
Bcfg2: Use, Care, and Feeding

Narayan Desai
desai@mcs.anl.gov

January 7, 2005



Outline
• Bcfg2 Overview

• Client Usage

• Server Architecture
• Common Messages and Problems

• Examples



Bcfg2 Overview - Features
• metadata based client configurations

• change detection

• improved server performance

• 2 way configuration verification

• sparse configuration installation

• probes

• dry-run mode

• profiles



Bcfg2 Overview – Benefits
• Changes are made in a single location

• Configuration fragments are composeable

• Machine functionality can be easily duplicated for testing or 
upgrades

• Configuration specifications are designed to be reusable
• Each decision is only encoded once

• Installation process is automated
• Services are automatically restarted (when possible)

• Complete service configurations are rechecked whenever touched (needed 
on redhat)



Bcfg2 Overview - Architecture
• Client / Server 

• “dumb” client
• almost no client side processing

• minimizes client bootstrap dependencies

• logic is server side
• served configuration describes complete machine configuration

• no client race condition

• can completely rebuild machines without locate state dependence



Bcfg2 Overview – Configuration Process
• Client requests probes

• Server provides a list of probes appropriate to <client>

• Client probes and uploads results

• Server routes probe results to generators as needed

• Client requests configuration

• Server generates and serves the configuration (described in detail 
later)

• Client inventories, locates configuration updates, and makes them
• Client loops while making progress

• Client determines local state (clean/dirty) and uploads it

• Server logs last seen client state



Bcfg2 Overview - Integration
• Run from the systemimager miniroot

• All systems up to date upon build completion

• latest bcfg2 client is used

• client is run in “build mode”

• can specify client profile



Bcfg2 Overview – Upcoming Features
• More toolsets

• Redhat support (completed)

• Solaris support

• Gentoo support

• Improved statistics support
• automatically locate configuration problems

• Templating module
• remove the need for bcfg2 extension for some complex tasks

• improve probe reusability

• provide compatibility with high-level reasoning systems

• Change management support
• Revision Control

• Change ingress control mechanism



Bcfg2 – Useful Client Options
• -v: verbose operation

• -d: debugging info (add information about decision making 
processes during the client run)

• -n: dry-run mode (no changes are made to the client)

• -c: cache a copy of the served configuration

• -b: only install specified bundle

• -q: only check package versions, do not check checksums (this 
options substantially speeds up execution and is automatically 
used in build mode)

• -B: run in build mode (do not check file checksums, and do not 
enable services)

• more documented in the man page



Client Usage Scenarios
• Workstation environment

• Run in build miniroot

• Run on boot

• Run through cron

• Cluster environment
• Run in build miniroot

• Run on boot

• Limited scope run during job startup and completion

• Deliberate change flushing runs between jobs

• Run through cron on non-scheduled nodes



Example Runs
• Client already correct (no changes made)

• Client misconfigured
• Reconfiguration possible – end result clean state

• Reconfiguration impossible – end result dirty state

• Extra configuration present – not currently removed



Bcfg2 Server - Functions
• Store metadata and configuration repository

• Provide classing mechanism for client description

• Provide configurations to clients

• Track current state of all clients

• Coherently cache repository data
• Uses fam for update

• No server restarts are required for configuration changes



Bcfg2 Server - Repository
• Location determined in /etc/bcfg2.conf

• Metadata and other single files in <repo>/etc

• Each generator requiring a file repository has its own directory 
• ie, <repo>/<generator>

• Each generator repository is structured for its task (discussed later)



Bcfg2 Server - Metadata
• Defines all information about clients

• Hostname – hostname

• Image – base distribution

• Classes – set of functional classes

• Attributes – modifications to classes

• Profiles – set of classes and attributes

• stored in <repo>/etc/metadata.xml

• Whole configurations (minus host-specific information) 
encapsulated in profiles

