
A Case Study in Configuration
Management Tool Deployment

Narayan Desai, Rick Bradshaw, Scott Matott, Sandra Bittner, Susan Coghlan,
Rémy Evard, Cory Lueninghoener, Ti Leggett,

John-Paul Navarro, Gene Rackow, Craig Stacey, and Tisha Stacey
– Mathematics and Computer Science Division, Argonne National Laboratory

ABSTRACT

While configuration management systems are generally regarded as useful, their deployment
process is not well understood or documented. In this paper, we present a case study in configuration
management tool deployment. We describe the motivating factors and both the technical considerations
and the social issues involved in this process. Our discussion includes an analysis of the overall
effect on the system management model and the tasks performed by administrators.

Introduction

System administration is, at its heart, the profes-
sion of helping people to use computers. System
administrators are domain experts who provide
impedance matching between users’ desires and com-
puters. The expertise of system administrators is mani-
fested in their choices of computer hardware and soft-
ware and of system configuration. Environments are
constantly changing; the need for timely software
updates and frequent configuration changes has never
been greater. Configuration management tools provide
different levels of automation and representational
models, but all have the same basic goal: to help in the
system configuration process.

Nevertheless, adoption of configuration manage-
ment systems has lagged substantially behind tool
development. The explanation rests largely with the
up-front cost of building an adequate representation of
an environment, but the problem can also be traced to
the requirement that administrators change their
administration methods. This change makes the con-
figuration management adoption process quite costly
and time consuming.

The Mathematics and Computer Science Divi-
sion of Argonne National Laboratory consists of
nearly 200 researchers, programmers, students, and
visitors. The division is home to several hundred
workstations, three large clusters, and other high-per-
formance computing resources. One group maintains
this diverse set of resources. Recognizing the need for
more efficient management mechanisms, members of
the system staff have contributed to a number of sys-
tem management research efforts [6, 4, 7].

In the summer of 2004, the group decided to
deploy Bcfg2 [3], a configuration management tool
developed in house. As of May 2005, much of the
deployment has been completed. Bcfg2 manages the
general infrastructure and two clusters and is being
deployed on another cluster and on an IBM Blue

Gene/L system. The general infrastructure is extremely
complex and involves the largest number of adminis-
trators, hence; we focus on this particular deployment.

This paper documents our experiences and
lessons learned in adopting a configuration manage-
ment tool. We discuss the goals that prompted this
adoption and describe the deployment process in terms
of both technical and – more important – social issues.
The adoption of Bcfg2 has dramatically changed the
procedures and model used by system administrators
in the division. We discuss these outcomes in detail.

One cannot talk about configuration management
without including technical aspects that are likely tool-
specific. As the same time, we believe that many of
the issues we faced and benefits we reaped in deploy-
ing Bcfg2 are intrinsic to the adoption of any configu-
ration management system. Where possible, we avoid
the discussion of Bcfg2-specific topics.

Since configuration management has been recog-
nized as a problem for quite some time [4, 9], numerous
tools have been written to address this task. Many of the
tools, in particular LCFG [1] and Quattor [8], can cause
large changes in management methods; our discussion
of Bcfg2 [3] is especially applicable to such tools.
Other tools, such as SystemImager [5] and CFEngine
[2], have a model that is not substantially different from
manual system administration; for these tools our dis-
cussion of deployment issues is less applicable.

Architecture

In this section, we describe the overall goals that
motivated our adoption of Bcfg2. We also briefly
describe Bcfg2, in order to provide an understanding
of the outcomes we achieved.

Goals

The bulk of the benefits we hoped to achieve
with better configuration management were efficiency
related. We were spending an inordinate amount of

19th Large Installation System Administration Conference (LISA ’05) 39



A Case Study in Configuration Management Tool Deployment Desai, et al.

time performing software upgrades and applying secu-
rity patches. In partial response to this problem, we
found ourselves faced with the deployment of a new
base operating system, Debian Sarge. This occasion
provided an ideal opportunity to add a new configura-
tion management system into the environment.

