
Directing Change Using Bcfg2

Narayan Desai, Rick Bradshaw, Joey Hagedorn, and Cory Lueninghoener
– Argonne National Laboratory

ABSTRACT

Configuration management tools have become quite adept at representing target
configurations at a point in time. While a point-in-time model helps with system configuration
tasks, it cannot represent the complete scope of configuration tasks needed to manage a complex
environment over time. In this paper, we introduce a mechanism for representing changes over
time in target configurations and show how it alleviates several common administrative problems.
We discuss the motivating factors, design, and implementation of this approach in Bcfg2. We also
describe how this approach can be applied to other tools.

Introduction

Change is unavoidable in today’s complex com-
puter networks. Changing user demands, security vul-
nerabilities, and external resource integration necessitate
frequent reconfiguration of local machines. With the
size of networks continuing to grow, there is no reason
to expect the rate of configuration changes to decrease.

Three factors affect an administrator’s ability to
keep pace with the constant demand for configuration
changes: efficient deployment of changes, control over
how and when new changes are used and deployed by
the server, and the ability to understand patterns in
configuration changes and propagation. Each of these
factors is needed in any tool that comprehensively
supports change management.

First, the cost of creating and deploying configu-
ration changes must be small, and the deployment of
configuration changes need to be controlled. If each
change takes several hours of focused administrator
time, it cannot be deployed quickly. Similarly, the
administrator must be able to control how configura-
tion changes propagate to the environment from the
configuration specification. To address this issue, we
implemented and deployed Bcfg2 [3]. We presented
an account of the deployment process and the result-
ing efficiency improvements at LISA last year [5].
From these experiences, we feel we have a reasonable
solution for this aspect of the problem.

Once changes can be effectively described and
deployed, administrators need to be able to represent
changes over time. In frequently changing environ-
ments, administrators must be able to control when
changes go into effect and how they are deployed.
Administrators are currently forced to closely monitor
configuration systems when performing complex recon-
figuration workflows. This process is quite error prone
and can cause serious system faults when it goes awry.

Wi t h configuration and system changes explicitly
described, administrators have access to a wealth of
information about the ebb and flow of the configuration.

Through analysis of this data, administrators can charac-
terize the underlying patterns in configuration changes
and change propagation information. We believe this
information will be of great use to administrators.

In this paper, we discuss our approach to simpli-
fying change management procedures. In particular,
we describe the modifications made to Bcfg2 and
show how practical situations benefit from this
approach. We also detail how other tools can imple-
ment similar solutions.

Background and Related Work

Bcfg2 is one of several configuration manage-
ment tools that provide the user with a declarative
interface to system configurations. Declarative tools
allow the user to describe the goal configuration state,
as opposed to a set of steps that will produce this
result. They produce a set of reconfiguration opera-
tions that will result in the proper outcome. LCFG [2]
was the first system to employ this model; more
recently, Puppet [7] has also used it. Each of these
tools uses a central specification to describe the
desired configuration of a network of machines. Both
tools have been used with repositories under version
control; however, neither tool actually integrates with
version control processes. We believe that revision
control techniques could be leveraged for much more
than just change logging and roll back.

System administrators have developed several
techniques for dealing with change. Many of these
approaches are manual. Many complex changes
require manual orchestration and are very fault-prone.

Security audit tools have also become popular in
the past several years. Tripwire [6] and Aide [1] are
both popular auditing tools. These tools have a rigorous
approach to detecting system configuration changes but
employ a filesystem-based approach to detecting sys-
tem changes. While this approach helps administrators
locate misconfigurations, it does not integrate with an
overall model of system configuration.

20th Large Installation System Administration Conference (LISA ’06) 1



Directing Change Using Bcfg2 Desai, et al.

Some researchers have studied the costs of sys-
tem administration. In [4], the authors present a cost
model of system administration. They found the appli-
cation of real quantitative data resulted in reinforce-
ment of several intuitive results and found several
interesting new patterns. We feel the availability of
more quantitative metrics about the configuration
process would improve administrators’ decision-mak-
ing and problem-solving abilities.

Approach

The goal of this work is to augment Bcfg2 in
order to explicitly represent changes in configuration
specification and client configurations over time.
Without a notion of time in the system, administrators
can interact only with the current state of clients. They
can neither analyze past events nor orchestrate future
changes. Both of these capabilities are needed if reli-
able fault recovery mechanisms and scalable adminis-
tration processes are to be implemented.

As these detailed statistics are collected, a large
pool of data accumulates that can be used to better
understand long-term trend information and change
propagation to clients. This result is a model for the
entire life-cycle of systems, including their point-in-time
configurations, reconfigurations, and misconfigurations.