• Default configurations added for new hosts upon initial connection



Bcfg2 Server – Configuration Generation
• Client requests configuration

• Server performs metadata lookup

• Server queries structures for abstract configuration fragments
• Abstract configuration fragments are configuration elements grouped into 

dependent groups (ie, bundles) without client specific information

• For each entry in all AC fragment, a generator is called to bind 
element information (package version, cf contents, etc) into the 
configuration
• Failures (which can occur due to configuration repository mistakes) logged

• The bound configuration is marshalled into XML, and served to 
the client

• Configuration generation time is logged



Bcfg2 Server - Structures
• Generate abstract configuration fragments

• Two included with stock distribution (using a standard API)
• Bundler

• Implements dependent groupings of configuration information

– ssh bundle

• Allows class specific additions of configuration (image specific, etc)

• Base

• Independent groupings of configuration information

– the pile of packages needed to make machines work

• Allows class specific additions of configuration



Bcfg2 Server - Generators
• Used to bind specific information into client configuration

• Configuration element source

• Can implement any site-specific policy as needed
• Imperative encoding of decisions about site configuration

• Enabled in /etc/bcfg2.conf

• Several generators included in standard distribution
• Cfg – configuration file repository

• Pkgmgr – available packages

• Servicemgr – service to client mappings

• Chiba – generate files for chiba

• SSHbase – manage ssh keys (including public key export)

• Debconf – manage debconf settings

• Accounts – setup accounts for chiba



Generators - Cfg
• Configuration file repository (similar to cfg-get)

• based in <repo>/Cfg

• File repositories based using relative paths
• ie file /path/to/file repository will be in <repo>/Cfg/path/to/file

• Repositories can contain base files or deltas
• base files are complete instances

• deltas are diffs

• each can be class/image/hostname/attribute specific

• Most specific basefile is used 

• More specific deltas are applied

• Cat file support implemented, diff support can be



Generators - SSHBase
• Keeps public and private for all hosts

• Builds new keys for any new host that connects

• Pre-generates known_hosts file when new keys are added

• Adds a host-specific line for localhost when known_hosts fetched

• Reads external public key definitions from *.static

• Pre-generated ssh_known_host file can be exported to other 
repositories as <system>.static



Generators - Pkgmgr/Servicemgr
• State defined in a single XML file

• Definitions are scoped based on metadata classes



Bcfg2 Server - Logging
• Normal run:

• Generated config for ccsto1 in 0.2335436 seconds

• Client 140.221.67.51 reported state clean

• Failed run:
• Client 140.221.67.51 reported state dirty

• Configuration generation failures
• Failed to FetchRecord Service:mpd

• Failed to FetchRecord ConfigFile:/etc/passwd

• Generator Failure
• Unexpected failure in BindStructure

• Will include traceback

• Mail it to me 



Bcfg2 Server – Repository Tasks
• Updating a package version

• place in package repository

• update entry in <repo>/Pkgmgr/<image>.xml

• Automatically done for debian

• Rick has a script in testing for redhat

• Changing a configuration file
• Global change

• put new file in <repo>/Cfg/path/to/file/file

• Class specific change

• put new file in <repo>/Cfg/path/to/file/file.C<priority>_class_name

• Host specific change

• put new file in <repo>/Cfg/path/to/file/file.H_<hostname



Bcfg2 Server – Repository Tasks (cont)
• Creating a new bundle

• Put configuration elements in repository 

• Config files in Cfg/

• Package definitions in Pkgmgr/

• Service definitions in etc/services.xml

• Write new bundle

• Associate bundle with client in <repo>/etc/metadata.xml

• Run ValidateBcfg2Repo

• Reconfigure client



Bcfg2 Server – XML Validation
• Bcfg2 includes schema definitions for all xml files used in the 

repository

• ValidateBcfg2Repo will validate each file in the repository against 
 the schemas

• This command can safely be run at any time

• This will catch typos

• Should be run any time xml files are modified by hand