We wanted a centralized location where all con-
figuration information for all clients could be stored
and coordinated. This requirement raised a variety of
expressivity issues. We wanted all aspects of the con-
figuration specification to be as terse as possible. That
is, we wanted to express all required configurations in
a way that minimized redundancy in the specification.
Similarly, we wanted configuration changes to be made
in as simple a way as possible. For example, adding a
software upgrade to all systems or uniformly changing
the contents of a configuration file should be trivial.

We also wanted a high-level interface into the
configuration management that allowed configuration
specification based on machine role. For example, it
should be easy to ask for another instance of a given
role, like a web server.

Another important goal was to eliminate config-
uration state local to clients. That is, all machines
should match their configuration specification. Once
no local configuration exists, no local configuration
data will be lost in the event of a machine rebuild.
Adherence to this goal enables machines to be trivially
rebuilt. Furthermore, once the configuration specifica-
tion contains all configuration directives needed to
produce a goal, this goal can be replicated.

Finally, we wanted good practices encoded in the
configuration management tool. The tool should per-
form operations in the safest manner possible. It
should also make every attempt to ensure that new
configuration specifications are activated.

Bcfg2 Overview
While the Bcfg2 architecture is not the main

focus of this paper, several details are required to
understand our deployment. Bcfg2 has a client-server
architecture. The server is responsible for building
configurations for clients, based on a global configura-
tion specification. This specification contains high-
level directives for clients, referred to as the metadata,
and a set of configuration rules that can be used with
the metadata to produce literal client configurations.
That is, they contain information that needs no further
processing for client use. These configurations are
also assumed to be comprehensive; they contain infor-
mation for all aspects of client configuration. For
example, a software package or service that is active
on a client will be included in its configuration. Any
installed configuration entities not listed in the config-
uration are flagged as ‘‘extra.’’ The Bcfg2 client uses
heuristics to discover this ‘‘extra’’ configuration.

The Bcfg2 client connects to the server and
downloads its configuration. It then inventories the

local system and compares this inventory to the con-
figuration specification. Any discrepancies found in
this process are flagged for later correction. Next, the
Bcfg2 client runs its heuristics to find extra configura-
tion. Anything located in this pass is similarly flagged
for later correction. After the detection work is done,
the Bcfg2 client rectifies any conditions previously
found. This behavior is tunable; dry-run and extra con-
figuration removal modes are available.

Once the client has completed operations, it
uploads statistics to the server. The information
includes the overall machine state (clean or dirty) and
lists of the failing and modified configuration entries.
This information is stored on the server and can be
used to generate nightly reports about the overall state
of the network and its correspondence to the configu-
ration specification.

Deployment

Deploying Bcfg2 in our environment took a sub-
stantial amount of time. Our experiences since its
deployment, however, have more than justified this
investment. In this section we describe the technical
and social issues involved in the process. Following
this, we discuss various improvements to the adminis-
trative process enabled by this deployment.

Technical Deployment
Deploying Bcfg2 took approximately four

months of work performed primarily by one person.
As is frequently the case with systems like this, the
first 90 percent of the work was completed in the first
six weeks, while numerous small issues were resolved
over the course of the next 10 weeks.

Deployment was initially undertaken as part of a
base OS upgrade, moving from Redhat 7.3 to Debian
Sarge. We chose this occasion because our previous
experience with a mid-stream switch to Bcfg1 had
proved problematic. Basically, systems managed in an
ad hoc fashion tend to have a lot of configuration
inconsistencies. Ensuring that these machines can be
cleanly rebuilt by using a configuration management
tool can be quite difficult. The introduction of a con-
figuration management tool is possible but must be
carefully performed. In contrast, the deployment of
new machines can be easily done, as the deployment
process is available for examination.

The first goal was to get an automated build sys-
tem working properly. Our environment has two main
types of machines: workstations and servers. We
decided to use SystemImager [5] for initial client
installations, calling Bcfg2 before initial reboot. This
approach ensures that machines come up properly
configured and secure upon first reboot. Two profiles
for Bcfg2 were created and made selectable from the
initial SystemImager boot menu.

