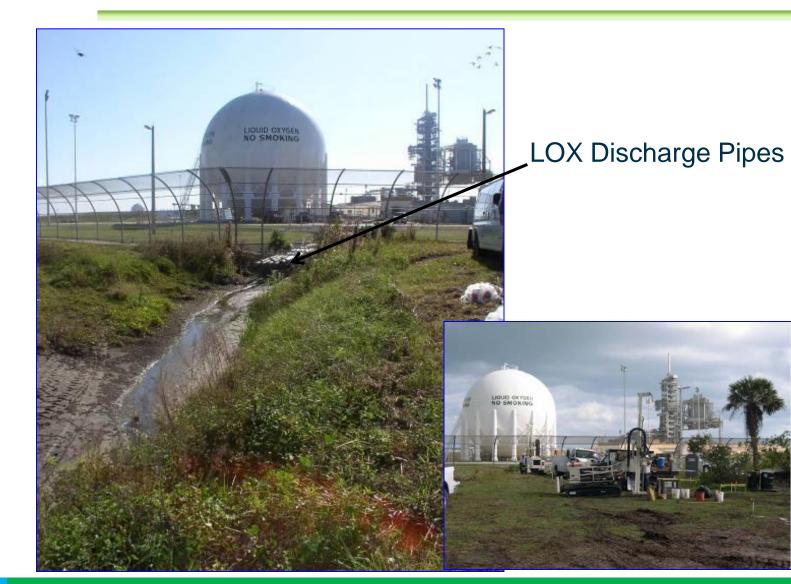
Results and Optimization

2009 Results

Remedy Selection

- Bioremediation selected for high concentration plume (HCP)
 - Biostimulation and bioaugmentation
 - Aquifer buffering
 - Recirculation
 - Provide control of plume discharge
 - Enhance mixing/distribution of electron donor
- Monitored natural attenuation (MNA) selected for low concentration plume (LCP)
 - Plume area within pad perimeter fence

LOX Area



Implementation

Results and Optimization

2009 Results

Implementation

Remedy Approach Compared to Core Elements of Green Remediation

- Energy
 - Solar system
 - No demand for external power
- Air
 - In situ remediation minimizes emissions
- Water
 - Extracted groundwater recycled to enhance & V
 bioremediation
 - Mitigates potential plume discharge to surface waters
- Land & Ecosystem
 - Minimal habitat disturbance (minimal equipment)
 - No damage to mangroves
- Materials & Waste
 - Mobile solar system can be reused at other sites
 - DPT drilling (minimal waste)
 - Minimal investigation derived waste
- Stewardship

