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Stochastic Finite Element Method

Consider the stochastic elliptic problem defined on (Ω,F ,P) and
D = [0, b]2 ⊆ Rd, d = 2:{

−∇ · (a(x, ω)∇u(x, ω)) = f (x) in Ω× D,
u(ω, x) = 0 on Ω× ∂D, (1)

with deterministic forcing f (x) and a(x, ω) = a(x, y(ω)),
y = (y1, . . . , yN) ∈ Γ, with Γn = yn(ω),Γ = Γ1 × · · · × ΓN ⊆ RN .
We impose the additional assumptions on a(x, y), that

(A1) a(x, y(ω)) = amin + h(x, y(ω)) where the yj’s are independent
random variables, and h : RN × Rd → R.

(A2) ∃ 0 < amin ≤ amax <∞ such that

P(amin ≤ a(x, y(ω)) ≤ amax) = 1, ∀x ∈ D

Also, let ρ(y) =
∏N

n=1 ρn(y) be the joint density of the vector y.
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Stochastic Finite Element Method

The weak form of problem (1) is now given by: find u ∈ H1
0(D)⊗ L2

ρ(Γ)

such that ∀v ∈ H1
0(D)⊗ L2

ρ(Γ)∫
Γ

∫
D

a(x, y)∇u(x, y)·∇v(x, y)dxρ(y)dy

=

∫
Γ

∫
D

f (x)v(x, y)dxρ(y)dy.
(2)

With some additional assumptions on the smoothness of the data
a(x, y) it is well known that the solution depends analytically on the
parameters yn ∈ Γn.
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Stochastic Finite Element Method

Let {φj}Jh
j=1 be a finite basis for Wh(D) ⊂ H1

0(D), and set
Jh = dim(Wh(D)). We are interested in the semi-discrete
approximation

uJh(x, y) =

Jh∑
j=1

uj(y)φj(x). (3)

given by: find uJh ∈ Wh(D)
⊗

L2
ρ(Γ) such that∫

D
a(x, y)∇uJh(x, y) · ∇vJh(x) dx =

∫
D

f (x)vJh(x) dx ρ-a.e. in Γ, (4)

for all vJh ∈ Wh(D). For any y ∈ Γ, define

u(y) = [u1(y), u2(y), . . . , uJh(y)].

Then, the semi-discrete problem (4) can be written algebraically as

A(y)u(y) = f ρ-a.e. in Γ. (5)

where A(y) is the stochastic finite element stiffness matrix.
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Stochastic Global Polynomial Subspaces

Let p ∈ N denote the polynomial order of an approximation and
consider a sequence of increasing, nested multi-index sets J (p) such
that

J (0) = {(0, . . . , 0)} and J (p) ⊆ J (p + 1).

Let PJ (p)(Γ) ⊂ L2
ρ(Γ) denote the multivariate polynomial space over Γ

corresponding to the index set J (p), defined by

PJ (p)(Γ) = span
{ N∏

n=1

ypn
n

∣∣∣ p = (p1, . . . , pN) ∈ J (p), yn ∈ Γn

}
. (6)

We set Mp = dim
{
PJ (p)

}
. The fully-discrete global polynomial

approximation is now denoted by uJhMp ∈ Wh(D)
⊗
PJ (p)(Γ).
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Examples of J (p):

Tensor Products (TP):

JTP(p) =
{

p ∈ NN
∣∣∣max

n
pn ≤ p

}
, MTP

p = (p + 1)N

Total Degree (TD):

JTD(p) =

{
p ∈ NN

∣∣∣∣∣
N∑

n=1

pn ≤ p

}
, MTD

p = (N + p)!/(N! p!),

Hyperbolic Cross (HC):

JHC(p) =

{
p ∈ NN

∣∣∣∣∣
N∑

n=1

log2(pn + 1) ≤ log2(p + 1)

}
Sparse Smolyak (SS):

JSS(p) =

{
p ∈ NN

∣∣∣ N∑
n=1

γ(pn) ≤ γ(p)

}
, γ(p) =

 0 for p = 0
1 for p = 1

dlog2(p)e for p ≥ 2.
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Global stochastic Galerkin methods

Let {ψpn(yn)}∞p=0 denote a set of L2
ρn

-orthonormal polynomials in Γn.
For p ∈ J (p), we define

ψp(y) =

N∏
n=1

ψpn(yn).

