
N A R A Y A N D E S A I , R I C K B R A D S H A W , A N D
J O E Y H A G E D O R N

system management
methodologies with
Bcfg2

Narayan Desai is a programmer and system admin-
istrator in the Mathematics and Computer Science
Division of Argonne National Laboratory. His current
research interests include system management and
HPC system software issues.

desai@mcs.anl.gov

Rick Bradshaw is a system administrator in the
Mathematics and Computer Science Division of
Argonne National Laboratory. He helps to maintain
HPC resources, experimental computing resources,
and general UNIX infrastructure.

bradshaw@mcs.anl.gov

Joey Hagedorn is a student in Computer Science at
the University of Illinois at Urbana-Champaign.
When not studying, he spends time working on
several programming projects.

hagedorn@mcs.anl.gov

As UNIX networks continue to grow in size
and complexity, system management
methods must evolve as well. In this article
we discuss a typical deployment of Bcfg2
and describe its sophisticated configura-
tion management capabilities. We present
information about the environment at
Argonne National Laboratory’s
Mathematics and Computer Science
Division and the common tasks we in the
systems group must perform, providing an
overview of the tools used in our imple-
mentation of Bcfg2. We then discuss the
procedural and qualitative impact that
Bcfg2 has had on the way we manage our
systems. Our aim is to describe what an
environment with a comprehensive config-
uration management infrastructure looks
like and to explain why one might want to
invest the time needed to set it up.

Background

Configuration management is an area of intense
interest in the system administration community.
Although this area has seen substantial effort over
the past 15 years, a consensus on configuration
management methods has not yet been reached.
While a limited form of configuration manage-
ment is widespread, relatively few organizations
have adopted a comprehensive approach.
Similarly, few practical accounts of tool adoption
and results are available.

During the past year, the systems group in the
Mathematics and Computer Science Division of
Argonne National Laboratory redefined its meth-
ods for building, maintaining, and reconfiguring
UNIX machines. The deployment process was
quite involved, including substantial input from
all 12 members of the systems group, and it
altered the way that many tasks are accomplished.
Two aspects of the process proved especially inter-
esting: the social aspects of tool adoption and the
technical aspects resulting from changes in sys-
tems management. In a companion paper, pub-
lished at LISA this year (see Resources, below),
we discussed the social issues, focusing on the
nontechnical problems we faced. This article
focuses on the technical issues, particularly the
architecture we deployed, the changes we made in
our management process, and the tools we chose.

; LO G I N : F E B R UA RY 2 0 0 6 SYSTE M M A N AG E M E N T M E TH O D O LO G I E S W ITH B C FG 2 11

B C FG 2

Bcfg2 provides a declarative interface to system configuration. It was
designed and implemented in-house at Argonne but has matured to the
point that external sites have begun using it. Its configuration specifica-
tions describe a literal configuration goal state for clients. In this architec-
ture, the Bcfg2 client tool is responsible for determining what, if any, con-
figuration operations must occur and then performing those operations.
The client also uploads statistics and client configuration state information.

All complicated processing occurs on the Bcfg2 server. It uses an abstract,
aspect-based classing system to represent patterns in system configuration.
These abstract classes typically correspond to functional characteristics of
the configuration. For example, a class may contain a description of the
configuration needed to produce a Web server, Samba server, or an ntp
client. Other, more abstract classes can also be created. These tend to be
more site-specific—for example, “desktop” or “user-login.” The configura-
tion needed to fulfill these goals will vary greatly from site to site. This
classing system allows administrators to employ a cookbook-style
approach to building new configuration profiles, once various classes are
built. Administrators can decide to include features on a profile-by-profile
basis.

The other main function of the Bcfg2 server is to provide a reporting sys-
tem that describes details about client execution. Several different types of
statistics are collected during each client execution. Also recorded are over-
all client configuration state and lists of configuration entries that were
either modified or remain incorrect. Timestamps are stored so that inactive
clients can be detected. The reporting system has a major impact on how
Bcfg2 can be used. It provides sufficient feedback for administrators that
they can solely use Bcfg2 for deploying changes on all machines.