https://www.clu-in.org/greenremediation/subtab_b1.cfm

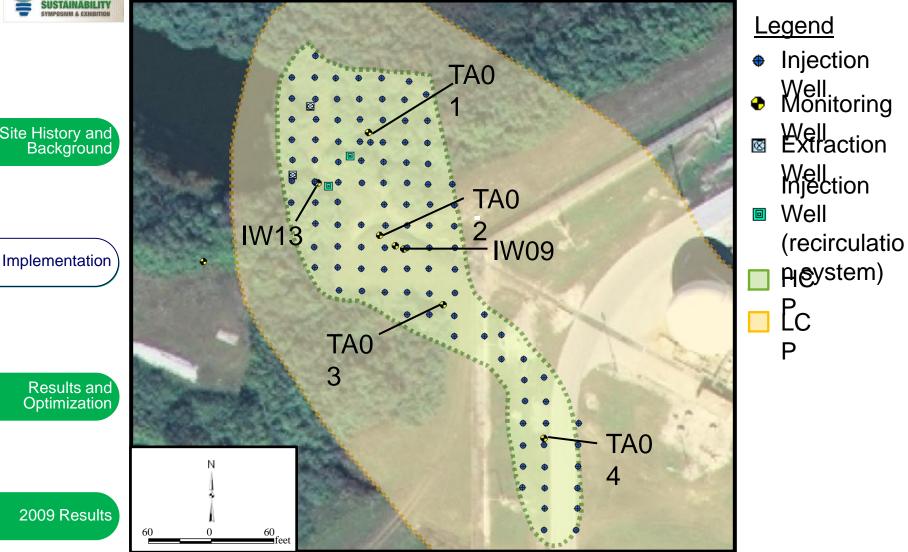
2009 Results

Results and

Optimization

Passive remedy

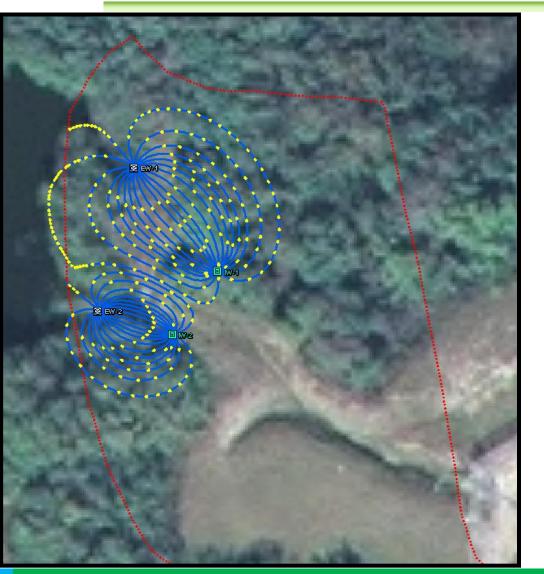
Results and Optimization


2009 Results

Implementation

- Initial 2005 remedy implementation was based upon laboratory treatability testing:
 - Electron donor: potassium lactate
 - Aquifer buffering: sodium bicarbonate
 - Microbial Culture: KB-1®
- Implementation consisted of the following:
 - 107 injection wells
 - 23,135 gallons of 3.5% potassium lactate solution (~216 gallons per injection well)
 - 3,160 pounds of sodium bicarbonate (~15 gallons per injection well)
 - 490 liters of KB-1[®] (~4.5 liters per injection well)
 - Two extraction and two injection wells for recirculation and mixing powered via solar system

Slide 10



Implementation

Results and Optimization

2009 Results

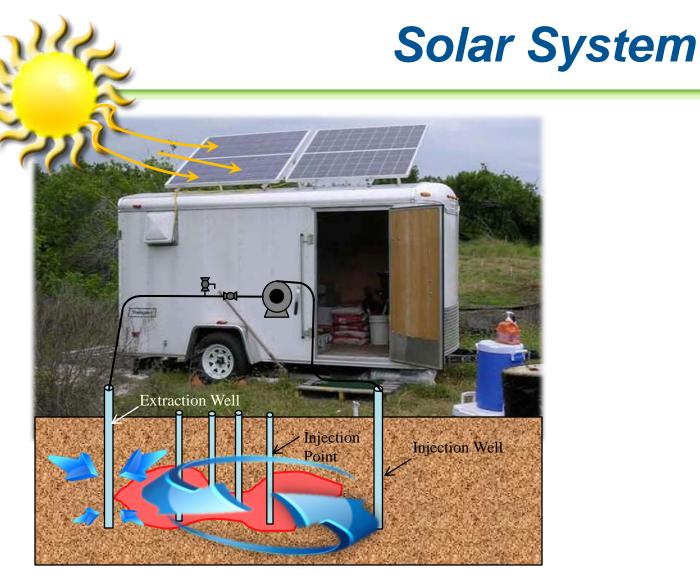
Recirculation System Layout

Legend Flow Path Extraction Well

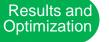
Implementation

2009 Results

Solar System Layout



Implementation


Solar system operates at ~1gpm (24/7)

Slide 13

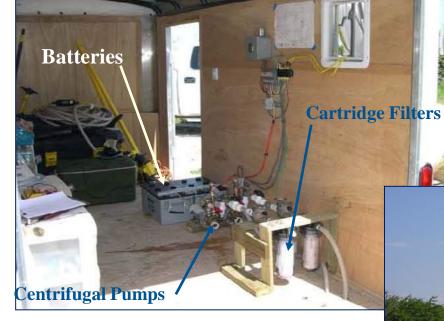
2009 Results

Solar System

- Solar system design considerations:
 - Continuous operation and low maintenance
 - Adequate reserve power in batteries to maintain pumping through 2 cloudy days (0 sun hours)
 - Sun hours = 4.5 hrs/day (annual average)
 - Portable: All components to be removed prior to shuttle launch, LOX area testing or tropical storms/hurricanes
 - Pumps capable of 0.5 to 1 gpm each
- Components:
 - four, Sharp 123 Watt, 17.2V, 7.16 amp photovoltaic modules
 - Charge controller (prevents battery overcharging)
 - Batteries: two, 12V, 265 Amp-hrs each