Then we see that∫
Γ

ψp(y)ψp′(y)ρ(y) dy =

N∏
n=1

∫
Γn

ψp,n(yn)ψp′,n(yn)ρn(yn) dyn =

N∏
n=1

δpnp′n .

Given the bases {φj}Jh
j=1 ⊂ Wh(D) and {ψp}p∈J (p) ⊂ PJ (p)(Γ), the

gSGM approximation is defined by

ugSG
JhMp

(x, y) =
∑

p∈J (p)

up(x)ψp(y) =
∑

p∈J (p)

Jh∑
j=1

up,j φj(x)ψp(y). (7)

Our goal is then to solve for the coefficients {up,j},
p ∈ J (p), j = 1, . . . , Jh which requires the substitution of (7) into the
weak formulation (2), resulting in a (possibly nonlinear) coupled
system of size JhMp × JhMp.
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Global stochastic Galerkin methods - An Example

up := [up,1, . . . , up,Jh ], the vector of nodal values of the FEM
solution corresponding to the p-th stochastic mode.
A Galerkin projection onto the span of {ψp}p∈J (p) yields the
following linear algebraic system: for all p ∈ J (p)∑

p′∈J (p)

(∫
Γ

A(y)ψp(y)ψp′(y)ρ(y) dy
)

︸ ︷︷ ︸
Kp,p′

up′ =

∫
Γ

fψp(y)ρ(y) dy︸ ︷︷ ︸
Fp

. (8)

1 The coefficient matrix K of the system (8) consists of (Mp)2 block
matrices, each of size Jh × Jh, i.e., the size of A(y).

2 Even if K is sparse, it is impractical to form and store the matrix
explicitly.

3 The structure and sparsity of K depends entirely on a(x, y).
4 This approach requires rewriting the Galerkin solver for each

new choice of a(x, y).

Nick Dexter† , & Clayton Webster‡ Complexity of gSGM and gSCM for PDEs with Random Coeff.



Global stochastic Galerkin methods - NISP
A more convenient and robust choice is to perform an “offline”
projection of a(x, y) onto span{ψq(y)}q∈J (w), i.e. write a(x, y) as

a(x, y) =

∞∑
n=1

an(x)ψn(y) ≈
∑

q∈J (w)

aq(x)ψq(y)

truncating the expansion on some finite basis. Then for all q ∈ J (w),∫
Γ

∞∑
n=1

an(x)ψn(y)ψq(y)ρ(y) dy =

∞∑
n=1

an(x)δn,q =

∫
Γ

a(x, y)ψq(y)ρ(y) dy.

Letting εSG be the error in SG approximation, we chose w such that
‖a(x, y)−

∑
q∈J (w) aq(x)ψq(y)‖L2 < εSG, Substituting the finite

expansion of a(x, y) yields, for all j, j′ = 1 . . . , Jh,

Aj,j′(y) ≈
∑

q∈J (w)

ψq(y)

∫
D

aq(x)∇φj(x) · ∇φj′(x) dx =
∑

q∈J (w)

ψq(y)[Aq]j,j′ ,

where [Aq]j,j′ =
∫

D aq(x) ∇φj(x) · ∇φj′(x) dx can be computed
component-wise.
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Global stochastic Galerkin methods - NISP

Given a sufficiently resolved stochastic finite element stiffness matrix
A(y) ≈

∑
q∈J (w)[Aq]ψq(y), we substitute A(y) into (8) and obtain, for all

p′ ∈ J (p),∑
p∈J (p)

∑
q∈J (w)

[∫
Γ

[Aq]ψq(y)ψp′(y)ψp(y)ρ(y) dy
]

up = Fp′ . (9)

By defining

[Gq]p′,p =

∫
Γ

ψqψp′ψpρ dy and K =
∑

r∈J (w)

[Gq]
⊗

[Aq], (10)

where [Gq]
⊗

[Aq] denotes the Kronecker product of [Gq] and [Aq], we
obtain the gSGM coupled system of equations, namely,

Ku = F, (11)

with K symmetric and positive definite.
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Global stochastic Galerkin methods - Cost (solve)

Given Ku = F, where K =
∑

q∈J (w)[Gq]
⊗

[Aq], we define

NG =
∑

q∈J (w)

number of nonzeros in [Gq], (12)

pictorially NG = # of black pixels in the matrices

where each pixel represents a block matrix of the size of the original
finite element system.
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Global stochastic Galerkin methods - Cost (solve)

Given Ku = F, where K =
∑

q∈J (w)[Gq]
⊗

[Aq], we define

NG =
∑

q∈J (w)

number of nonzeros in [Gq], (12)

then NG is the total number of nonzeros in the {[Gq]}q∈J (w).

