
Argonne National Laboratory is managed by 
The University of Chicago for the U.S. Department of Energy

Bcfg2: A Pay as You Go Approach 
to Configuration Complexity
 

AUUG 2005

Narayan Desai
desai@mcs.anl.gov

Mathematics and Computer Science Division
Argonne National Laboratory

October 21, 2005



2

Overview

 A Bird's Eye View of Configuration Management
 The Adoption Problem
 Our Initial Observations (and some history)
 Bcfg2
 The Pay as You Go Addition
 Experiences
 Conclusions
 Status and Future Work



3

Configuration Management

 A research area consisting of several related tasks
– the mechanics of system configuration deployment
– the creation of client configuration specifications
– specification/constraint languages
– autonomic processing

 Management research has occurred on Unix systems for quite some time
 Though quite immature

– no common consensus about problem framing or methods
 Motivations

– System size and complexity continues to grow
– Available administrator manpower is stagnant
– External importance of computers and their services continues to grow
– Tools stand to provide major benefits to real systems 

 More than cfengine



4

(My view of) Goals of Configuration Management Tools

 Ease the system configuration process
– Leverage uniformity
– Provide constructs for architecture and function abstraction
– Expose a declarative specification for systems

• Describe goals, not actions
– Remove the repetitive tasks from administration

 Create an administrative application portability framework
 Provide an accurate assessment of current network configuration states

– Divergence from the central specification
• Incorrect configuration
• Extra configuration

 Make system configuration processes proactive, not reactive



5

System Administration Myths

 Each of my systems is unique.
 I will never need another system like this.
 Manual system patching is good enough.
 I can maintain uniform configurations using manual system configuration 

processes.
 My configuration doesn't change very often.
 System configuration tools make my skills less important.
 This system is a temporary solution.



6

Widely Deployed Configuration Management Tools

 cfengine
 SystemImager
 KickStart
 JumpStart
 AutoYAST
 Redhat Network
 dd
 insert your favorite build automation program here



7

Shortcomings of Deployed Tools

 Many tools only support system installation
– Incremental configuration changes must be tracked with another tool

 Some tools don't support reasonable sorts of system differentiation 
(particularly imaging tools)

 Imperative
 Not generally proscriptive
 Architecture specific
 Don't provide high-level constructs
 Freaky



8

Complex/Research Tools

 LCFG
 Quattor
 Arusha
 Puppet
 Bcfg2
 Ed Smith's constraint systems

 Sanity
 SmartFrog
 Akamai Configuration Propagation 

System
 IsConf 2/3



9

Tool Capabilities

 Coherent reconfiguration
 Improved user models
 Declarative syntax
 Basic autonomics
 High-granularity parameterized configurations
 Support for collaborative system administration



10

The Adoption Problem

 Despite attractive features, these tools remain unused
 Lack of userbase takes a toll

– Tools remain site-specific
– Lack of user feedback hinders research

 Administrators manage systems less efficiently
 Usability (and perception thereof) is likely a large factor

– Chicken and Egg problem
– Tools are too hard to deploy
– User interface
– Benefits unclear

 Lose – Lose Situation
– Tools suffer
– Users suffer



11

Some History (and Observations)

 MCS has a long involvement with configuration management (Remy Evard)
– cfg-get (1995)
– site configuration survey (1997)
– sanity (1998)
– culture of methodical system management

 We still encountered deployment stalls
– Some local administrators fought against use of sanity
– Despite unversal buy-in to “configuration management”

 Usability problems
– Unfamiliar model
– Insufficient benefits to justify large-scale methodology changes
– Tools required uncanny knowledge of the entire environment

 Some Administrators just punted and manually managed systems



More Recent History

 Bcfg development started in 2002
 Primarily developed to address usability shortcomings
 Initial work indicated that “one true user interface” wouldn't work

– Different problem solving styles
– Different goals
– Variety of patterns in configuration data

 This motivated our incremental approach to configuration complexity
 Earlier this year, we completed production deployment of Bcfg2
 This has provided much more insight about the scope of this problem



Bcfg2 Overview

 Client/Server configuration management tool
 Provides abstract classing mechanisms
 Includes architecture abstraction
 Implemented in python
 Currently supports Linux (Redhat, Suse, and Debian) and Solaris

– Adding platform support is trivial (~100 lines of code)



Bcfg2 Design Goals

 All configuration is driven from a central specification
– Serialized into a per-client view

 The specification is proscriptive
– No client side “blind spots”

 Client configuration state information must be readily available to 
administrators

 Administrators interact with Bcfg2, not individual clients
 Server extensibility is essential

– Single model problem
– External canonical data

 Keep the client simple
– Complicated logic is more easily managed on a server

 Provide declarative specification layer
 Attempt to strike right balance between simplicity and flexibility



Bcfg2 Architecture

Repository

Client

Configuration

Statistics

Specification
Administrators

Directives

Reports

Bcfg2



Server Architecture

Bcfg2
Client

Bcfg2
Server

Get Probes

Upload Response

Get Configuration

Upload Statistics

???

