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Configuration Management

 A research area consisting of several related tasks
– the mechanics of system configuration deployment
– the creation of client configuration specifications
– specification/constraint languages
– autonomic processing

 Management research has occurred on Unix systems for quite some time
 Though quite immature

– no common consensus about problem framing or methods
 Motivations

– System size and complexity continues to grow
– Available administrator manpower is stagnant
– External importance of computers and their services continues to grow
– Tools stand to provide major benefits to real systems 

 More than cfengine
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(My view of) Goals of Configuration Management Tools

 Ease the system configuration process
– Leverage uniformity
– Provide constructs for architecture and function abstraction
– Expose a declarative specification for systems

• Describe goals, not actions
– Remove the repetitive tasks from administration

 Create an administrative application portability framework
 Provide an accurate assessment of current network configuration states

– Divergence from the central specification
• Incorrect configuration
• Extra configuration

 Make system configuration processes proactive, not reactive
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System Administration Myths

 Each of my systems is unique.
 I will never need another system like this.
 Manual system patching is good enough.
 I can maintain uniform configurations using manual system configuration 

processes.
 My configuration doesn't change very often.
 System configuration tools make my skills less important.
 This system is a temporary solution.
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Widely Deployed Configuration Management Tools

 cfengine
 SystemImager
 KickStart
 JumpStart
 AutoYAST
 Redhat Network
 dd
 insert your favorite build automation program here
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Shortcomings of Deployed Tools

 Many tools only support system installation
– Incremental configuration changes must be tracked with another tool

 Some tools don't support reasonable sorts of system differentiation 
(particularly imaging tools)

 Imperative
 Not generally proscriptive
 Architecture specific
 Don't provide high-level constructs
 Freaky
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Complex/Research Tools

 LCFG
 Quattor
 Arusha
 Puppet
 Bcfg2
 Ed Smith's constraint systems

 Sanity
 SmartFrog
 Akamai Configuration Propagation 

System
 IsConf 2/3
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Tool Capabilities

 Coherent reconfiguration
 Improved user models
 Declarative syntax
 Basic autonomics
 High-granularity parameterized configurations
 Support for collaborative system administration
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The Adoption Problem

 Despite attractive features, these tools remain unused
 Lack of userbase takes a toll

– Tools remain site-specific
– Lack of user feedback hinders research

 Administrators manage systems less efficiently
 Usability (and perception thereof) is likely a large factor

– Chicken and Egg problem
– Tools are too hard to deploy
– User interface
– Benefits unclear

 Lose – Lose Situation
– Tools suffer
– Users suffer
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Some History (and Observations)

 MCS has a long involvement with configuration management (Remy Evard)
– cfg-get (1995)
– site configuration survey (1997)
– sanity (1998)
– culture of methodical system management

 We still encountered deployment stalls
– Some local administrators fought against use of sanity
– Despite unversal buy-in to “configuration management”

 Usability problems
– Unfamiliar model
– Insufficient benefits to justify large-scale methodology changes
– Tools required uncanny knowledge of the entire environment

 Some Administrators just punted and manually managed systems



More Recent History

 Bcfg development started in 2002
 Primarily developed to address usability shortcomings
 Initial work indicated that “one true user interface” wouldn't work

– Different problem solving styles
– Different goals
– Variety of patterns in configuration data

 This motivated our incremental approach to configuration complexity
 Earlier this year, we completed production deployment of Bcfg2
 This has provided much more insight about the scope of this problem



Bcfg2 Overview

 Client/Server configuration management tool
 Provides abstract classing mechanisms
 Includes architecture abstraction
 Implemented in python
 Currently supports Linux (Redhat, Suse, and Debian) and Solaris

– Adding platform support is trivial (~100 lines of code)



Bcfg2 Design Goals

 All configuration is driven from a central specification
– Serialized into a per-client view

 The specification is proscriptive
– No client side “blind spots”

 Client configuration state information must be readily available to 
administrators

 Administrators interact with Bcfg2, not individual clients
 Server extensibility is essential

– Single model problem
– External canonical data

 Keep the client simple
– Complicated logic is more easily managed on a server

 Provide declarative specification layer
 Attempt to strike right balance between simplicity and flexibility



Bcfg2 Architecture
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Plugins

 Server-side extensions that contribute to the client configuration process
– Probe client-side data
– Provide configuration inventory
– Provide configuration entry contents

 Loadable at runtime
 Must implement an interface
 Arbitrary internal logic is expected

