
Argonne National Laboratory is managed by 
The University of Chicago for the U.S. Department of Energy

Bcfg2: A Pay as You Go Approach 
to Configuration Complexity
 

AUUG 2005

Narayan Desai
desai@mcs.anl.gov

Mathematics and Computer Science Division
Argonne National Laboratory

October 21, 2005



2

Overview

 A Bird's Eye View of Configuration Management
 The Adoption Problem
 Our Initial Observations (and some history)
 Bcfg2
 The Pay as You Go Addition
 Experiences
 Conclusions
 Status and Future Work



3

Configuration Management

 A research area consisting of several related tasks
– the mechanics of system configuration deployment
– the creation of client configuration specifications
– specification/constraint languages
– autonomic processing

 Management research has occurred on Unix systems for quite some time
 Though quite immature

– no common consensus about problem framing or methods
 Motivations

– System size and complexity continues to grow
– Available administrator manpower is stagnant
– External importance of computers and their services continues to grow
– Tools stand to provide major benefits to real systems 

 More than cfengine



4

(My view of) Goals of Configuration Management Tools

 Ease the system configuration process
– Leverage uniformity
– Provide constructs for architecture and function abstraction
– Expose a declarative specification for systems

• Describe goals, not actions
– Remove the repetitive tasks from administration

 Create an administrative application portability framework
 Provide an accurate assessment of current network configuration states

– Divergence from the central specification
• Incorrect configuration
• Extra configuration

 Make system configuration processes proactive, not reactive



5

System Administration Myths

 Each of my systems is unique.
 I will never need another system like this.
 Manual system patching is good enough.
 I can maintain uniform configurations using manual system configuration 

processes.
 My configuration doesn't change very often.
 System configuration tools make my skills less important.
 This system is a temporary solution.



6

Widely Deployed Configuration Management Tools

 cfengine
 SystemImager
 KickStart
 JumpStart
 AutoYAST
 Redhat Network
 dd
 insert your favorite build automation program here



7

Shortcomings of Deployed Tools

 Many tools only support system installation
– Incremental configuration changes must be tracked with another tool

 Some tools don't support reasonable sorts of system differentiation 
(particularly imaging tools)

 Imperative
 Not generally proscriptive
 Architecture specific
 Don't provide high-level constructs
 Freaky



8

Complex/Research Tools

 LCFG
 Quattor
 Arusha
 Puppet
 Bcfg2
 Ed Smith's constraint systems

 Sanity
 SmartFrog
 Akamai Configuration Propagation 

System
 IsConf 2/3



9

Tool Capabilities

 Coherent reconfiguration
 Improved user models
 Declarative syntax
 Basic autonomics
 High-granularity parameterized configurations
 Support for collaborative system administration



10

The Adoption Problem

 Despite attractive features, these tools remain unused
 Lack of userbase takes a toll

– Tools remain site-specific
– Lack of user feedback hinders research

 Administrators manage systems less efficiently
 Usability (and perception thereof) is likely a large factor

– Chicken and Egg problem
– Tools are too hard to deploy
– User interface
– Benefits unclear

 Lose – Lose Situation
– Tools suffer
– Users suffer



11

Some History (and Observations)

 MCS has a long involvement with configuration management (Remy Evard)
– cfg-get (1995)
– site configuration survey (1997)
– sanity (1998)
– culture of methodical system management

 We still encountered deployment stalls
– Some local administrators fought against use of sanity
– Despite unversal buy-in to “configuration management”

 Usability problems
– Unfamiliar model
– Insufficient benefits to justify large-scale methodology changes
– Tools required uncanny knowledge of the entire environment

 Some Administrators just punted and manually managed systems



More Recent History

 Bcfg development started in 2002
 Primarily developed to address usability shortcomings
 Initial work indicated that “one true user interface” wouldn't work

– Different problem solving styles
– Different goals
– Variety of patterns in configuration data

 This motivated our incremental approach to configuration complexity
 Earlier this year, we completed production deployment of Bcfg2
 This has provided much more insight about the scope of this problem



Bcfg2 Overview

 Client/Server configuration management tool
 Provides abstract classing mechanisms
 Includes architecture abstraction
 Implemented in python
 Currently supports Linux (Redhat, Suse, and Debian) and Solaris

– Adding platform support is trivial (~100 lines of code)



Bcfg2 Design Goals

 All configuration is driven from a central specification
– Serialized into a per-client view

 The specification is proscriptive
– No client side “blind spots”

 Client configuration state information must be readily available to 
administrators

 Administrators interact with Bcfg2, not individual clients
 Server extensibility is essential

– Single model problem
– External canonical data

 Keep the client simple
– Complicated logic is more easily managed on a server

 Provide declarative specification layer
 Attempt to strike right balance between simplicity and flexibility



Bcfg2 Architecture

Repository

Client

Configuration

Statistics

Specification
Administrators

Directives

Reports

Bcfg2



Server Architecture

Bcfg2
Client

Bcfg2
Server

Get Probes

Upload Response

Get Configuration

Upload Statistics

???