Creating the configuration profiles for workstations
and servers was not difficult. This process consisted of

40 19th Large Installation System Administration Conference (LISA ’05)



Desai, et al. A Case Study in Configuration Management Tool Deployment

specifying all configuration aspects of workstations,
including all environment-specific modifications. A
workstation configuration had been created for Bcfg1
and was easily migrated to Bcfg2. Had this not been
the case, the creation of an initial configuration would
have taken a few days. This process consists of
recording all important aspects of configuration in the
central specification. Aspects can be quickly incorpo-
rated into the specification. Our workstation configu-
ration initially consisted of nearly 1,100 configuration
aspects. Once this process was completed, we con-
structed a server configuration as a subset of the work-
station configuration, since many of the configuration
aspects of these classes are similar.

Once a simple build mechanism was in place, we
rebuilt administrator desktops and some test servers
using the new image and management system. In one
case, the administrator ran with two desktops concur-
rently for several weeks, in order to find subtle aspects
of needed workstation configurations not yet included
in the workstation profile. The process paid a big divi-
dend; by the time ‘‘normal’’ users started using work-
stations based on the new build, few configuration
problems remained.

After the new system became full-featured and
stable enough, we started to allow users to request
machines with it. These early users provided the
remainder of input regarding missing configuration
from the new workstations. After several of these users
had successfully used new-build machines for some
time, we began upgrades for the rest of the division.

In this stage the simplified build process was par-
ticularly beneficial. Three people performed most of
the workstation rebuilds. The initial target was to com-
plete most machine upgrades in four weeks. Desktop
rebuilds were a simple process. Each machine has a
local scratch disk, which gets cleaned upon rebuild.
Users save any needed data stored there. Once this
data is saved, rebuilds can occur at any time and take
30 minutes. All user interactions occur in the first
three minutes of the process; the rest of the process
can complete unattended. In the course of a month,
nearly 80 desktop machines were upgraded.

After completing the workstation upgrades, we
shifted our focus to the server machines. While the
server profile had been used to build new machines,
many existing servers remained unmanaged by Bcfg2.
As these servers were replaced, we encountered a whole
new set of issues relating to tool deployment – issues
that were generally related not to tool completeness but
rather to the way configuration changes were propa-
gated to machines. For example, certain machines were
deemed too important to perform automatic changes.

This realization necessitated a major change in
our deployment strategy. Initially, all machines had
called Bcfg2 each night, and all required changes were
performed. On workstations, this model was good

enough; while these machines are important, they
don’t cause congestive failures when problems occur.
For servers, however, we needed to run Bcfg2 in dry-
run mode each night and send its state to the relevant
administrator. While examining this issue, we also
realized that cluster nodes should run Bcfg2 in yet
another way: between jobs, in order to prevent inter-
ference with user calculations.

These experiences shifted our focus from a tool-
based one to an administrator experience-based one.
Initially, we were quite concerned about tool correct-
ness and completeness. As Bcfg2 proved itself and
bugs were fixed, our confidence in its correctness
greatly increased. Also, our workstation configuration
proved to be as complicated as any other in our envi-
ronment, so the configuration specification process for
our servers was fairly simple.

Our change in focus amounted to the realization
that the tool client-side functionality was not sufficient.
The tool must also provide enough information for
administrators to make effective decisions as conveniently
as possible. Moreover, it must supply configuration state
information in a convenient way. From this point onward,
nearly all development focused on an information presen-
tation system to provide a sort of scoreboard for the entire
network and its configuration state.

Administrative Improvements
The deployment culminated with the implemen-

tation of a robust reporting infrastructure. This infra-
structure provides periodic information about the cur-
rent configuration state of all clients, the time of their
last contact with Bcfg2, and a list of pending configu-
ration changes. The information allows administrators
to observe the logic employed by Bcfg2 during normal
operations. This single factor had more impact on
administrator trust in Bcfg2 than all others.

The reporting system results in emails, Web
pages, or RSS feeds that contain information about
either specific hosts or the overall status of all Bcfg2
clients. Administrators can subscribe to reports about
particular clients of interest, or all systems, enabling the
detection of two common problems: clients not receiv-
ing configuration updates and clients unable to perform
needed configuration updates. Administrators can also
observe the operations taken by Bcfg2 over time.

These reports create a picture of the entire net-
work that gives discussions about configuration a basis
in fact. The reports greatly improved our understanding
of our systems, their configuration, and its modification
patterns. More important, administrators grew to trust
Bcfg2, and hence allow the remainder of our network,
composed of our most important machines, to be rebuilt
and managed by Bcfg2.

