
Directing Change with Bcfg2

Narayan Desai, Rick Bradshaw, 
Joey Hagedorn, Cory 
Lueninghoener

Narayan Desai

desai@mcs.anl.gov

LISA06

December 7th, 2006



2

Changes...

 Are unavoidable in today's networks
– User demands
– Security patches
– Integration with externally controlled systems

 Network sizes continue to grow
 Service scale continues to increase
 Security continues to be an ongoing issue
 Complexity is not going away



3

Supporting Change

 Three main factors
– Low per-change cost
– Fine-grained deployment control
– Representing changes over time

 Configurations aren't static, so tools should not treat them as if they are
 Goals:

– Robust client reconfiguration workflows
– Understanding how configurations change and propagate
– Controlling change staging and deployment



4

Bcfg2

 Client/Server architecture
– Server specification describes our desired configuration
– Client configuration state information reflects reality
– Comparison yields a configuration specification accuracy metric

 Group-based description mechanism
 Client-side state feedback
 Mature software
 In production use across many sites

– Research, Academia, Corporate, Finance



5

Change Support Requirements for Tools

 Time as an independent variable
– Without this, administrators can only interact with the current 

specification state
 Client-side state feedback

– Needed for understanding change propagation
– Must be time-sensitive
– Coordinated with specification

 Not tool specific in any way
– We have implemented this with bcfg2, but other tools can implement it 

just as easily



6

Constructing Time as an Independent Variable

 Specification Revision Control (with subversion)
– Specification is put under revision control
– Yields a per-repository revision unique identifier
– Server can be pegged at a given revision

 Server-side Modifications
– Revision identifier tracking
– Per-client configuration tagging

 Client-side Modifications
– Statistics tagging with source identifier

 Reporting system modifications
– Reflecting identifier in system state summaries

 Net result is time correlated feedback, from specification to deployment



7

New Capabilities

 Opened up a number of exciting new possibilities
– Fine-grained Change Management
– Change Propagation Analysis
– Change Orchestration

 Allowed us to think about the process differently

This approach is applicable to any tool!



8

Change Management

 Control change creation and deployment individually
– Administrators can commit to the repository at any time
– Server consumption of the repository controlled independently

 Allows reliable implementation of change windows
 Supervised change performance



9

Change Analysis

 Correlation of specification consumption and deployment allows 
observation of change propagation

 Understand change patterns
– While systems change often and why
– Patterns of client updates

 Detailed change reporting



10

Change Orchestration

 Describing a complete workflow is now possible
– Put each of the states into the specification subversion repository
– Describe preconditions for each state
– Deliberately advance the state when changes are sufficiently 

propagated
 Workflow guidance is possible, as well as execution

– The list of all failing predicates => tasks that remain in a step
– The deployment process can be performed in as manual or automatic 

fashion as desired, with automatic bookkeeping in any case
 Enables “fire and forget” reconfiguration tasks



11

Results

 This technique can be applied to any configuration tool, regardless of overall 
architecture

 It provides an explicit representation of the overall processes we all manually 
track

 Everything is now observable

Questions?