E N V I RO N M E NT

In our division we have about 100 researchers, with large numbers of col-
laborators who frequently need access to our machines. During the sum-
mer, we have numerous temporary research aides and co-op students. The
requirements of these collaborators and visitors strongly affects our net-
work configuration:

j Many users access our resources from offsite. This access is vital for collabo-
ration, but it means we cannot depend solely on a firewall for security.

j Our desktop environment is constantly in a state of flux because of constant
staffing changes. Such changes are particularly pronounced at the beginning
and end of the summer, when students arrive and leave. For this reason, the
machine build process must be streamlined and easy.

j Our management system must continue to work and remain secure inde-
pendently, in order to allow system administrators to focus on more pressing
issues.

All said, our environment is fairly typical of most academic and research
environments. The principal exception is that we have slightly more strin-
gent security requirements than many sites, because of our government
affiliation.

12 ; L O G I N : V O L . 3 1 , N O . 1

Deployment

Deploying Bcfg2 took substantial time and effort, including work by nearly
all members of our systems group. Adopting a new set of tools and
methodologies was a challenge, both technically and socially.

Most of the social issues had technical issues at their root, many of which
were tool-specific. Administrators were not comfortable that Bcfg2 would
do the right thing when reconfiguring systems. What followed was a six-
month process of identifying what the right thing was and ensuring that
Bcfg2 did it.

The other main task during deployment was the construction of a configu-
ration specification that Bcfg2 could use to generate proper client specifica-
tions for our network. This task moved in jumps; some configuration
aspects were quickly transcribed, while other, more subtle ones took much
longer to get right.

TO O L R E Q U I R E M E NTS

During our group discussions about system management strategy, several
key issues emerged. Administrator confidence in Bcfg2 was the most
important issue. Administrators need to trust a tool, in terms of both gen-
erating proper configurations and performing correct reconfiguration oper-
ations on the client. Without such trust, administrators won’t use a tool for
anything important.

To address this issue, we chose to make Bcfg2’s behavior as observable as
possible. Specifically, we implemented a comprehensive dry-run mode in
the Bcfg2 client. This allowed our administrators to experiment with the
tool without undue pressure; once they were comfortable that the pending
changes were reasonable, they were willing to commit to adopting the tool.
Similarly, high levels of debug output were added, documenting all deci-
sions the client makes while determining what operations should be per-
formed. The availability of this information fostered confidence in the
client, because the administrator could watch the tool in operation and
understand why it performed the way it did.

Another issue we addressed was management of client configurations.
Bcfg2 had to be able to handle all aspects of client configuration and
reconfiguration without manual intervention. It also needed to be robust in
the face of manual client reconfiguration. (Who hasn’t made several
changes debugging a problem, only to cause a new problem later?) To this
end, we designed Bcfg2’s reporting system so that it can describe all aspects
of Bcfg2’s actions and can provide salient information about client configu-
ration. This reporting system gives administrators the ability to consider
client configurations in a class-based way, using the Bcfg2’s configuration
specification for all nodes. The reporting system then reports all deviations
from that specification. We augmented the Bcfg2 client to detect configura-
tion elements on the system that weren’t specified in its configuration.
These extra configuration elements are also reported back to the server.

The third issue we considered was convenience. We streamlined several
common tasks, including the machine build process, and we made the
configuration profile selectable from the boot disk menu. These small
measures typically reduced the interactive time substantially. Most impor-
tant, they were vital in convincing administrators that it was worthwhile to
spend time learning how Bcfg2 works.

; LO G I N : F E B R UA RY 2 0 0 6 SYSTE M M A N AG E M E N T M E TH O D O LO G I E S W ITH B C FG 2 13

CO N F I G U R ATI O N S P E C I F I C ATI O N

In parallel with our technical discussions, we devised a Bcfg2 configuration
specification that describes our network. We started with the desktop sys-
tem. This is, by far, the largest basic type of system in our division and
thus has the most uniform configuration. Building a specification for our
desktop systems consisted of identifying services and software on each
machine, recording these in the configuration specification, and then test-
ing this configuration in stages.

Next we turned to the servers. This process took much longer for a num-
ber of reasons. Server configurations varied much more than desktop sys-
tems. Desktops had been managed in an organized way, while servers were
managed in an ad hoc fashion. Servers also had much more complicated
service definitions. Many of these systems had specific owners who had
performed manual modifications over time. Most important, these
machines provided a large number of user-visible services and represented
the infrastructure on which the entire division functioned. Servers were
one of the primary drivers for many of our technical discussions. Once
these issues were resolved, however, the specification process was quite
similar to that of the desktop process.