Social Issues

While the technical aspects of Bcfg2 deployment
were complex, managing the social aspects of the

19th Large Installation System Administration Conference (LISA ’05) 41



A Case Study in Configuration Management Tool Deployment Desai, et al.

deployment was far more difficult. This process
occurred in an ad hoc way in our group and could have
been substantially improved had we initially known the
related considerations.

Adoption of any configuration management sys-
tem is a stressful process. Configuration management
tools affect the whole of the system management
process. All administrators are required to adopt new
processes for achieving the same tasks they already
know how to accomplish. Since such changes can
directly impact the services system administrators are
expected to provide reliably, tensions can run high.

Communication also becomes an issue, because
of the variety of perspectives held by different admin-
istrators. We found that three main factors motivated
most of our disagreements during the deployment
process: trust in the tool, a belief in the benefits pro-
vided by the tool, and the perception of a complexity
increase or decrease caused by the tool.

Tr u s t is certainly the most important of these fac-
tors. If a tool remains untrusted by administrators, it
will never be substantially used in their environment.
The trust-earning process certainly varies from person
to person, but we can discuss the issues we observed.
In general, as users gain more experience with the con-
figuration management tool, they begin to trust it
more. Two aspects of trust are important. The first is
that the tool can properly represent any configuration
state that the administrators may desire. This problem
is largely technical and is solved as the administrator
gains experience and familiarity with the tool. The sec-
ond aspect of trust is harder to earn. Administrators
must trust that the tool will perform the specified
changes appropriately. This sort of trust is earned only
through a long period of experience running the tool
and observing the resulting configuration changes. The
process can be accelerated, however, through the expo-
sure of tool decision information. If administrators can
easily examine the decision process each time they run
the tool, then their trust will grow more rapidly.

The second factor that guides the adoption
process is the perception of benefit. All administrators
in our group were already overburdened with tasks, so
expecting them to spend time learning something new
was difficult. If a management tool didn’t present a
clear case for rapid improvement in efficiency, learn-
ing about it wouldn’t be given high priority – and
rightly so. Lack of time to experiment with a tool
clearly has a detrimental effect on overall trust in the
tool. Hence, adoption can be greatly hampered simply
because of a lack of information. This factor can be
minimized, however, by providing improvements that
quickly benefit all administrators. Easy-to-adopt solu-
tions to common problems provide a good incentive to
try out a tool.

The third factor in the adoption of configuration
management systems is the perception of complexity.

The complexity increase may be minor; but to users
unfamiliar with particular tool, this added complexity
will be unattractive because it will lead to decreased
efficiency for some tasks. Over time, as the adminis-
trators become more familiar with the tool, the added
cost of this complexity is reduced. Once the deploy-
ment is complete, complexity is compartmentalized,
as administrators can focus on their task and ignore
others. For example, an administrator responsible for
web servers can focus on apache configuration without
worrying about upgrading ssh.

All of these factors are heavily interrelated.
Throughout the deployment process, their influence
was felt through each of the issues we encountered.
Disagreements

Throughout the process of tool adoption, each
administrator in the group internalizes more information
about the new tool, building an opinion about the tool’s
value and potential use cases. Each administrator will
trust the tool to a different extent and will have different
ideas about the potential benefits to be gained and the
complexity costs involved. The following discussion
describes the different points of contention that arose in
our group. Each of the major issues is described in the
abstract, along with the factors that turned out to be
important. While we believe that these issues are repre-
sentative, the list is by no means comprehensive. People
like to argue about all sorts of issues.

• Buy-in. Initially, everyone must agree that a given
tool should be used. This issue is largely influ-
enced by the trust and comfort levels administra-
tors have with a tool, not to mention its technical
correctness. Learning how a tool works is essen-
tial, but this process can require substantial
amounts of time, especially in large groups.

• Existing investments. A working environment
typically has a sizable investment in technical
methodologies. Generally, a set of utilities has
been developed to automate particular tasks, and
a large body of institutional knowledge has
evolved around specific tools and methodologies.
Moreover, the creation of these processes and
tools usually implies an emotional investment.
Overcoming these investments without alienating
members of the group is difficult – but possible.