In this section, we discuss our approach in detail.
We begin by detailing the motivation for this work.
Next, to lay a foundation for our solution, we present a
high-level overview of the Bcfg2 architecture. We
then discuss our implementation in Bcfg2.

Motivations

Configuration management systems seek to effi-
ciently represent a goal for a large group of somewhat
similar client systems. Once we felt that we had a
good implementation of such a system, it was only
natural to extend the representation into the past and
future. We were motivated by several operational dif-
ficulties. These fell into three main categories:

• Performing reconfiguration workflows of inter-
dependent clients

• Enforcing change management policies

• Providing comprehensive audits of past client
configuration states

While tasks of these sorts could be represented,
pointwise, by using Bcfg2, their implementations were
time-intensive and highly fault-prone. We felt that
each of these tasks could be greatly simplified with
explicit support from Bcfg2.

Bcfg2 Architecture

Bcfg2 is structured as a client/server application
with three main parts: the server, the client, and a
reporting system.

The Bcfg2 server houses a configuration specifi-
cation that describes all aspects of configuration for all
managed clients. It uses this specification to build per-

client configurations when they are requested. It also
provides all network services required by the Bcfg2
client. The configuration specification is stored in a
filesystem hierarchy. The server daemon uses FAM to
monitor file system changes so as to efficiently cache
specification date in memory. The resulting system
has low overhead, as it only interacts with the filesys-
tem when modifications require. The server also pro-
duces a record of statistics describing clients, includ-
ing their current states and Bcfg2-related activities.

The Bcfg2 client consumes the client-specific
target configuration and performs all operations on
client systems. It analyzes the current state of the
client system, compares that state with the target con-
figuration, and produces a set of operations that must
be performed in order to reconfigure the client system
into the target state. Once the Bcfg2 client has per-
formed these tasks, it uploads a set of statistics
describing the results of its operations to the server.

The Bcfg2 reporting system postprocesses the
client statistics collected by the Bcfg2 server. It pro-
duces textual reports, delivered as emails, Web pages,
or RSS feeds. These reports are used to display current
client conformance with the configuration specifica-
tion. Administrators can use these reports to repair
systems with incorrect configurations or include new
client configuration aspects in the specification. While
the ability to describe and propagate a desired config-
uration is independently useful, the reporting system
has proven to be the most critical feature offered by
Bcfg2. It allows fluid reconciliation of reality with
administrative goals, since reality rarely plays along.

Implementation

Addressing these issues required modifications
to all three parts of Bcfg2. We discuss each of these in
turn, describing how the added functionality improves
administrator control and understanding, and interacts
with the other parts of the system. In particular, we
realized that tracking time stamp information at these
three critical points would provide us with the range of
functionality we needed. These modifications pro-
vided the infrastructure to implement our solutions
discussed in the next section.

Bcfg2 Server

We modified the Bcfg2 server to integrate with a
configuration repository managed by Subversion [8].
This integration enables the Bcfg2 server to query the
repository for the current subversion revision. The cur-
rent repository revision is included with all client con-
figurations generated by the server. Upon each update
to the repository, the revision is updated. We also
added a revision log to the server. This log tracks the
repository revision used by the server at all times and
can be used to determine which revision of the reposi-
tory was in use at any past time.

This approach has three main benefits. First,
administrators can use Subversion to manage their

2 20th Large Installation System Administration Conference (LISA ’06)



Desai, et al. Directing Change Using Bcfg2

configuration specification. The benefits of version
control are well known and will not be discussed here.
Second, the repository revision number provides a dis-
crete set of configuration timesteps that are explicitly
tied to repository contents. Third, administrator intent
is documented by the revision log. This allows one to
determine the desired configuration state of a client at
any earlier time.

In practice, changes are made to a separate
checkout of the repository and committed to the master
repository. The server can then run any revision of the
repository, regardless of the current contents of the
HEAD branch. The server repository revision is con-
trolled by a discrete utility. This can be used to upgrade
or downgrade the server’s copy of the repository.

Bcfg2 Client

We modified the Bcfg2 client to process revisions
included in configuration specifications. Each revision
is associated with all client statistics and uploaded to
the server. Because a client can reconfigure at any
time, having a change-based discrete time step as a
revision number is essential. This approach avoids the
need for the retention of any client-side state.

