

NASA, Kennedy Space Center – <u>Michael J. Deliz</u>, PG Tetra Tech – Christopher A. Hook, PE, Steven H. Ruffing, PE, Mark P. Speranza, PE

Goals / Overview

- Site Background
- Interim Measure (IM) Results
- Hydraulic Profiling Tool (HPT)/ Membrane Interface Probe (MIP) Study Goals
- Study Data
 - Pre-IM/Interim IM MIP data
 - MIP/HPT Data Correlation
- Refined Conceptual Model
- Optimizations

Adaptive Management Perspective

Kennedy Space Center Center Operations Directorate

LC34 Adaptive Site management Practices (Battelle 2012):

- Assessment (DOES NOT END WITH DESIGN)
- > Design (DOES NOT END WITH IMPLEMENTATION)
- Optimization Evaluations (THROUGHOUT)

Pre-IM Site Conceptual Model

Interim Measure Overview

- Hydraulic control of the DNAPL source zone and deep groundwater TCE plume >300 µg/l
- Treat extracted groundwater to GCTLs
- Design peak flow of 50 gpm and normal flow of 39 gpm
- Primary components include:
 - > 3 shallow recovery wells
 - 6 deep recovery wells
 - Primary treatment via air stripping
 - Liquid Phase GAC polishing
 - Catalytic oxidation off gas treatment
 - Discharge treated groundwater to 12 deep injection wells and infiltration gallery

MIP/HPT Study Goals

- Identify depth intervals where contamination persists
- Obtain knowledge of hydraulic conductivity variations
- Correlate conductivity and contamination magnitude
- Distinguish mass storage and transport zones
- Optimize existing operations and IM expansion efforts

HPT Overview

- Technology use: Real-time vertical hydraulic conductivity profiling
- Equipment: DPT Rig, HPT Tooling (pressure/conductivity sensor & water injector)
 - Water injected as tool is advanced
 - Pressure sensor measures response of soil to water injection
 - Identifies ability of soil to transmit water
- Measured data output: Electrical conductivity, injection flow and pressure
- K value calculated by HPT software
 - Peaks indicate high K/flow zones
 - Valleys indicate low K/flow zones

MIP/HPT Locations

RW1A/1B Optimization:

Mass

(lbs/d)

20.9

6.2

7.0

6.8

6.7

Mass

(lbs/d)

5.4

7.4

13.2

4.8

6.1

RW2A/2B Optimization

Kennedy Space Center Center Operations Directorate

Pre-IM MIP:

Jan 2013 MIP:

Jan 2013 HPT/MIP:

RW-2A Influent				
Date	TCE (ppb)	Mass Recovery (lbs/d)		
1/20/2010	280,000	28.5		
2/21/2011	3,630	4.4		
2/2/2012	42,500	3.8		
3/11/2013	39,000	3.2		
4/3/2014	33,600	2.6		

Packer

Pump Intake

RW-2B Influent				
Date	TCE (ppb)	Mass Recovery (lbs/d)		
1/20/2010	940,000	34.7		
2/21/2011	203,000	7.4		
2/2/2012	126,000	9.3		
3/11/2013	66,300	4.2		
4/3/2014	59,900	5.6		

*Increase RW2B from 5 to 7.5 gpm 13

RW3A/3B Optimization

Kennedy Space Center Center Operations Directorate

Jan 2013 HPT/MIP:

<u>RW3A</u>

Optimization

Packer

Pump Intake

- Mobile mass at 30-46' bls
- Immobile mass at 43-52' bls (within screen)
- Isolate screen from 30-46' bls

<u>RW3B</u>

- Immobile mass at 43-52' bls
- Mobile mass at 52-65' bls
- Move pump intake to 65'bls; pump at 3 gpm
- *Rehab (surge/chemical) if no signif. changes
- *Layer 4 mass storage

RW-3A Influent		RW-3B Influent			
Date	TCE (ppb)	Mass Recovery (lbs/d)	Date	TCE (ppb)	Mass Recovery (lbs/d)
1/20/2010	41,000	3.8	1/20/2010	16,000	1.0
2/21/2011	3,520	2.9	2/21/2011	6,540	0.3
2/2/2012	427	1.8	2/2/2012	3,210	0.1
3/11/2013	80	0.5	3/11/2013	2,200	0.1
4/3/2014	<60	0.4	4/3/2014	2,200	0.1

RW4B Optimization

Kennedy Space Center Center Operations Directorate

RW-4B Influent			
Date	TCE (ppb)	Mass Recovery (lbs/d)	
1/20/2010	250,000	17.0	
2/21/2011	54,100	3.5	
2/2/2012	16,100	1.0	
3/11/2013	2,640	0.2	
4/3/2014	517	< 0.1	

*Reduce flow rate from 4 to 3 gpm (expansion flow budget variable)

RW5B Optimization

Kennedy Space Center Center Operations Directorate

RW-5B Influent			
Date	TCE (ppb)	Mass Recovery (lbs/d)	
1/20/2010	250,000	16.9	
2/21/2011	86,400	5.6	
5/18/2011	77,700	5.0	
2/2/2012	57,000	3.7	
3/11/2013	47,300	3.1	
4/3/2014	9,050	0.6	

*Reduce flow rate from 4 to 2 gpm (expansion flow budget variable)

RW6B Optimization

Kennedy Space Center Center Operations Directorate

Pre-IM MIP:

Jan 2013 MIP:

RW-6B Influent			
Date	TCE (ppb)	Mass Recovery (lbs/d)	
1/20/2010	270,000	18.5	
2/21/2011	43,400	3.0	
2/2/2012	9,320	0.6	
3/11/2013	1,360	0.1	
11/20/2013	< 0.21	< 0.1	

*Based on influent and MIP data, shutoff of well approved; pumping capacity offset to other wells

Conceptual Model Refinement

- Additional TCE mass identified between DPT sampling intervals +/- 18 feet bls in lower portion of Layer 1
- MIPS/HPTs confirmed Layer 4 mass storage extent
- MIPs improved understanding of flux and remaining source zones
- MIPs verified source zone model assumptions
- HPTs identified that Layer 6 (60-80 feet bls) is more heterogeneous than identified via soil coring
- MIP/HPT pairings narrowed the intervals capable of mass transport and storage within Layer 6
- MIP/HPT pairings hint at mass storage/back diffusion in upper portion of Layer 7 (>80 ft bls)

Conceptual Model Refinement

Recovery Well Influent

- MIP/HPT pairings provided additional lines of evidence for capture/flow manipulation
- Recovery well screens selectively packered
- Pump intakes adjusted based on contaminant magnitude and conductivity characteristics
- RW-6B deactivated based on multiple criteria, supported by Pre-IM and Interim MIP data
- Identified need for additional deep extraction well (via MIP)
- Upcoming expansion of shallow recovery well network enhanced with increased site knowledge

- Enhance site conceptual model/remedy approach
- Verify sampling intervals relative to conductivity zones
- Does the remedy address mobile/immobile mass?
- Does hydraulic conductivity constrain the effectiveness?
- HPT/MIP assessment is not technology specific. Examples:
 - Surgical treatment interval optimization
 - Substrate distribution prediction
 - Injection pressure requirements
 - Remedy progress/optimization
 - Mobile/immobile mass assessment
 - Changes in permeability from remedy (e.g., mixing, ZVI, etc.)