• Level of control. Any tool will have a funda-
mental set of assumptions or functionality that
guides its behavior. Even if the tool is reliable,
it can be difficult to convince everyone that a
change is beneficial – especially if the methods
that a proposed new tool uses to implement a
given task differ from those historically used.
This issue can be overcome only with a large
amount of empirical evidence that these meth-
ods are equivalent. As when programmers
made the initial switch to high-level languages,
administrators are accustomed to making com-
plex low-level changes to systems, rather than
using high-level specifications of functionality.

42 19th Large Installation System Administration Conference (LISA ’05)



Desai, et al. A Case Study in Configuration Management Tool Deployment

Our goal is not to diminish these concerns in any
way; in fact, all of these considerations are quite rea-
sonable. In some ways, these concerns illustrate the
core essence of system administration. That is, the
adoption of a tool that will radically affect every
aspect of system maintenance is not a decision that
should be taken lightly. Administrators, after all,
shoulder the brunt of system failures, misconfigura-
tions, and software configuration problems.

Rather, our intent is to document these concerns.
We believe we have gained a deeper understanding of
our requirements and also provided a comprehensive
vetting process. Moreover, through this documenta-
tion, we hope to aid other groups attempting the same
sort of transition.

The highest-level problem can be most easily
summarized as ‘‘buy-in.’’ Once that problem is
resolved, the tool deployment will achieve critical
mass and no longer serves as a point of contention.
Hindsight

Despite the social issues we confronted, we man-
aged to implement a configuration management sys-
tem. We attribute our success to three factors.

• Our group was predisposed to recognizing the
value of configuration management. This atti-
tude removed an important initial hurdle from
the process. Had we simultaneously needed to
convince the group of both the need and mech-
anism for configuration management, the out-
look would have been far worse.

• One administrator was involved in both the
Bcfg2 development activities and maintenance
of the division infrastructure. Without his work
as liaison, many arguments wouldn’t have car-
ried nearly the weight that they did; adoption
could have easily stalled.

• Our group is quite amicable, and not particularly
sentimental. These characteristics allowed easier
discussion of contentious subjects and the re-
placement of existing mechanisms and tools.

Even with these factors, considerable persever-
ance and evangelism were required. The outcome of
this process was in doubt throughout much of the
deployment process. At many points, administrators
did not seem to find the model compelling enough and
did not trust the tool. Fortunately, everything worked
out well in the end.
Recommendations

While there is a great amount of social variance
among groups of system administrators, we can make
several recommendations based on our experiences.

• The tool under consideration must have an
advocate who is technically respected by the
group. His role will be to assess the various
tools and select one that seems best suited to
the environment. He will also need to convince
other members of the group that the chosen tool
is the proper one.

• Administrator concerns should be addressed,
not ignored. These concerns are generally
based on experience and reflect potential tech-
nical issues that could occur later. Once all con-
cerns have been addressed, the group will more
readily accept the tool into daily operations.

• Tool advocacy will be most compelling when
improvements mentioned are useful in the short
or medium term. Long-term improvements,
while desirable, do not often provide short-term
motivation. Hence, long-term benefits secure a
position on the ‘‘when we have time’’ list for
tool deployment.

Outcomes

In spite of the difficulties described above, this
project has succeeded beyond our expectations. We
have several new capabilities we could not have pre-
dicted even six months ago. All of these capabilities
have resulted from three major shifts in architecture.
First, we now have a centralized configuration specifi-
cation and statistics that allow reasoning about the
desired (and actual) configuration states of our entire
environment. Second, we now have an abstraction bar-
rier between our specifications of machine function
and the implementation of that function. This barrier
simplifies both parts of the configuration specification
and allows easier interactions. Third, several opera-
tions have been completely implemented by the con-
figuration management system, thereby reducing the
cost in time, and improving the economies of many
processes. Each of these improvements contribute to a
fundamental alteration of the management model for
our environment.

Configuration Specification

Many configuration management tools have a
centralized specification that describes the desired
state of the network. Where Bcfg2 departs from this
model is the addition of detailed statistics about client
state. The addition of these statistics to the central
specification causes what would be a static set of rules
to become a living document, automatically updated
by Bcfg2. The desired configuration and all deviations
from it are available in a central location.