Two, 12V centrifugal pumps

- Hour meter
- Enclosed trailer



Solar System and Trailer

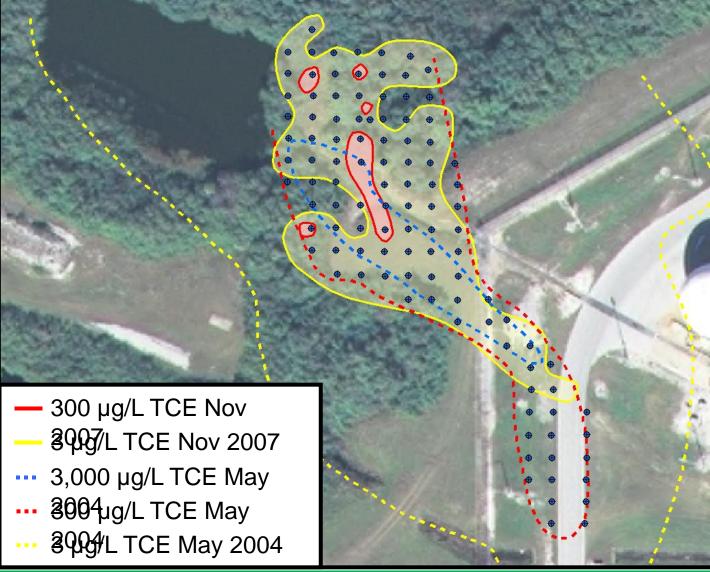
Implementation

Results and Optimization

2009 Results

 Solar system operates at ~1gpm (24/7)

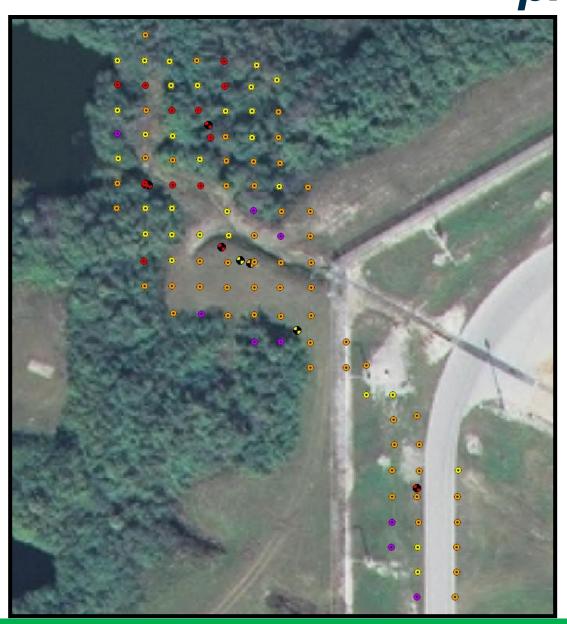


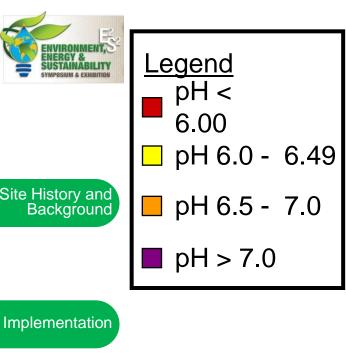

- After ~2 years of operation re-evaluated site conditions
 - Gain a better understanding of site conditions
 - Data to aid in optimization
- Performed "snap shot" sampling