Cfg

SSHBase

Pkgmgr

Plugins



Plugins

 Server-side extensions that contribute to the client configuration process
– Probe client-side data
– Provide configuration inventory
– Provide configuration entry contents

 Loadable at runtime
 Must implement an interface
 Arbitrary internal logic is expected

– Can use a domain-specific data representation for brevity and clarity



The Initial Four

 Cfg
– A configuration file repository
– Files are tagged with a metadata attribute
– Most specific file wins

 Pkgmgr
– Per-image package inventory

 Svcmgr
– Provides class-based access to service activation

 SSHBase
– Manages ssh host keys and known hosts file
– Centrally run
– Allows keys to persist through a rebuild
– Allows central revocation of ssh host keys
– Coordinates a consistent, correct ssh_known_hosts file



The Initial Four (cont)

 All use literal representation
– Configuration files in a directory hierarchy
– Lists of package versions
– Directives for service activation

 Each provides an intuitive model
– Users quickly become comfortable with each of these
– Initial setup is quite straighforward

 Ease here aids in adoption
– Users can easily envision what the tool is good for

 While systems can be run in this way, more advanced models become 
appealing
– Enter the plugin API



The Pay as You Go Approach

 Some situations call for more complex representations
– parameterized configurations
– complicated workflows

 Most systems provide a complex language to support these operations
 Bcfg2 takes a more lightweight approach
 Default plugins provide a very literal interface

– Files on the filesystem
– Simple transformation rules

 More abstract plugins can be easily implemented and enabled
– Domain-specific languages can be used to describe important systems
– Complex workflows can be automated

 Due to the plugin interface, configuration that doesn't require complex logic 
can still be represented as opaque blogs of file data



Abstract Representations

 Cheetah
– Templating plugin based on the Cheetah engine
– Raw templating can be quite foreign to users

 Task-specific Plugins
– Host Management
– Webserver Management
– User Management
– Other tasks



Task-Specific Plugins

 Analogous to “Administrative Applications” mentioned previously
 Substantially better than standalone systems

– Can use the configuration management system for all of the grungy 
details
• performance of configuration changes
• central data repository
• access to other specification data

– The generation target moves from imperative logic to declarative 
specification
• The admin app only needs to describe what end state is desired

– These two factors strip out many of the factors that make these 
applications non-portable



Deployment Overview

 Main deployment process occurred from December 2004 – April 2005
 Progress by machine categories

– Clusters
– Workstation environment
– Servers

• Most complicated
• Still not quite complete

 The design of Bcfg2 was substantially altered during this process
– More emphasis on reporting
– Driven by administrator needs/complaints



Complexity Issues

 Administrators try to KISS when possible
– Particularly with new tools
– Particularly on servers
– and so forth

 Sophisticated solutions are not initially attractive
– Once confidence in the tool develops, users are ready to try more 

complicated things
– Using these initially tends to be a non-starter

 In large groups, a range of needs is evident
– Different tasks require different configuration patterns
– The cost of manual actions is quite different

• Clusters
• Workstations
• Servers

 As users become more comfortable with tools, their assessment of utility 
changes
– To the point that different users can't communicate effectively



Experiences

 The deployment process was like herding cats
– Different administrators got comfortable with Bcfg2 at different rates
– This meant that a large range of comfort in Bcfg2 existed throughout 

the process
 The incremental approach to complexity helped substantially

– Administrators started with very literal representations of the 
configuration

– These literal representations made the tool very predictable
– Aided in the scratch and sniff test

 After the basic configuration issues were addressed a second pass for 
complex configuration processes was made
– We focused on time-consuming aspects of system reconfiguration

• Web server configuration
• Host management
• User management



Conclusions

 The user model question is far from answered
 Supporting a variety of methods and representations is the only way to 

make progress
– So that tools are usable in a variety of environments
– So that users find tools intuitive

 Adaptive approaches allow a reasoned decision about desired complexity 
level to be made
– You can change your mind
– Initial focus is major issues
– Optimization comes later

 Bcfg2 is worth looking at
– I might as well come out and say it
– It is designed as a general tool
– If it won't work for you, we would love to hear why



Status

 Bcfg2 is publically released
 In use outside of ANL
 Documentation exists, and is constantly being improved
 User feedback is constantly resulting in model and feature improvements
 We need more feedback



Future Work

 While this design was practical much work remains
 The data store needs improvements

– Current plugins have discrete repositories
– No coherent data overlap is possible
– Everything is interrelated

 Plugins need some sort of user interface
– Network Transparency
– Authentication

 A generic approval and delegation is needed for several plugins
 Inter-server synchronization



Questions

 ???

 http://www.mcs.anl.gov/cobalt/bcfg2/
– Documentation
– Papers and Presentation
– Code
– Mailing list archives

http://www.mcs.anl.gov/cobalt/bcfg2/

