

Exceptional service in the national interest

A Comparison of Algebraic Multigrid Preconditioning Approaches for Sampling-Based Uncertainty Propagation on Advanced Computing Architectures

SIAM Annual Meeting, July 7-11, 2014

Jonathan Hu, Eric Phipps SAND2014-15836PE

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Outline

- Background
- Multigrid preconditioning
- Numerical Experiments
- Concluding remarks

Motivation

- Forward uncertainty propagation is key for many UQ tasks
- Modern architectures hold potential for large speedups (MS29, Phipps)
- This talk: preconditioning for systems arising from PCE approaches with ensembles
- Context for this talk:
 - Steady-state finite dimensional model problem:

Find $u(\xi)$ such that $f(u,\xi) = 0, \, \xi : \Omega \to \Gamma \subset \mathbb{R}^M$, density ρ

(Global) Polynomial Chaos approximation

$$u(\xi)pprox \hat{u}(\xi) = \sum_{i=0}^P u_i \psi_i(\xi), \quad \langle \psi_i \psi_j
angle \equiv \int_{\Gamma} \psi_i(y) \psi_j(y)
ho(y) dy = \delta_{ij} \langle \psi_i^2
angle$$

• Non-intrusive polynomial chaos (NIPC) $u_i = \frac{1}{\langle \psi_i^2 \rangle} \int_{\Gamma} \hat{u}(y) \psi_i(y) \rho(y) dy \approx \frac{1}{\langle \psi_i^2 \rangle} \sum_{k=0}^Q w_k u^k \psi_i(y^k), \ f(u^k, y^k) = 0$

Simultaneous ensemble propagation

PDE:

$$f(u,\xi) = 0$$

Propagating m samples – block diagonal (nonlinear) system:

$$F(U,Y)=0, \hspace{0.2cm} U=\sum_{i=1}^m e_i \otimes u_i, \hspace{0.2cm} Y=\sum_{i=1}^m e_i \otimes y_i, \hspace{0.2cm} F=\sum_{i=1}^m e_i \otimes f(u_i,y_i)$$

Commute Kronecker products (just a reordering of DoFs):

$$F_c(U_c,Y_c)=0, \hspace{0.2cm} U_c=\sum_{i=1}^m u_i\otimes e_i, \hspace{0.2cm} Y_c=\sum_{i=1}^m y_i\otimes e_i, \hspace{0.2cm} F_c=\sum_{i=1}^m f(u_i,y_i)\otimes e_i$$

- Each sample-dependent scalar replaced by length-*m* array
 - Automatically reuse non-sample dependent data
 - Sparse accesses amortized across ensemble
 - Math on ensemble naturally maps to vector arithmetic

- Scalable solution method for elliptic PDEs
- Typically used as preconditioner to Krylov method
- Idea: capture error at multiple resolutions:
 - Smoothing reduces oscillatory error (high energy)
 - Coarse grid correction reduces smooth error (low energy)

Sandia National Laboratories

- Scalable solution method for elliptic PDEs
- Typically used as preconditioner to Krylov method
- Idea: capture error at multiple resolutions:
 - Smoothing reduces oscillatory error (high energy)
 - Coarse grid correction reduces smooth error (low energy)
- R_i 's, P_i 's and A_i 's generated by AMG algorithm
 - $R_i = P_i^T$ for symmetric problems
 - $A_i = R_i A_{i-1} P_i$

- Scalable solution method for elliptic PDEs
- Typically used as preconditioner to Krylov method
- Idea: capture error at multiple resolutions:
 - Smoothing reduces oscillatory error (high energy)
 - Coarse grid correction reduces smooth error (low energy)
- R_i 's, P_i 's and A_i 's generated by AMG algorithm

Sandia National Laboratories

- Scalable solution method for elliptic PDEs
- Typically used as preconditioner to Krylov method
- Idea: capture error at multiple resolutions:
 - Smoothing reduces oscillatory error (high energy)
 - Coarse grid correction reduces smooth error (low energy)
- R_i 's, P_i 's and A_i 's generated by AMG algorithm
- Two main variants
- <u>Classical (Ruge-Stuben) AMG</u>
 - Coarse grid DOFs are subset of fine DOFs
- Smoothed aggregation \leftarrow
 - Coarse grid DOFs are groups of fine DOFs

Smoothed Aggregation – Main Kernels

Setup

- Form coarse unknowns (aggregation)
- Prolongator creation
 - $P = (I \omega D^{-1}A)P^{(tent)}$
- Matrix matrix multiply
 - $A_k = R A_{k-1} P$
- Load balancing of A_k's
- Smoother initialization
- Apply
 - Matrix-vector multiply

- Group fine unknowns into aggregates to form coarse unknowns
 - Based on matrix stencil coefficients
 - DOFs at node are aggregated together

- Group fine unknowns into aggregates to form coarse unknowns
 - Based on matrix stencil coefficients
 - DOFs at node are aggregated together
- Partition given (near) nullspace across aggregates to have local support. Call it N_(h).