Site History and Background

Groundwater Sampling Results -TCE Comparison of 2004 to 2007

Geosyntec^D


Implementation



2009 Results

Groundwater Sampling Results - pH

Geosyntec^D consultants

2009 Results

Implementation

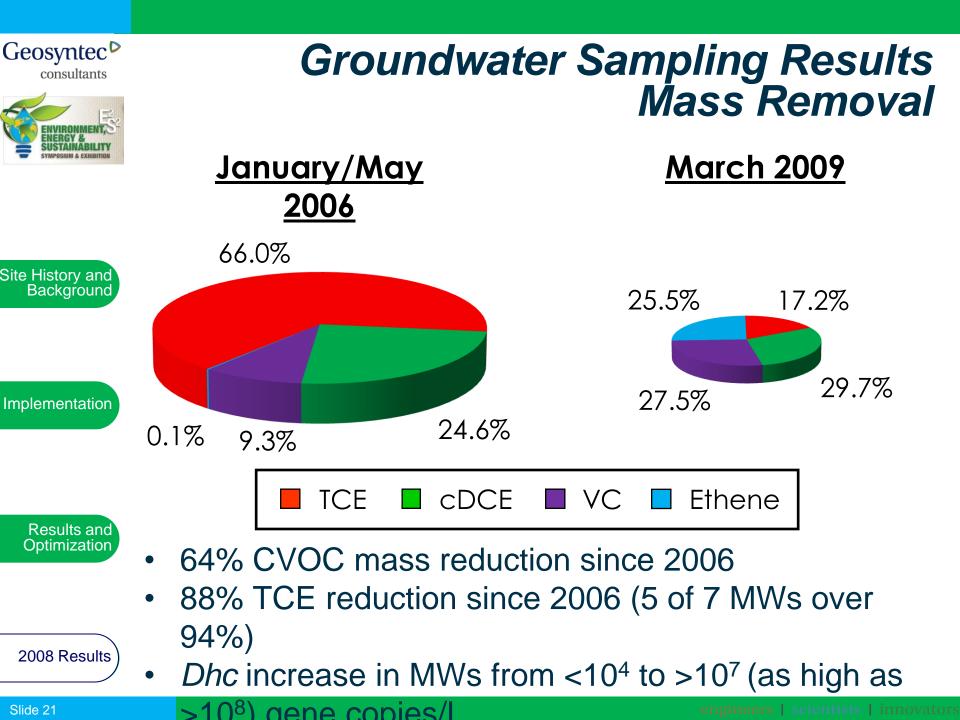
Results and Optimization

2009 Results

Optimization Strategy

- Changed electron donor to EOS®
 - Slow release electron donor
 - Eliminates need for multiple injection events
 - Injected 54 drums of EOS®
 - Tailored injection based upon analytical results
- Changed buffering agent to EOS[®] AquaBupH[™]
 - Injected 17 drums of $EOS^{\mathbb{R}}$ AquaBupHTM
 - Tailored injection with higher volumes in areas with pH $\,\leq 6.3$

ENVIRONMENT, ENERGY & SUSTAINABILITY SYMPOSIUM & EXHIBITION


Implementation

Results and Optimization

2008 Results

Groundwater Sampling Results TCE Mass Removal

	January-May 2006	March 2009	
Well ID	TCE (μg/L)	TCE (μg/L)	% TCE Reduction
TA01S	6,400	94.5	98.5
TA02S	4,800	2,000	58.3
TA03S	120	6.8	94.3
TA04S	15	3.6	76.0
TA09S	470	0.45	99.9
TA13S	2,900	10.3	99.6
TA13I	2,200	1.1	99.9

Technologies Evaluated/CO₂ Footprint

- Bioremediation (installed solar system with electron donor injections)
- Pump and Treat (CMS evaluated three recovery wells and 10 total hp system)
- Air Sparge (CMS evaluated ~45 sparge wells and 15 hp system)
- Multi-phase extraction (CMS evaluated ~15 extraction wells

Implementation

Site History and Background

plementation	Bioremediation	Pump & Treat	Air Sparge	Multi-Phase Extraction	
	CO ₂ Equivalents [Metric Tons/Year]				
Results and Optimization	5.2	39.5	29.5 to 59.3	49.2 to 98.8	

Notes:

 Electricity Emission Factors Source: U.S. EPA eGRID2006 Version 2.1 – Sub-region FRCC (Florida)

2009 Results

- Bioremediation: based on 25% to CH₄, 25% to CO₂ and 50% in biomass/carbon cycle
- Air Sparge & Multi-Phase Extraction: Range represents 50 to 100% operational cycle

> Green remediation approach is providing for the ongoing remediation of groundwater impacts at LC39B

Site History and Background

Implementation

- Pumping at low flow rates using solar powered system is meeting project objectives:
 - Solar panels provide adequate power supply
 - Quick installation/mobilization and demobilization
 - Reusable system/components
- Optimization of system (ongoing process) has had a positive impact on site cleanup
- Operational CO₂ footprint significantly less than traditional air sparge, P&T, or MPE systems

Results and Optimization

Conclusion

Acknowledgements:

- Rosaly Santos-Ebaugh, PE, NASA Remediation Project Manager
- Tom Peel, PhD, Geosyntec Consultants
- Rebecca Daprato, PhD, Geosyntec Consultants

QUESTION S?

6770 South Washington Ave. Suite 3

Titusville, FL 32780

321.269.5880

www.geosyntec.com

Geosyntec Consultants