Bcfg2 Reporting Subsystem

We modified the reporting subsystem to retain all
configuration statistic records. Previously, it retained
only the newest record and the last record in which the
client was correctly configured. We also enhanced it to
store all statistics with revision information. We cur-
rently have a series of reports that summarize this
information in basic ways. Over time, we will develop
other reports as we find useful views of the data. Data
from the reporting system is the basis for all configu-
ration feedback in Bcfg2.

Results

Overall, we have been pleased with the results of
this approach. It has exposed a variety of quantitative
metrics that we use to better understand the configura-
tion process on our systems. We have used this infor-
mation and the enhanced control facilities to imple-
ment solutions to a number of subtle administrative
problems. In this section, we discuss how these facili-
ties lead to dramatic improvements for three broad
classes of problems: change orchestration, or the coor-
dination of changes across several systems to achieve
a uniform goal; software enforcement of change man-
agement procedures; and analysis of past configura-
tion states and changes. Each of these areas was
poorly served by previous generations of configura-
tion management tools. For each, we define the prob-
lem and provide a concrete example. We describe how
the change-based features of Bcfg2 enable the imple-
mentation of reliable solutions to each of these issues.
Each of these issues can be very time-intensive in
large administrative groups or complex environments,
so the potential benefit of each is substantial.

Solutions in each of these areas have become
part of the daily administrative process. Administra-
tors have found these techniques quite useful and are
using them to reach new heights of productivity. Sev-
eral frustrating tasks have now been automated, so
administrators are more contented as well.

Change Orchestration

Frequently, configuration goals require the recon-
figuration of several systems in a coherent fashion.
These operations are tightly coupled; that is, operations
must be performed in the proper sequence and are con-
tingent on the successful completion of other opera-
tions. Misordered operations can result in a number of
bad outcomes, ranging from transient failures to overall
system failures. These workflows are needed in several
common situations. When services are changed, clients
must be reconfigured to use new services. Moreover,
these services may only be used once they have been
properly configured. Likewise, all clients must be
removed from services prior to their decommission.

In order to automate this process, we have used
repository revision numbers to represent states in a
finite state machine. Administrators begin by describ-
ing all discrete states as individual repository revisions.
Administrators then construct an explicit state diagram
detailing how the workflow can proceed. Each work-
flow step consists of two parts. First, the server begins
using a particular version of the repository. Then
clients are reconfigured using this version. If all clients
configure properly, then the system can proceed to the
next step in the workflow. If they fail, the server pro-
ceeds to the failure result state for this operation. We
have written a script that implements this process
using data from the reporting system to determine
when clients have successfully entered a state. This
process can be composed to produce complex series of
operations, complete with failure contingencies.

The technique has two important limitations,
however. While operations can be chained, adminis-
trators must map out all contingencies into discrete
states. This process becomes complicated and time
consuming in the face of large combinations of failing
and succeeding operations. Also, the time spent in any
given state is not bounded. That is, success or failure
of an operation may be contingent on the actions of a
client that is down or not operating properly. To miti-
gate this issue, administrators can limit per-operation
checks to a series of machines that are pertinent to the
operation. While this approach is not universally pos-
sible, it makes state checks for many operations much
simpler. Also, administrators can query a workflow for
blocking issues. This technique allows the to locate
clients in need of manual intervention.

Change Management

Change management is a set of techniques that
ensures changes are performed in a systematic fash-
ion. These policies are useful throughout the change

20th Large Installation System Administration Conference (LISA ’06) 3



Directing Change Using Bcfg2 Desai, et al.

process, from the initial creation of changes through
the testing and activation of these changes. Change
management is essential to guarantee the quality and
reliability of changes made on production systems. In
short, change management controls the conditions in
which changes can be legitimately performed.

Change management policies tend to be site-spe-
cific. Many of the factors driving these policies are
influenced by the reliability guarantees made to users
and the ways that particular systems are used. We
described initial work implementing change manage-
ment policies in [5]; however, these processes were
largely manual. Our enhancements to Bcfg2 have
allowed us to automate most of the processes by
implementing automatic enforcement mechanisms for
these policies.

In our environment, two configuration manage-
ment policies are in place. On our core infrastructure,
changes are never performed automatically on critical
servers. On one of our production clusters, major
changes can be made only during a maintenance win-
dow, and changes can never be made while user jobs
are running. For each of these policies, we describe
the software implementations, our practical experi-
ences, and the pitfalls involved.

Manual Change Deployment on Servers

In some cases, there are critical resources that
should never be automatically reconfigured. Each of
these machines is configured to run the Bcfg2 client in
dry-run mode, through Bcfg2 itself. This policy is not
hard to implement; however, it is hard to integrate into
administrative processes. In many cases, critical sys-
tems will not receive configuration updates in a timely
fashion because of the increased cost compared with
other systems.