The basic procedure for incorporating new classes into the specification
comprises writing a description of all the interrelated configuration that
provides a service, and collecting relevant configuration, such as configura-
tion file contents and permissions. This process can be expedited by using
the Bcfg2 client in dry-run mode. Once all configuration information is
integrated, the Bcfg2 client can be used to detect whether any reconfigura-
tion on the system is needed.

Another Bcfg2 feature that allowed smooth migration was the ability to
incorporate information about unmanaged hosts. Bcfg2 stores statistics
about all aspects of a client configuration that do not match the configura-
tion specification. If the Bcfg2 client is run on a machine, statistics describ-
ing its configuration deviations are uploaded to the server and included in
system reports, even if no changes occurred. These reports can be used to
find areas where the configuration specification is incomplete.

R E P O RT- BA S E D CO N F I G U R ATI O N M O N ITO R I N G

Bcfg2 configuration reports provide an impedance-matching mechanism
between the configuration specification and the actual configuration state
of all clients. Discrepancies between the two cause a variety of latent man-
agement problems. Most importantly, if a service-providing machine has a
running state that does not match the configuration specification, it cannot
be rebuilt or duplicated. Its state also cannot be reasoned about by Bcfg2.

This system also allowed us to administrate our servers in a more interac-
tive fashion. We run the Bcfg2 client on each server in dry-run mode. The
client inventories the local machine state, determines what operations
should happen, and uploads this information to the server. Administrators
view the resulting reports daily, and can supervise the execution of the
Bcfg2 client on critical servers when it is needed.

The reporting system provides a bird’s-eye view of the overall configuration
state of all clients. This view exposes configuration specification problems,
allowing their repair before they cause problems. We now feel confident in
our understanding of all machines that are properly described in the con-

14 ; L O G I N : V O L . 3 1 , N O . 1

figuration specification, show a clean configuration state, and have no
extra configuration detected. All of our administrators now have a deep
understanding of all of our machines’ configurations, or clear indicators for
situations where they do not.

Impact on Administration

Rebuilding our management infrastructure had a dramatic effect on our
daily lives. Many everyday procedures were simplified, and powerful new
mechanisms for automation became available. Moreover, the system
administration process was changed in a qualitative way that transcends
particular tasks.

P RO C E D U R A L C H A N G E S

Our new management infrastructure enabled several categories of proce-
dural changes. Some tasks disappeared altogether. Many more changed in
basic character. The fundamental unit of automation in our old environ-
ment was the venerable shell script. Scripts are useful for a variety of pur-
poses but are lacking in one major way: scripting multi-machine processes
is fault-prone, and error handling is difficult. Moreover, these scripts gen-
erally have a lot of local topology information hardcoded inline. This
approach prevents them from being portable across sites.

; LO G I N : F E B R UA RY 2 0 0 6 SYSTE M M A N AG E M E N T M E TH O D O LO G I E S W ITH B C FG 2 15

Bcfg2’s model—specifically the existence of a central, declarative configura-
tion specification that can be programmatically modified—makes simple
scripts considerably more powerful. Administrative applications need only
calculate final results and can leave all error handling to the Bcfg2 client.
These applications can be adapted to the Bcfg2 server plug-in interface,
which is called during client configuration generation. This plug-in inter-
face has access to add or alter configuration elements on any managed
client. We have adapted several administrative applications to use this
interface:

j Controlling user access to batch-scheduled nodes
j Managing SSH keys and creating a correct ssh_known_hosts file
j Balancing virtual hosts across several Web servers

In each of these cases, the plug-in logic needed encapsulated a near-literal
transcription of policies or configuration generation rules. The previous
implementations of each were uniformly complicated and non-portable. In
all cases, conversion to this API reduced the code volume by 75% or more.
This reduction occurred because much of the heavy lifting is now handled
by the Bcfg2 client.

Good experiences with basic automation have led us to attempt much
more complicated workflows. For example, we are adapting our IP/host
management application to directly feed Bcfg2 with DNS and DHCP
configurations. Once this system is integrated, it will be easy to correlate
with any effects from other plug-ins. We are confident that such efforts will
automate many of the remaining daily reconfiguration operations request-
ed by our users.

Q UA L ITATI V E C H A N G E S

More important than the procedural changes, several qualitative changes
affected the administration process overall. These transcended the per-
formance of particular tasks and changed the character of system adminis-
tration in our division.

