Improving Efficiency with Dynamic Controls HPC4HPC

High Performance Cooling for High Performance Computing

David Grant, PE, CEM, DCEP

HPC Mechanical Systems

Modernization Project Office

Oak Ridge National Laboratory

Infrastructure Co-Lead for the EEHPCWG Corresponding Member of ASHRAE TC9.9 ational Laboratory

+

Today's Discussion

- Start with the characterization of HPC system loads
 - What are the questions for-
 - The System Integrator
 - The Owner/Customer

- What are we going to do for Summit?
 - Striving for a largely a "hands off" operation.
 - We want the Operators know, how they interact with the system

• What should we do for exascale computing?

System Design - Upfront Design Specifications

- System Integrator Questions
 - Cabinet Count?
 - Max/Idle power draw per cabinet?
 - Min/Max air flow per cabinet?
 - What is the maximum allowed liquid flow rate through the cabinet?
 - What is the heat removal method for air and water?
 - % to water/% to air at worst case vs idle?
 - Have "parasitic" loads been considered?
 - Water flow and inlet temperature curves for 100% heat removal per cabinets at idle, normal, and max power draw? What's "normal"?
 - What does the water side pressure drop vs flow look like between connection points? Cv
 - What are the allowable cooling fluid flow and temperature excursion magnitudes and durations?
 - Does the system self-protect or does it get too hot?
 - Do individual cabinets have flow control?
 - Water quality specifications?
 - What are the wetted materials within the cabinet?
 - What telemetry is available per node?

System Design – Upfront Design Specifications

User/Owner/Customer Questions

- Cabinet Count
- What is expected system resource utilization?
 - Will power management be utilized?
 - Will the system be partitioned to run multiple jobs?
 - Will the jobs consist of "capacity jobs" and/or "commodity jobs"?
- Will any power limiting measures be utilized?
 - Demand limiting?
 - What is the rate schedule of the utility provider?
 - How can the power usage of the cooling equipment be leveraged?
- Can the rate of ramping from idle to normal/max be controlled?
- Can a system be partitioned such that an outage on a cooling branch line or CDU level only impacts certain cabinets?
- Will any data analytics be used to gather power usage profile data based on schedule and model types?
- Will there be a method of communication between the HPC system and the facilities cooling system(s)?

Chilled Water Plant Load Diversity

- Each cooling system must be analyzed for vulnerabilities
 - Rate of load change
 - Outdoor conditions
 - System volume "turn-over" rate
 - What are the uptime requirements (wet bulb maximums?)
 - If chillers more complicated low dTs, high wet bulb "extremeevents", rate of changes, etc.

Chilled Water Plant Load Diversity

Possible Scenarios:

- Dedicated Chiller System for a single HPC System
- Campus chiller system w/ a single HPC system
- Campus chiller system w/ single HPC + Other + Comfort + Customer/Process Load
- Multiple HPC Systems
- Split between air cooled vs. water cooled

Transitions of Cooling Systems

- Opportunity exists where:
 - Variable speed pumping exists
 - Pump level
 - Cabinet or node level
 - Transitions between cooling systems with different COPs
 - Leveraging heat recovery
- Must always keep owner's desires for uptime and expected component life in mind.

What Cooling System Is Summit Fitting Into?

What will Summit need?

- Computer loads from 0-100% for this geographic area.
- Maintaining the temperature set point of the supply water to the computer system.
- Maintaining the minimum flow requirements of the computer system at the given supply water temperature.
- After satisfying minimum system requirements, the controls system stages equipment and operates at the highest efficient point possible.
- Monitoring of all system parameters, providing warnings and alarms. The thresholds, dead-bands, delays, and communication types for these warnings and alarms will be determined by the Design Team.
- Monitoring redundancy requirements and alert Operators should it fall below minimum requirements.
- A sudden loss of a cooling tower, MTW pump, chiller, CHW pump, or CW pump due to a power event or maintenance activity.
- A sudden load swing when the load on the chiller plant could put the chiller plant at risk of a shutdown.
- Control of the shifting of load between the economizing HXs and the trim HX's, including the required staging of chillers. This may require anticipatory controls.
- Design for efficiency, reliability, maintainability, scalability...