The existence of a configuration oracle for an
entire network alters the administration mind-set in
that global notions of state can now be constructed.
Many data mining techniques can now be utilized.
Reports describing network configuration state,
reporting on the frequency and success of client con-
figuration processes can give a thorough picture of
unexpected client states before users are affected. Sim-
ilarly, reports automatically generated from the config-
uration specification can provide insight into current
software revisions, client functionality, and potentially
even system interdependence. Reports such as these
can prove useful for auditing purposes, the training of

19th Large Installation System Administration Conference (LISA ’05) 43



A Case Study in Configuration Management Tool Deployment Desai, et al.

new employees, and high-level descriptions of ser-
vices provided.

Function Abstraction
The configuration specification used by Bcfg2

splits information into three layers. The first, called the
metadata layer, describes function information in terms
of clients and classes. For example, the metadata may
describe a class of clients that include web server func-
tionality. The second layer, called the repository,
ascribes meaning to those descriptions. In the same
example, the repository would contain information
describing what ‘‘being a web server’’ means. The third
layer, implementing client reconfiguration operations,
receives configurations from the higher two layers and
reports on execution results. While this architecture is
Bcfg2 specific, many other complex configuration
management tools are structured in a similar way [1].

This layered specification provides an abstrac-
tion barrier isolating function assignment from func-
tion description. For example, after ‘‘being a web
server ’’ is defined, one can easily and reliably add
new web server instances. Once this operation is pos-
sible, programs that generate these changes become
possible. The addition of logic into this function deter-
mination process introduces dramatic flexibility into
the network. It also allows common function shifting
operations to be automated.

Repository semantics benefit from this abstrac-
tion barrier as well. Several simple context-specific
formats can be used to describe implementation
behavior. Similarly, scripts can be written to autogen-
erate these files, if desired. Important functionality,
ranging from automated patch integration to service
reconfiguration, can be implemented.

The client-side tool receives a literal set of con-
figuration directives from the Bcfg2 server. It com-
pares the current operational state with the desired state
and performs a set of state transitions, focusing on
safely transitioning into the goal state. The client tool
implements a small number of operations that have
been well tested. Upon completion, the Bcfg2 client
returns a set of statistics about the configuration state
of the client and modifications performed. In conjunc-
tion, these two features allow administrators to focus
on configuration goals, while allowing the client tool
to determine a reasonable set of operations to imple-
ment these goals. In this way, the client tool isolates
the upper-level users from some low-level complexity.

Tool-Based Simplification
Tools are intended to make tasks easier. Using

Bcfg2, we found three major tasks that were vastly
simplified.

System rebuilds have become trivial. Statistics
are used to verify that the configuration specification
matches the running state of the machine. After this
match has been verified, the machine can be rebuilt at
the appropriate time. The previous process consisted

of a lot of manual verification; a second system would
typically be used to verify functionality and swapped
in after everything worked.

The new machine build process has also been
greatly accelerated and simplified. Several stock pro-
files are available; the user is presented with a menu at
the beginning of the build process. No other setup is
required. Hence, non-root users are now able to build
machines quite easily.

The class-based system allows new profiles to be
easily created by composing existing function groups.
Hence, users can create new profiles whenever
needed, without shoehorning functions into the same
profile. In this fashion, the configuration specification
becomes more concise and representative of the actual
running configuration.

Each of these tasks has become easier with the
addition of a configuration management system. While
these tasks could previously be performed, more exper-
tise and privileges were frequently required. The net
impact of these changes is to empower users to be able
to perform tasks that were not previously possible.

Overall Efficiency Gains
All of these factors contributed to an impressive

increase in efficiency. We estimate that before conver-
sion three FTEs of time were spent on the mainte-
nance of our workstation and server environment.
These administrators performed a variety of tasks,
ranging from security updates to new software instal-
lation, and user-requested reconfigurations. After con-
version, between one-third and one-half of an FTE is
consumed by these activities.

The time freed by these improvements is now
available for a variety of activities. Large-scale infra-
structure improvement projects are under way. More
time for interactions with users has resulted in more
satisfying services for users and more accurate assess-
ments of user needs.

