A Data Centric Approach to HPC Energy Reliability and Optimization

Ghaleb Abdulla HPM 2016 August 24, 2016

Lawrence Livermore National Laboratory

LLNL-PRES-699373

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Acknowledgement

- Anna Maria Bailey
- Aniruddha Marathe
- Alfredo Gimenez
- John Weaver
- Barry Rountree
- Tapasya Patki

Human engineered systems are complex

- HPC Facility
 - HPC have combined load > 20 MW
 - Theoretical peak power requirements > 45 MW
 - Recurring intra-hour variability can exceed 8 MW
 - Electric Grid
 - Peak load during the summer can exceed planned generation
 - Introduction of renewables contributes to grid
 intermittency
- NIF
 - Very complicated control system with tens of thousands of sensors
 - Need to understand the interaction between the different system parts and relate to experimental results
 - Real time feedback and control

LLNL-PRES³

Relate component, system, and facility level data to define optimization strategies

State Of The Art HPC Data Centers Are "Complicated"

Need to understand each pillar

SIM

Optimize and measure (KPIs) for each

PEK

- Need global approach for optimal results
 - includes utility provider
 - define operating points
 - keep infrastructure efficiency constant over the whole operating range

measure and assess

Slide curtesy of Torsten Wilde (LRZ) [www.simopek.de]; HPC Data Center Infrastructure Challenges Under A Power Bound, Dagstuhl Seminar 2015, Germany

Open Access 4 Pillar Framework Paper: http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/s00450-013-0244-6

You cannot optimize what you cannot measure

- Collect data
 - Diverse interfaces and different data rates (µsec-15m)
 - All sources are equally important
- 70k tags
 - 20k HPC
 - 50k NIF

Data acquisition and management is necessary but time consuming

Efficient and user friendly data discovery interface

- Hierarchical data model reflects the physical structure of the monitored systems
- Multiple paths to the same data point
- Related assets

Example 1, Visual Analytics: Chiller shutdown events

- Date and Time: 10/30/2012 9:08:18 PM
- Buildings: 453 chiller #1
- T1883 fed by LGS-37, 3705.

Power data at the time of the event

Data over a year explains the chiller behavior

- The pump shuts down regularly and more frequently during the Summer
- No correlation with the electric signal
- Chiller is used for "staging"
 - Solution: redesign the system and replace with a larger chiller

Power data -1 year

Example 2, Visual analytics: Correlating different data streams

- Voltage dip:
 - 7:41 pm on 10/27/2013
 - 10:51 pm on 02/08/2015

Wind-Gust

- Wind with gusts over 67 m/h
 - SW and SSW direction
- Winds gusting below 67 m/h
 - Other directions

Visual analytics: Correlating different data streams

Two important steps:

- 1. Find similar events
- 2. Find what caused these events

Can we automate the two steps?

- 1. Search
- 2. Cause and effect, correlation

2/28/2015 event

Very similar behavior

Example 3: Retrofitting the Cab cluster with liquid cooling technology

- Cabernet (CAB) Overview
 - Appro System
 - Intel Xeon ES-2670
 - OS TOSS
 - Interconnect IB QDR
 - 426 TeraFLOP/s peak
 - Memory 41,472 GB
 - 1296 nodes, 16 cores/node
 - Power 564kW in 675 ft²
- #94 on November, 2013 Top 500

Compare efficiency and reliability of liquid cooling versus air cooling

Run a Dedicated Access Test on Cab before and after the retrofitting

Power profile for Cab while running the DAT

Large data set collected using different tools and requires its own data model

What is next?

- Used PI for:
 - Historian
 - Efficient/ real time data ingest and analysis
 - Event analysis
 - Correlate time series data
 - Enable simple visualizations and dashboards

• PI has limitations:

- We cannot integrate non time series data
- Data pre-processing
 - Especially experimental data
- Scalable data analysis
 - Hard to get large data out

Working on a scalable data management and analysis system

Potential Data Sources from an HPC facility

Data driven optimization strategy

- Enable data ingestion with different data rates
- Define data semantics
- Define different data transformations
- Enable querying of data using data sources, transformations, and semantics
- Scalable DM using Spark and Cassandra

Rack X Time X Heat X JobList

Summary Wish list

- "You cannot control what you cannot measure"
 - Major effort to collect and manage relevant data
 - Still missing important data
- Visual analytics
 - Easy data access and quick visual displays are very powerful
 - Develop better Vis tools to help Define questions for advanced data analytics
 - Automate event and correlation analysis
- Sensor data are mostly time based
 - TSDB is appropriate for managing this type of data, however we collect and correlate other data types
 - Need to :
 - integrate with other data types
 - Spark based scalable data analysis
 - Real time prediction and control