The most striking change was that configuration management tasks
became a proactive part of the environment. At regular intervals, all clients
check against the central specification for configuration changes, and may
(depending on their settings) apply configuration changes. In any case,
statistics describing their current state are uploaded. Bcfg2 serves as a
steady-state deployment engine that can detect and correct configuration
inconsistencies.

This change in model allows administrators to focus on changing the con-
figuration specification and inspecting reports describing the results with-
out having to worry about deployment details. Having a comprehensive
deployment engine also greatly reduces the cost of individual reconfigura-
tion operations. The availability of cheap reconfiguration operations
expands the range of options open to administrators. We found that our
environment now has some daily churn of configuration changes.
Automated scripts can make changes based on external stimulus, such as
the release of software updates, and deploy appropriate configuration
changes across clients.

These changes resulted in an environment where we can make reasoned
judgments about how we wanted changes to propagate to our environ-
ment. The time freed up by deployment automation allowed us to design a
system with a more measured approach to change management and test-

16 ; L O G I N : V O L . 3 1 , N O . 1

ing. Our changes now migrate to desktop machines first; on these systems
we value security more than anything, because of the large number of
clients. In contrast, we are willing to wait for administrators to run the
Bcfg2 client on servers, so that they can ensure that everything is still run-
ning properly. This approach costs more than the one employed for desk-
top machines, but we think that it is worthwhile for server machines. Most
important, we were able to make a local determination about how we
wanted changes to propagate and implement that exact system. This is a
policy matter that will greatly vary from site to site, and one size will never
fit all.

Overall, these changes resulted in a much more deliberate system manage-
ment process in our environment. Administrators were freed from repeti-
tive tasks, and we were able to exploit the new tools to make the decisions
that only experts can make effectively.

Conclusions

Configuration management needs to be globally adopted. It can dramati-
cally reduce the time spent performing repetitive tasks. Initial efficiency
gains can be fed back into improving configuration management capabili-
ties. The net effect is a large time savings for system administrators—time
that can always be used to improve services for users.

Bcfg2 provides a good framework for automating complex workflows. This
infrastructure offers an interface with simple and reliable reach throughout
your environment. This enables easy automation at a scale not previously
possible. Complex, network-wide policies can be implemented from a cen-
tral location. Moreover, the central configuration specification and statis-
tics can be mined for a variety of information.

This redesign of our infrastructure took a substantial amount of time and
effort. Nevertheless, we recommend that others attempt the same. The
long-term benefits far overshadow any short-term costs.

R E S O U R C E S

The Bcfg2 Web site: http://www.mcs.anl.gov/cobalt/bcfg2 (information
about Bcfg2, including a manual, mailing list archives and sources).

Narayan Desai et al., “A Case Study in Configuration Management Tool
Deployment,” Proceedings of the Nineteenth System Administration
Conference (LISA ‘05) (Berkeley, CA: USENIX Association, 2005). This
paper describes the social issues encountered by a large system administra-
tor group during the adoption of new tools and management procedures.
The paper provides the social counterpoint to the technical account of this
process provided here.

Paul Anderson, Configuration Management (Berkeley, CA: USENIX
Association, forthcoming). This book provides a primer in configuration
management, as both a practice and a research area.

The lssconf mailing list: http://homepages.informatics.ed.ac.uk/group/lss-
conf/. This mailing list provides vigorous discussion of configuration man-
agement tools and the techniques they employ. Many configuration man-
agement tool developers subscribe to this list.

; LO G I N : F E B R UA RY 2 0 0 6 SYSTE M M A N AG E M E N T M E TH O D O LO G I E S W ITH B C FG 2 17

AC K N OW L E D G M E NTS

This work was supported by the Mathematical, Information, and
Computational Sciences Division subprogram of the Office of Advanced
Scientific Computing Research, Office of Science, U.S. Department of
Energy, under Contract W-31-109-ENG-38.

The submitted manuscript has been created by the University of Chicago
as Operator of Argonne National Laboratory (“Argonne”) under Contract
No. W-31-109-ENG-38 with the U.S. Department of Energy. The U.S.
Government retains for itself, and others acting on its behalf, a paid-up,
nonexclusive, irrevocable worldwide license in said article to reproduce,
prepare derivative works, distribute copies to the public, and perform pub-
licly and display publicly, by or on behalf of the Government.

18 ; L O G I N : V O L . 3 1 , N O . 1