Bcfg2’s reporting system provides a useful solu-
tion to this problem. All clients, even those running in
dry-run mode, upload a set of current state statistics.
These statistics can tell whether a machine is config-
ured properly, has been configured recently, and has
been configured against the most recent version of the
configuration specification. Such information may be
used to locate hosts that are either out of date or mis-
configured. We use this method, in the form of a nag-
ging email, to remind administrators about their criti-
cal machines. This approach has worked fairly effec-
tively; administrators are given all of the information
they need to address configuration problems on criti-
cal systems quickly.

Maintenance Window

Maintenance windows are a planned period in
which changes can be made to systems. They are fre-
quently used on production resources. The use of a
weekly maintenance window is a requirement on one
of our production clusters. This is required because of
system policies and the need to maintain software con-
sistency across all nodes that may participate in a

single user job.

Our previous implementation of this policy con-
sisted of a choice between two suboptimal solutions.
Without fine-grained repository control, administra-
tors were forced to choose between prepopulating the
repository with changes and making the changes syn-
chronously during the maintenance window. Both
options have serious drawbacks. If changes are made
to the repository prior to the maintenance window,
they can be consumed prior to the window. That is,
clients that run Bcfg2 in dry-run mode will verify
against the wrong configuration and will be marked
incorrect. This spurious failure can mask legitimate
configuration problems. Also, clients that are rebuilt
during this interval will be misconfigured, making the
configuration inconsistent across the cluster. If
changes are made synchronously, administrators are
forced to perform all specification updates during the
maintenance window. This can be time-consuming
and easily result in forgotten changes that cannot be
deployed until the next window. Our previous solution
was to run the Bcfg2 client in dry-run mode, except
for during the maintenance window, when changes
could be made. While this produced the correct result,
it was unwieldy for administrators.

Correctly addressing this problem requires two
capabilities. First, administrators must be able to con-
veniently queue changes for later use. Once the reposi-
tory is stored under version control, this operation
becomes trivial. Second, the repository must not be
changed between maintenance windows. We modified
the repository control script described in the Results
section to accept a configuration file describing main-
tenance window times. This script will allow reposi-
tory changes only during the specified windows. It can
be overridden, if circumstances warrant; however, the
script prevents simple mistakes from violating change
management policies.

Change Analysis

Experienced system administrators have an intu-
itive sense for how often configuration changes are
performed, whether they result in client changes, and
whether those client changes have been deployed.
While these are useful instincts, they can be based on
flawed or incorrect information. Quantitative metrics
would provide a more solid foundation for decision
making and problem solving.

We have implemented several reports that sum-
marize change information, on both the client and
server sides. From these, administrators can better
understand rates of specification change, client
change, and change propagation and can understand
actual patterns present in their systems. We believe the
availability of this information will result in sounder
change management policies.

We have also implemented reports that construct
timelines of configuration operations. These timelines

4 20th Large Installation System Administration Conference (LISA ’06)



Desai, et al. Directing Change Using Bcfg2

aid in problem solving. Users often report new failures
after a large number of configuration changes. Change
summaries are now readily available, enabling admin-
istrators to find likely sources of problems. Alterna-
tively, if a system compromise is discovered, configu-
ration logs can be used to determine whether other
systems were susceptible at the time of the initial
attack. Moreover, this information can be used to
determine how long hosts were vulnerable and when
they were initially patched.

Conclusions

We believe this approach to be a vital step
toward a long-term goal of complete integration of
configuration management into the administrative
process. Change occurs frequently in most environ-
ments; its omission from the configuration manage-
ment model is a serious oversight that inhibits the
development of system configuration tools in a num-
ber of beneficial directions.

Status and Future Work

The Bcfg2 codebase is publicly available and is
released under the GPL. It is used at a number of sites
worldwide. Source code, documentation, papers, pre-
sentations, and mailing list information are available
at the Bcfg2 Web site [3]. The features discussed in
this paper are in use at Argonne currently and should
be included in a stable release by early summer. The
information exposed by this work is broadly applica-
ble to the analysis of a number of complex issues in
system administration. For that reason, it is impossible
to predict which uses will bear fruit. We can, however,
suggest several interesting possibilities. Static analysis
of history information could reveal a number of inter-
esting patterns in system configuration histories. For
example, it could locate clients that are frequently
misconfigured or remain misconfigured for long peri-
ods of time. Similarly, the deployment of critical secu-
rity updates can be tracked, producing a list of known
insecure hosts. All of these factors can be used to pro-
duce sophisticated risk assessments.

