Bcefg2: Use, Care, and Feeding

Narayan Desai

desai@mcs.anl.gov
January 7, 2005

mes




Outline

* Bcfg2 Overview
* Client Usage
* Server Architecture

* Common Messages and Problems

« Examples



Bcefg2 Overview - Features

» metadata based client configurations
* change detection

* 1mproved server performance

« 2 way configuration verification
 sparse configuration installation

* probes

* dry-run mode

* profiles



Bcefg2 Overview — Benefits

Changes are made in a single location
Configuration fragments are composeable

Machine functionality can be easily duplicated for testing or
upgrades

Configuration specifications are designed to be reusable

« Each decision is only encoded once

Installation process 1s automated
« Services are automatically restarted (when possible)

« Complete service configurations are rechecked whenever touched (needed
on redhat)



Bcfg2 Overview - Architecture

 (Client/ Server
o “dumb” client

 almost no client side processing
« minimizes client bootstrap dependencies
* logic 1s server side

 served configuration describes complete machine configuration
* no client race condition

« can completely rebuild machines without locate state dependence



Bcig2 Overview — Configuration Process

Client requests probes

Server provides a list of probes appropriate to <client>
Client probes and uploads results

Server routes probe results to generators as needed
Client requests configuration

Server generates and serves the configuration (described 1n detail
later)

Client inventories, locates configuration updates, and makes them

* Client loops while making progress
Client determines local state (clean/dirty) and uploads 1t
Server logs last seen client state

mes



Bcfg2 Overview - Integration

* Run from the systemimager miniroot

All systems up to date upon build completion
latest befg2 client is used
client is run in “build mode”

can specify client profile



Bcfg2 Overview — Upcoming Features

* More toolsets
« Redhat support (completed)
* Solaris support
* Gentoo support
* Improved statistics support
 automatically locate configuration problems
* Templating module
« remove the need for befg2 extension for some complex tasks

* 1mprove probe reusability

« provide compatibility with high-level reasoning systems

* (Change management support
* Revision Control

» Change ingress control mechanism

mes



Bcetg2 — Useful Client Options

-v: verbose operation

-d: debugging info (add information about decision making
processes during the client run)

-n: dry-run mode (no changes are made to the client)
-c: cache a copy of the served configuration
-b: only 1nstall specified bundle

-q: only check package versions, do not check checksums (this
options substantially speeds up execution and is automatically
used 1n build mode)

-B: run in build mode (do not check file checksums, and do not
enable services)

more documented 1n the man page

mes



Client Usage Scenarios

 Workstation environment
 Run in build miniroot
e Run on boot

* Run through cron

* C(Cluster environment
e Run 1n build miniroot
* Run on boot
« Limited scope run during job startup and completion
* Deliberate change flushing runs between jobs
* Run through cron on non-scheduled nodes



Example Runs

* Client already correct (no changes made)

* Client misconfigured
* Reconfiguration possible — end result clean state
« Reconfiguration impossible — end result dirty state

 Extra configuration present — not currently removed



Bcfg2 Server - Functions

Store metadata and configuration repository

* Provide classing mechanism for client description

Provide configurations to clients

Track current state of all clients

Coherently cache repository data
« Uses fam for update

* No server restarts are required for configuration changes



Bcefg2 Server - Repository

* Location determined in /etc/befg2.conf
« Metadata and other single files in <repo>/etc

» Each generator requiring a file repository has its own directory
* 1e, <repo>/<generator>

* Each generator repository i1s structured for its task (discussed later)



Bcfg2 Server - Metadata

* Defines all information about clients

* Hostname — hostname

* Image — base distribution

* C(lasses — set of functional classes

» Attributes — modifications to classes
 Profiles — set of classes and attributes

 stored in <repo>/etc/metadata.xml

* Whole configurations (minus host-specific information)
encapsulated in profiles

* Default configurations added for new hosts upon initial connection



Bcefg2 Server — Configuration Generation

Client requests configuration
Server performs metadata lookup

Server queries structures for abstract configuration fragments

 Abstract configuration fragments are configuration elements grouped into
dependent groups (ie, bundles) without client specific information

For each entry in all AC fragment, a generator 1s called to bind
element information (package version, cf contents, etc) into the
configuration

 Failures (which can occur due to configuration repository mistakes) logged

The bound configuration 1s marshalled into XML, and served to
the client

Configuration generation time 1s logged

mes



Bcefg2 Server - Structures

* Generate abstract configuration fragments

* Two included with stock distribution (using a standard API)
* Bundler
Implements dependent groupings of configuration information
— ssh bundle
Allows class specific additions of configuration (image specific, etc)
* Base
Independent groupings of configuration information
— the pile of packages needed to make machines work
Allows class specific additions of configuration



Bcfg2 Server - Generators

» Used to bind specific information into client configuration

Configuration element source

* Can implement any site-specific policy as needed

Imperative encoding of decisions about site configuration

* Enabled in /etc/befg2.conf

* Several generators included in standard distribution

Cfg — configuration file repository

Pkgmgr — available packages

Servicemgr — service to client mappings

Chiba — generate files for chiba

SSHbase — manage ssh keys (including public key export)
Debconf — manage debconf settings

Accounts — setup accounts for chiba

mes



Generators - Cig

Configuration file repository (similar to cfg-get)
based in <repo>/Cfg
File repositories based using relative paths
* 1e file /path/to/file repository will be in <repo>/Cfg/path/to/file
Repositories can contain base files or deltas

* base files are complete instances
* deltas are diffs
* each can be class/image/hostname/attribute specific

Most specific basefile 1s used
More specific deltas are applied
Cat file support implemented, diff support can be

mes



Generators - SSHBase

» Keeps public and private for all hosts

* Builds new keys for any new host that connects

* Pre-generates known hosts file when new keys are added

* Adds a host-specific line for localhost when known hosts fetched
« Reads external public key definitions from *.static

* Pre-generated ssh_known_host file can be exported to other
repositories as <system>.static



Generators - Pkgmgr/Servicemgr

 State defined 1n a single XML file
* Definitions are scoped based on metadata classes



Bcefg2 Server - Logging

* Normal run:
* Generated config for ccstol in 0.2335436 seconds
* Client 140.221.67.51 reported state clean
 Failed run:
* Client 140.221.67.51 reported state dirty
» Configuration generation failures
 Failed to FetchRecord Service:mpd
 Failed to FetchRecord ConfigFile:/etc/passwd
* Generator Failure

» Unexpected failure in BindStructure
Will include traceback

Mail it to me



Bcefg2 Server — Repository Tasks

» Updating a package version
 place in package repository
 update entry in <repo>/Pkgmgr/<image>.xml
« Automatically done for debian

* Rick has a script in testing for redhat

* Changing a configuration file
 (Global change
put new file in <repo>/Cfg/path/to/file/file
 Class specific change
put new file in <repo>/Cfg/path/to/file/file.C<priority> class name
* Host specific change
put new file in <repo>/Cfg/path/to/file/file. H <hostname



Bcefg2 Server — Repository Tasks (cont)

* Creating a new bundle
 Put configuration elements in repository
+ Config files in Cfg/
 Package definitions in Pkgmgr/

» Service definitions 1n etc/services.xml

Write new bundle

Associate bundle with client in <repo>/etc/metadata.xml
Run ValidateBcfg2Repo

Reconfigure client



Bcefg2 Server — XML Validation

* Bcfg2 includes schema definitions for all xml files used 1n the
repository

« ValidateBcfg2Repo will validate each file in the repository against
the schemas

* This command can safely be run at any time
 This will catch typos
* Should be run any time xml files are modified by hand