The cost of solving the gSGM method with CG without
preconditioning is then given by

WgSGM
solve ≈ NG ∗ Niter, (13)

where Niter is the number of iterations of the system (11) required to
converge to a given tolerance in CG. With preconditioning for a block
diagonal Jacobi preconditioner, this becomes

WgSGM
solve ≈ (NG + Mp) ∗ Niter. (14)
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Global stochastic Collocation methods

1 Choose a set of points HML = {yk ∈ Γ}ML
k=1 according to the

measure ρ(y) dy =
∏N

n=1 ρn(yn) dyn

2 For each k solve the FE solution uJh(x, yk) given a(x, yk)

3 Interpolate the sampled values:
ugSGM

JhML
(x, y) =

∑ML
k=1 uJh(x, yk)Lk(y), yielding the fully discrete

gSCM approximation ugSGM
JhML

∈ Wh(D)⊗ PJ (L)(Γ), where
Lk ∈ PJ (L)(Γ) are suitable combinations of global (Lagrange)
interpolants

E[u](x) ≈
∫

Γ

uML (x, y)ρ(y) dy =

ML∑
k=1

uh(x, yk)

∫
Γ

Lk(y)ρ(y) dy︸ ︷︷ ︸
precomputed weights wk
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gSCM - Cost (solve)

Therefore, the cost of solving for gSCM is given by

WgSCM
solve ≈

ML∑
k=1

N(k)
iter ,

where N(k)
iter is the number of iterations required by CG to solve the kth

FEM solution uJh(x, yk). Again, the cost of solving the gSGM is

WgSGM
solve ≈ NG ∗ Niter.

Both costs are in terms of total number of matrix vector products
required to find the corresponding approximation.
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gSCM - Cost (solve)

Therefore, the cost of solving for gSCM is given by

WgSCM
solve ≈ 2

ML∑
k=1

N(k)
iter ,

where N(k)
iter is the number of iterations required by CG to solve the kth

FEM solution uJh(x, yk). Again, the cost of solving the gSGM is

WgSGM
solve ≈ (NG + Mp) ∗ Niter.

Both costs are in terms of total number of matrix vector products
required to find the corresponding approximation.
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Numerical Example
We now present some results using these methods to compare
gSGM and gSCM. Recall the stochastic elliptic problem{

−∇ · (a(x, y)∇u(x, ω)) = cos(x1) sin(x2) in Ω× D,
u(x, ω) = 0 on Ω× ∂D,

with D = [0, b]2, and random coefficient a(x, ω) with one-dimensional
spatial dependence given by

log(aN(x, y)− 0.5) = 1 + Y1(ω)

(√
πL
2

)1/2

+

N∑
n=2

ζnϕn(x)Yn(ω) (15)

where

ζn := (
√
πL)1/2 exp

(
−(
⌊ n

2

⌋
πL)2

8

)
, if n > 1 (16)

and

ϕn(x) :=


sin
(
b n

2cπx1

Lp

)
, if n even,

cos
(
b n

2cπx1

Lp

)
, if n odd.

(17)
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Numerical Results

100 101 102 103 104
10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

Degrees of freedom

Er
ro

r

Convergence v.s. DOF for SCFEM and SGFEM

 

 
SC−CC
SC−sCC
SC−GL
SG−TD

100 102 104 106 108
10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

Cost
Er

ro
r

Convergence v.s. cost for SCFEM and SGFEM

 

 
SC−CC
SC−sCC
SC−GL
SG−TD

100 101 102 103 104
10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

Degrees of freedom

Er
ro

r

Convergence v.s. DOF for SCFEM and SGFEM

 

 
SC−CC
SC−sCC
SC−GL
SG−TD

100 102 104 106 108
10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

Cost

Er
ro

r

Convergence v.s. cost for SCFEM and SGFEM

 

 
SC−CC
SC−sCC
SC−GL
SG−TD

Nick Dexter† , & Clayton Webster‡ Complexity of gSGM and gSCM for PDEs with Random Coeff.



Numerical Results
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Conclusions and Future Work

Need to apply this cost metric to preconditioning strategies. Cost
then depends on the preconditioner used.

Need to obtain error estimates for the spectral projection. We
need complexity to reach desired error estimates.

Discussion about strategies for preconditioning the Stochastic
Collocation Method.
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