– Can use a domain-specific data representation for brevity and clarity



The Initial Four

 Cfg
– A configuration file repository
– Files are tagged with a metadata attribute
– Most specific file wins

 Pkgmgr
– Per-image package inventory

 Svcmgr
– Provides class-based access to service activation

 SSHBase
– Manages ssh host keys and known hosts file
– Centrally run
– Allows keys to persist through a rebuild
– Allows central revocation of ssh host keys
– Coordinates a consistent, correct ssh_known_hosts file



The Initial Four (cont)

 All use literal representation
– Configuration files in a directory hierarchy
– Lists of package versions
– Directives for service activation

 Each provides an intuitive model
– Users quickly become comfortable with each of these
– Initial setup is quite straighforward

 Ease here aids in adoption
– Users can easily envision what the tool is good for

 While systems can be run in this way, more advanced models become 
appealing
– Enter the plugin API



The Pay as You Go Approach

 Some situations call for more complex representations
– parameterized configurations
– complicated workflows

 Most systems provide a complex language to support these operations
 Bcfg2 takes a more lightweight approach
 Default plugins provide a very literal interface

– Files on the filesystem
– Simple transformation rules

 More abstract plugins can be easily implemented and enabled
– Domain-specific languages can be used to describe important systems
– Complex workflows can be automated

 Due to the plugin interface, configuration that doesn't require complex logic 
can still be represented as opaque blogs of file data



Abstract Representations

 Cheetah
– Templating plugin based on the Cheetah engine
– Raw templating can be quite foreign to users

 Task-specific Plugins
– Host Management
– Webserver Management
– User Management
– Other tasks



Task-Specific Plugins

 Analogous to “Administrative Applications” mentioned previously
 Substantially better than standalone systems

– Can use the configuration management system for all of the grungy 
details
• performance of configuration changes
• central data repository
• access to other specification data

– The generation target moves from imperative logic to declarative 
specification
• The admin app only needs to describe what end state is desired

– These two factors strip out many of the factors that make these 
applications non-portable



Deployment Overview

 Main deployment process occurred from December 2004 – April 2005
 Progress by machine categories

– Clusters
– Workstation environment
– Servers

• Most complicated
• Still not quite complete

 The design of Bcfg2 was substantially altered during this process
– More emphasis on reporting
– Driven by administrator needs/complaints



Complexity Issues

 Administrators try to KISS when possible
– Particularly with new tools
– Particularly on servers
– and so forth

 Sophisticated solutions are not initially attractive
– Once confidence in the tool develops, users are ready to try more 

complicated things
– Using these initially tends to be a non-starter

 In large groups, a range of needs is evident
– Different tasks require different configuration patterns
– The cost of manual actions is quite different

• Clusters
• Workstations
• Servers

 As users become more comfortable with tools, their assessment of utility 
changes
– To the point that different users can't communicate effectively



Experiences

 The deployment process was like herding cats
– Different administrators got comfortable with Bcfg2 at different rates
– This meant that a large range of comfort in Bcfg2 existed throughout 

the process
 The incremental approach to complexity helped substantially

– Administrators started with very literal representations of the 
configuration

– These literal representations made the tool very predictable
– Aided in the scratch and sniff test

 After the basic configuration issues were addressed a second pass for 
complex configuration processes was made
– We focused on time-consuming aspects of system reconfiguration

• Web server configuration
• Host management
• User management



Conclusions

 The user model question is far from answered
 Supporting a variety of methods and representations is the only way to 

make progress
– So that tools are usable in a variety of environments
– So that users find tools intuitive

 Adaptive approaches allow a reasoned decision about desired complexity 
level to be made
– You can change your mind
– Initial focus is major issues
– Optimization comes later

 Bcfg2 is worth looking at
– I might as well come out and say it
– It is designed as a general tool
– If it won't work for you, we would love to hear why



Status

 Bcfg2 is publically released
 In use outside of ANL
 Documentation exists, and is constantly being improved
 User feedback is constantly resulting in model and feature improvements
 We need more feedback



Future Work

 While this design was practical much work remains
 The data store needs improvements

– Current plugins have discrete repositories
– No coherent data overlap is possible
– Everything is interrelated

 Plugins need some sort of user interface
– Network Transparency
– Authentication

 A generic approval and delegation is needed for several plugins
 Inter-server synchronization



Questions

 ???

 http://www.mcs.anl.gov/cobalt/bcfg2/
– Documentation
– Papers and Presentation
– Code
– Mailing list archives

http://www.mcs.anl.gov/cobalt/bcfg2/