Basic administration tasks remain split across
several administrators. The use of configuration man-
agement has also reduced the cost of task distribution.
The existence of a central location for configuration
specification imposes a set of expectations that allow
administrators to find one another’s work and syn-
chronize when needed. Most simply, all administrators
are kept on the same page.

Conclusions and Future Work

Our main goal in this paper is to document the
process and results of deploying a configuration man-
agement tool. While the process is difficult, the out-
comes are worthwhile. Indeed, the outcomes we expe-
rienced have more than justified the effort involved.
While some of the difficulties faced were certainly
peculiar to our group, we feel that the ones docu-
mented here are indicative of the fundamental issues
in a change of this magnitude.

44 19th Large Installation System Administration Conference (LISA ’05)



Desai, et al. A Case Study in Configuration Management Tool Deployment

While our discussion may suggest that this task is
too difficult for many groups to consider, we strongly
believe that configuration management is an important
technology to deploy in nearly any environment. We
hope that our discussion of difficulties will not dissuade
other groups but, rather, will be used to navigate an
admittedly difficult process.

Many administrative tasks have been vastly sim-
plified, and much useful data can be mined from the
configuration specification and statistics. The avail-
ability of this data has enabled a higher level of report-
ing and comprehension of our environment than was
previously attainable.

While many improvements have already been real-
ized, further substantial efficiency gains can be achieved.
Certainly, Bcfg2 could be improved. Several technical
improvements relating to information representation
require attention. Also, an interface to force client recon-
figurations would be useful. The user interface will also
continue to improve with more experience.

As a group, we expect administrative model
changes to continue, although with a less disruptive
effect. Many processes remain that could be auto-
mated. Also, a service that allows reconfiguration del-
egation would be useful, allowing users to update
aspects of configuration as appropriate. Moreover, we
hope that administration streamlining will continue.

Acknowledgments

This work was supported by the Mathematical,
Information, and Computational Sciences Division
subprogram of the Office of Advanced Scientific
Computing Research, Office of Science, U. S. Depart-
ment of Energy, under Contract W-31-109-ENG-38.

Author Biographies

Narayan Desai has worked for 5 years as a sys-
tems administrator and developer in the Mathematics
and Computer Science Division of Argonne National
Laboratory. His primary focus is system software
issues, particularly pertaining to system management
and parallel systems. He can be reached at desai@
mcs.anl.gov .

Rick Bradshaw holds a BS in Computer Science
from Edinboro University. He has been a member of
the MCS Systems team since 2001, where he aids in
maintaining HPC resources, experimental computing
resources, and general UNIX infrastructure. He can be
reached at bradshaw@mcs.anl.gov .

Scott Matott is a network engineer for UBS AG.
Previously, he worked as a network engineer at Argonne
National Laboratory and the University of Chicago. He
can be reached at scott.matott@gmail.com .

Cory Lueninghoener is a smug and condescending
HPC Systems Administrator at Argonne National Labo-
ratory working on the Teragrid cluster. Prior to this cur-
rent life, he also spent lives as both an undergraduate

and graduate student at the University of Nebraska-Lin-
coln working with the Research Computing Facility. He
can be reached at lueningh@mcs.anl.gov .

Ti Leggett is a systems administrator for the
Futures Laboratory of the Mathematics and Computer
Science Division at Argonne National Laboratory. He
also has a joint appointment with the Computation
Institute at the University of Chicago and can be
reached at leggett@mcs.anl.gov .

Gene Rackow has been the curmudgeon of the
systems group of the Mathematics and Computer Sci-
ence Division since before there was a systems group.
He has been instrumental in the operation of many
generations of HPC platforms used by the division
over the last 25 years. More recently, his attentions
have officially turned to security issues, where he will
be taking more of a labwide role. He can be reached at
rackow@mcs.anl.gov .

Susan Coghlan has been managing HPC systems
and HPC system administrators for several years in
the MCS Division of Argonne National Laboratory.
Prior to that, she helped to administrate ASCI Blue
Mountain, a 6144 processor supercomputer at Los
Alamos National Laboratory. When not fiddling with
some of the world’s largest computers, she does so
with other Irish traditional musicians.

