
Directing Change with Bcfg2

Narayan Desai, Rick Bradshaw, 
Joey Hagedorn, Cory 
Lueninghoener

Narayan Desai

desai@mcs.anl.gov

LISA06

December 7th, 2006



2

Changes...

 Are unavoidable in today's networks
– User demands
– Security patches
– Integration with externally controlled systems

 Network sizes continue to grow
 Service scale continues to increase
 Security continues to be an ongoing issue
 Complexity is not going away



3

Supporting Change

 Three main factors
– Low per-change cost
– Fine-grained deployment control
– Representing changes over time

 Configurations aren't static, so tools should not treat them as if they are
 Goals:

– Robust client reconfiguration workflows
– Understanding how configurations change and propagate
– Controlling change staging and deployment



4

Bcfg2

 Client/Server architecture
– Server specification describes our desired configuration
– Client configuration state information reflects reality
– Comparison yields a configuration specification accuracy metric

 Group-based description mechanism
 Client-side state feedback
 Mature software
 In production use across many sites

– Research, Academia, Corporate, Finance



5

Change Support Requirements for Tools

 Time as an independent variable
– Without this, administrators can only interact with the current 

specification state
 Client-side state feedback

– Needed for understanding change propagation
– Must be time-sensitive
– Coordinated with specification

 Not tool specific in any way
– We have implemented this with bcfg2, but other tools can implement it 

just as easily



6

Constructing Time as an Independent Variable

 Specification Revision Control (with subversion)
– Specification is put under revision control
– Yields a per-repository revision unique identifier
– Server can be pegged at a given revision

 Server-side Modifications
– Revision identifier tracking
– Per-client configuration tagging

 Client-side Modifications
– Statistics tagging with source identifier

 Reporting system modifications
– Reflecting identifier in system state summaries

 Net result is time correlated feedback, from specification to deployment



7

New Capabilities

 Opened up a number of exciting new possibilities
– Fine-grained Change Management
– Change Propagation Analysis
– Change Orchestration

 Allowed us to think about the process differently

This approach is applicable to any tool!



8

Change Management

 Control change creation and deployment individually
– Administrators can commit to the repository at any time
– Server consumption of the repository controlled independently

 Allows reliable implementation of change windows
 Supervised change performance



9

Change Analysis

 Correlation of specification consumption and deployment allows 
observation of change propagation

 Understand change patterns
– While systems change often and why
– Patterns of client updates

 Detailed change reporting



10

Change Orchestration

 Describing a complete workflow is now possible
– Put each of the states into the specification subversion repository
– Describe preconditions for each state
– Deliberately advance the state when changes are sufficiently 

propagated
 Workflow guidance is possible, as well as execution

– The list of all failing predicates => tasks that remain in a step
– The deployment process can be performed in as manual or automatic 

fashion as desired, with automatic bookkeeping in any case
 Enables “fire and forget” reconfiguration tasks



11

Results

 This technique can be applied to any configuration tool, regardless of overall 
architecture

 It provides an explicit representation of the overall processes we all manually 
track

 Everything is now observable

Questions?