Similarly, fine-grained control over change
deployment provides a powerful infrastructure for
tools to build on. Developments in this area will also
be guided by site-based needs. This capability is a
clear prerequisite for reliable autonomics. We plan to
integrate some basic diagnostic functionality into our
current generation of scripts to experiment with auto-
nomic principles. In a similar vein, this work allows
the implementation of network unit tests. In principle,
it could be used to implement deployment regression
tests with automatic backout in the case of failures.

Also, our current implementation of configuration
workflows have several serious limitations. We plan to
experiment with other models to see whether these lim-
itations can be mitigated or eliminated altogether.

Change Support in Other Tools

We believe this approach to be applicable to any
declarative configuration management tool. These
tools require two modifications in order to implement
the full range of functionality described in this paper.
However, the first can be implemented without the
second. First, the tool must tightly integrate with a
repository under revision control. Revision tracking by
the server provides the basis for a historical view of
the configuration specification. This provides many of
the change management benefits described above.

The second step is to include revision informa-
tion in any statistics collected by the system. This
feedback allows the configuration management tool to
detect the entry of clients into particular states. Inte-
gration with a feedback system is vital to support the
change orchestration functionality described above. In
the long term, this functionality will be required by
autonomics facilities as well.

Author Biographies

Narayan Desai has worked for several years as a
systems administrator and developer in the Mathemat-
ics and Computer Science Division of Argonne
National Laboratory. His primary focus is system soft-
ware issues, particularly pertaining to system manage-
ment and parallel systems. He can be reached at
desai@mcs.anl.gov .

Rick Bradshaw holds a BS in Computer Science
from Edinboro University. He has been a memeber of
the MCS Systems team since 2001, where he aids in
maintaining HPC resources, experimental computing
resources, and general UNIX infrastructure. He can be
reached at bradshaw@mcs.anl.gov .

Joey Hagedorn is a student at the University of
Illinois, Champaign-Urbana. When not studying, he
works on several software and hardware projects. He
can be reached at hagedorn@mcs.anl.gov .

Cory Lueninghoener earned his MS in Computer
Science from the University of Nebraska-Lincoln,
where he worked with the Research Computing Facil-
ity. He now works with the HPC Administrator team
at Argonne National Laboratory, currently focusing on
Argonne’s Teragrid cluster. Cory can be reached at
lueningh@mcs.anl.gov .

Software Availability

Bcfg2 is an open source project mainly devel-
oped at Argonne National Laboratory. Source code,
documentation, binary packages, mailing list archives
and more are available from the Bcfg2 web site [3].

Acknowledgments

This work was supported by the Mathematical,
Information, and Computational Sciences Division
subprogram of the Office of Advanced Scientific

20th Large Installation System Administration Conference (LISA ’06) 5



Directing Change Using Bcfg2 Desai, et al.

Computing Research, U. S. Dept. of Energy, under
Contract W-31-109-Eng-38.

Bibliography

[1] Aide Web site, http://www.sourceforge.net/projects/
aide/ .

[2] Anderson, Paul and Alastair Scobie, ‘‘Large
scale Linux configuration with LCFG,’’ Pro-
ceedings of the 4th Annual Linux Showcase and
Conference, Atlanta, GA, pp. 363-372, October
10-14, 2000.

[3] Bcfg2 Web site, http://trac.mcs.anl.gov/projects/
bcfg2/ .

[4] Couch, Alva L., Ning Wu, and Hengky Susanto,
‘‘Toward a cost model for system administra-
tion,’’ Proceedings of the Nineteenth System
Administration Conference (LISA XIX), San
Diego, CA, December 4-9, 2005.

[5] Desai, Narayan, Rick Bradshaw, Scott Matott,
Sandra Bittner, Susan Coghlan, Reémy Evard,
Cory Lueninghoener, Ti Leggett, J. P. Navarro,
Gene Rackow, Craig Stacey, and Tisha Stacey,
‘‘A case study in configuration management tool
deployment,’’ Proceedings of the Nineteenth Sys-
tem Administration Conference (LISA XIX), San
Diego, CA, December 4-9, 2005.

[6] Kim, Gene H., and Eugene H. Spafford, ‘‘The
design and implementation of tripwire: A file
system integrity checker,’’ ACM Conference on
Computer and Communications Security, pp.
18-29, 1994.

[7] Puppet Web site, http://reductivelabs.com/projects/
puppet .

[8] Subversion Web site, http://subversion.tigris.org/ .

6 20th Large Installation System Administration Conference (LISA ’06)