Cfg

SSHBase

Pkgmgr

Plugins



Plugins

 Server-side extensions that contribute to the client configuration process
– Probe client-side data
– Provide configuration inventory
– Provide configuration entry contents

 Loadable at runtime
 Must implement an interface
 Arbitrary internal logic is expected

– Can use a domain-specific data representation for brevity and clarity



The Initial Four

 Cfg
– A configuration file repository
– Files are tagged with a metadata attribute
– Most specific file wins

 Pkgmgr
– Per-image package inventory

 Svcmgr
– Provides class-based access to service activation

 SSHBase
– Manages ssh host keys and known hosts file
– Centrally run
– Allows keys to persist through a rebuild
– Allows central revocation of ssh host keys
– Coordinates a consistent, correct ssh_known_hosts file



The Initial Four (cont)

 All use literal representation
– Configuration files in a directory hierarchy
– Lists of package versions
– Directives for service activation

 Each provides an intuitive model
– Users quickly become comfortable with each of these
– Initial setup is quite straighforward

 Ease here aids in adoption
– Users can easily envision what the tool is good for

 While systems can be run in this way, more advanced models become 
appealing
– Enter the plugin API



The Pay as You Go Approach

 Some situations call for more complex representations
– parameterized configurations
– complicated workflows

 Most systems provide a complex language to support these operations
 Bcfg2 takes a more lightweight approach
 Default plugins provide a very literal interface

– Files on the filesystem
– Simple transformation rules

 More abstract plugins can be easily implemented and enabled
– Domain-specific languages can be used to describe important systems
– Complex workflows can be automated

 Due to the plugin interface, configuration that doesn't require complex logic 
can still be represented as opaque blogs of file data



Abstract Representations

 Cheetah
– Templating plugin based on the Cheetah engine
– Raw templating can be quite foreign to users

 Task-specific Plugins
– Host Management
– Webserver Management
– User Management
– Other tasks



Task-Specific Plugins

 Analogous to “Administrative Applications” mentioned previously
 Substantially better than standalone systems

– Can use the configuration management system for all of the grungy 
details
• performance of configuration changes
• central data repository
• access to other specification data

– The generation target moves from imperative logic to declarative 
specification
• The admin app only needs to describe what end state is desired

– These two factors strip out many of the factors that make these 
applications non-portable



Deployment Overview

 Main deployment process occurred from December 2004 – April 2005
 Progress by machine categories

– Clusters
– Workstation environment
– Servers

• Most complicated
• Still not quite complete

 The design of Bcfg2 was substantially altered during this process
– More emphasis on reporting
– Driven by administrator needs/complaints



Complexity Issues

 Administrators try to KISS when possible
– Particularly with new tools
– Particularly on servers
– and so forth

 Sophisticated solutions are not initially attractive
– Once confidence in the tool develops, users are ready to try more 

complicated things
– Using these initially tends to be a non-starter

 In large groups, a range of needs is evident
– Different tasks require different configuration patterns
– The cost of manual actions is quite different

• Clusters
• Workstations
• Servers

 As users become more comfortable with tools, their assessment of utility 
changes
– To the point that different users can't communicate effectively



Experiences

 The deployment process was like herding cats
– Different administrators got comfortable with Bcfg2 at different rates
– This meant that a large range of comfort in Bcfg2 existed throughout 

the process
 The incremental approach to complexity helped substantially

– Administrators started with very literal representations of the 
configuration

– These literal representations made the tool very predictable
– Aided in the scratch and sniff test

 After the basic configuration issues were addressed a second pass for 
complex configuration processes was made
– We focused on time-consuming aspects of system reconfiguration

• Web server configuration
• Host management
• User management



Conclusions

 The user model question is far from answered
 Supporting a variety of methods and representations is the only way to 

make progress
– So that tools are usable in a variety of environments
– So that users find tools intuitive

 Adaptive approaches allow a reasoned decision about desired complexity 
level to be made
– You can change your mind
– Initial focus is major issues
– Optimization comes later

 Bcfg2 is worth looking at
– I might as well come out and say it
– It is designed as a general tool
– If it won't work for you, we would love to hear why



Status

 Bcfg2 is publically released
 In use outside of ANL
 Documentation exists, and is constantly being improved
 User feedback is constantly resulting in model and feature improvements
 We need more feedback



Future Work

 While this design was practical much work remains
 The data store needs improvements

– Current plugins have discrete repositories
– No coherent data overlap is possible
– Everything is interrelated

 Plugins need some sort of user interface
– Network Transparency
– Authentication

 A generic approval and delegation is needed for several plugins
 Inter-server synchronization



Questions

 ???

 http://www.mcs.anl.gov/cobalt/bcfg2/
– Documentation
– Papers and Presentation
– Code
– Mailing list archives

http://www.mcs.anl.gov/cobalt/bcfg2/