Rémy Evard is the CIO of Argonne National
Laboratory. Prior to this he performed several roles in
the Mathematics and Computer Science Division
related to managing systems and administrators. His
research interests include configuration management
and high-performance computing. He can be reached
at evard@anl.gov .

John-Paul Navarro has been a high-performance
system administrator in the Mathematics and Com-
puter Science Division at Argonne National Labora-
tory since 1997. In that time, he has operated a variety
of HPC resources, including IBM SPs and several
clusters. His current research interests include distrib-
uted high-performance computing, storage systems,
resource management and scheduling, and relational
databases. He can be reached at navarro@mcs.anl.gov .

Craig Stacey has worked as a Systems Admin-
istrator and Information Technology Manager for 8
years in the Mathematics and Computer Science Divi-
sion at Argonne National Laboratory. His research
interests focus primarily on the intersection of robots,
monkeys and pants. His email address is stace@mcs.
anl.gov.

Tisha Stacey felt most comfortable describing
herself with this haiku:

I’m Tisha Stacey.
I work as a sysadmin.
Please don’t e-mail me.

Sandra Bittner joined the Systems Group at
Argonne National Laboratory in 1997. She was lead

19th Large Installation System Administration Conference (LISA ’05) 45



A Case Study in Configuration Management Tool Deployment Desai, et al.

on the installation of a 128-processor SGI Onyx 2 with
12 graphics pipes and a core member of the NSF
funded TeraGrid project, which is building the world’s
largest, fastest distributed infrastructure for open sci-
ence research. She is an active member of ACM,
IEEE, NSPE, and Usenix/Sage. She holds a bachelor’s
degree in computer engineering from the University of
Illinois at Chicago.

References

[1] Anderson, Paul and Alastair Scobie, ‘‘Large
scale Linux configuration with LCFG,’’ Pro-
ceedings of the 4th Annual Linux Showcase and
Conference, Atlanta, pp. 363-372, Atlanta, Geor-
gia, USA, October 10-14, 2000.

[2] Burgess, Mark, ‘‘Cfengine: A site configuration
engine,’’ USENIX Computing Systems, Vol. 8,
Num. 3, pp. 309-402, 1995.

[3] Desai, N., R. Bradshaw, R. Evard, and A. Lusk,
‘‘Bcfg: A configuration management tool for het-
erogeneous environments,’’ Proceedings of the
5th IEEE International Conference on Cluster
Computing (CLUSTER03), pp. 500-503, IEEE
Computer Society, 2003.

[4] Evard, Rémy, ‘‘An analysis of UNIX system
configuration,’’ Proceedings of the Eleventh Sys-
tems Administration Conference (LISA XI), pp.
179-194, USENIX, Berkeley, October 26-31,
1997.

[5] Finley, Brian Elliot, ‘‘VA SystemImager,’’ Pro-
ceedings of the 4th Annual Linux Showcase and
Conference, pp. 181-186, Atlanta, Georgia,
October 10-14, 2000.

[6] Gomberg, Michail, Rémy Evard, and Craig
Stacey, ‘‘A comparison of large-scale software
installation methods on NT and UNIX,’’ Pro-
ceedings of the Large Installation System Admin-
istration of Windows NT Conference, pp. 37-47,
USENIX, Berkeley, CA, August 5-8, 1998.

[7] Navarro, J. P., R. Evard, D. Nurmi, and N. Desai,
‘‘Scalable cluster administration – Chiba City I
approach and lessons learned,’’ Proceedings of
the 4th IEEE International Conference on Clus-
ter Computing (CLUSTER02), pp. 215-221,
IEEE Computer Society, 2002.

[8] Poznánski, Piotr, German Cancio Meliá, Rafael
García Leiva, and Lionel Cons, ‘‘Quattor – a
framework for managing grid-enabled large-
scale computing fabrics,’’ Proceedings of the
Kracow Grid Workshop ’04, Kracow, December,
2004.

[9] Traugott, Steve and Joel Huddleston, ‘‘Boot-
strapping an infrastructure,’’ Proceedings of the
Twelfth Systems Administration Conference
(LISA XII), pp. 181-196, USENIX, Berkeley,
CA, USA, 1998.

46 19th Large Installation System Administration Conference (LISA ’05)