- Group fine unknowns into aggregates to form coarse unknowns
 - Based on matrix stencil coefficients
 - DOFs at node are aggregated together
- Partition given (near) nullspace across aggregates to have local support. Call it N_(h).
- Calculate $QR = N_{(h)}$.
- Set $P^{tent} = Q$ and $N_{(c)} = R$.

- Based on matrix stencil coefficients
- DOFs at node are aggregated together
- Partition given (near) nullspace across aggregates to have local support. Call it N_(h).
- Calculate $QR = N_{(h)}$.
- Set $P^{tent} = Q$ and $N_{(c)} = R$.
- Form final prolongator $P = (I \omega D^{-1}A)P^{tent}$

- Based on matrix stencil coefficients
- DOFs at node are aggregated together
- Partition given (near) nullspace across aggregates to have local support. Call it N_(h).
- Calculate $QR = N_{(h)}$.
- Set $P^{tent} = Q$ and $N_{(c)} = R$.
- Form final prolongator $P = (I \omega D^{-1}A)P^{tent}$
 - By construction, $N_{(h)} = PN_{(c)}$ and nullspace of A_c is $N_{(c)}$. (Recall $A_c = P^T A P$.)

Multigrid for Ensembles

- 1) AMG templated on ensemble scalar type
 - Single AMG preconditioner per ensemble
 - Ensemble scalar type propagated through stack to multigrid solver
 - From multigrid perspective, ensemble can be viewed as vector of scalars → system of PDEs
- 2) AMG based on mean-based system
 - Single AMG setup
 - AMG coarsens matrix that is mean of the ensemble matrix
 - From AMG perspective, system can be viewed as scalar PDE

MueLu Multigrid Library

- C++ framework for implementing multigrid methods
 - Can explicitly use Tpetra (sparse linear algebra)
 - Can implicitly use Kokkos (node-level parallelism)
 - Templated on ordinal, scalar, node types
- Aggregation
 - Uncoupled, coupled
 - Matrix-based dropping, distance-based dropping
 - Design permits alternative AMG and GMG implementations
- SOR, Chebyshev, l1 Gauss-Seidel, incomplete factorizations, additive Schwarz, line smoothing* (Ifpack2)
- SuperLU direct solver
- Algorithms for Poisson, elasticity, Helmholtz, convection-diffusion, Maxwell (eddy current)

Numerical Experiments

- Sandia Linux test bed "Shannon"
 - two 8-core Sandy Bridge Xeon E5-2670s per node
 - 128 GB per node
 - OpenMPI, Intel 13.1, OpenMP
- Problem description
 - Nonlinear diffusion equation

$$-\kappa \nabla^2 u + u^2 = 0$$

- 3-D, linear FEM discretization
- Cubic domain, 64^3 mesh
- KL-like random field model for diffusion coefficient
- Single-node performance

CG iterations, no preconditioning

cl	ensemble	UQ dim (#random var.)			
	size	3	5	7	
10	1	853	871	869	
	16	1350	1160	1110	
	32	1830	1180	1120	

cl	ensemble	UQ dim			
	size	3	5	7	
1.0	1	852	853	845	
	16	1390	1130	1010	
	32	1910	1180	1050	

cl	ensemble	UQ dim		
	size	3	5	7
0.1	1	800	800	800
	16	1460	977	867
	32	2060	1100	913

cl=correlation length

CG iterations, ensemble-based AMG

cl	ensemble	UQ dim		
	size	3	5	7
10	1	45.1	44.9	44.9
	16	55.8	48.2	46.2
	32	73.9	48.3	46.4

cl	ensemble	UQ dim		
	size	3	5	7
1.0	1	45.1	44.9	44.9
	16	55.4	48.1	46.1
	32	74.7	48.3	46.4

cl	ensemble	UQ dim			
	size	3	5	7	
0.1	1	45.0	44.9	44.9	
	16	55.8	48.1	46.1	
	32	73.9	48.3	46.5	

CG iterations, mean-based AMG

cl	ensemble	UQ dim		
	size	3	5	7
1 0	16	59.5	49.8	47.0
1.0	32	81.2	50.9	47.7

cl ensemble		UQ dim		
	size	3	5	7
0.1	16	62.8	49.7	46.7
0.1	32	88.6	51.5	47.5

Conclusions

- Future work
 - Optimization of mean-based preconditioner
 - Further investigate space of AMG options
 - Introduce Kokkos kernels into multigrid setup
 - Reuse across ensembles
- MueLu public release in fall of 2014
- Trilinos: <u>www.trilinos.org</u>

Acknowledgements

- DOE ASCR Equinox project
- DOE ASC program
- NNSA ASC Sandia Advanced Systems Technology Test Beds
 - www.sandia.gov/asc/computational_systems/HAAPS.html
- Collaborators
 - Carter Edwards (SNL)
 - Sarah Osborn, Vicki Howle (Texas Tech U.)