Summit - Expected Cooling Source

18000 350 16000 300 14000 Blue Area - Amount of Cooling 250 **By Cooling Towers** 12000 Per Year at WB Tem (k M) 10000 Gray Area - Could be Cooling Towers or Chillers Depending 8000 on Pumping Controls 150 Hours 6000 100 4000 50 2000 0 14 19 24 34 39 49 54 59 64 69 74 79 -6 -1 9 29 44 Outdoor Wet Bulb (°F)

OLCF-4 Cooling Source vs Wet Bulb

Variables

- System Size (changes the slope of CHW demand)
- Cabinet Load (changes the overall load)
- Cabinet Cooling Supply Temperature (shifts the demand line left/right)
- Approach
 Temperatures of HXs
 and Cooling Towers
 (shifts the demand line left/right)
- Outside Air Wet Bulb Temperature

Wet Bulb Data

Load Limiting Data 2015

Wet Bulb Data

What can change across the system boundary?

		Equipment Availability and
Computer System State	Outdoor Conditions	Performance
Off	Design Day	Design Capacity
Idle	Beyond Design Day	Plant Staging
Steady State Load	Low Wet Bulb	Maintenance
Max Load	Daily weather variations	Outages
Going between the states	Seasonal weather	Performance
above at various rates of	variations	
change		

Control Scenarios – 180 to be Explored

Idle

ш

High

Load: EHX ONLY

HPC Load Change - CONTROLLED FromV To> Zero Idle Normal High Zero Idle Normal High

FromV

7ero

Idle

High

Normal

HPC Load Change - CONTROLLED

To>

HPC Load Change - RAPID FromV To> 7ero Idle Normal High

Load: EHX and THX

HPC Load Change -	- SLOW
FromV	To>
Zero	
Idle	
Normal	
High	

FromV

Zero

Idle

High

Zero

Idle

High

Normal

Normal

Zero Idle Normal High

HPC Load Change - CONTROLLED

To>	Zero	Idle	Normal	High

HPC Load Change - RAPID FromV

Zero Idle Normal High

COAK RIDGE

FromV Zero Idle Normal

> Managable Elliminated with HPC System Controls Chilled water plant vulnerable

Controls Point List – For Summit 500+ points

Summit to PLC-

						Connectivity/SCOPE OWNER			IER		
							SYS-2 *Write				
							TO		Summit/A	Predicted	SYSA/
Scope	System	Point Type	Description	RTD	VIRTUAL	SYS-1	PLC	PLC	PI	OAWBT	SYSB
							Second	Secondar			
SP-PH2	DC	AI	Flow Demand From Summit	-	-	Tertiary	ary	у	Primary	-	-
							Second	Secondar			
SP-PH2	DC	AI	Predicted Total Computer Power From Summit	-	-	-	ary	у	Primary	-	-
							Second	Secondar			
SP-PH2	DC	DI	Temperature Cooler/Warmer From Summit	-	-	Tertiary	ary	у	Primary	-	-

PLC to Summit-

						Connectivity/SCOPE OWNER					
							SYS-2 *Write				
	a (TO		Summit/A	Predicted	SYSA/
Scope	System	Point Type	Description	RTD	VIRTUAL	SYS-1	PLC	PLC	PI	OAWBT	SYSB
							Second		Secondar		
CEPX-CTRLS	MTW	AI	Controlling MT Supply Temperature	-	Y	Tertiary	ary	Primary	У	-	-
							Second		Secondar		
CEPX-CTRLS	MTW	AI	MT Flowrate	-	-	Tertiary	ary	Primary	у	-	-
							Second		Secondar		
SP-PH1	DC	AI	Average Data Center Air Temperature	-	Y	Tertiary	ary	Primary	у	-	-
							Second		Secondar		
SP-PH1	DC	AI	Available CEPx Capacity at Hour X	-	Y	Tertiary	ary	Primary	у	-	-

18 Presentation_name

I hope to see:

- 1) A closed box with network, power, and cooling water supply/return connections (no direct air exchange with the ambient air in the data center)
- 2) Cooling water supply temperature no less than the location's 99.4% design wet bulb temperature + HX approach + cooling tower approach + 1

19 Presentation_name

Wish List

Need to know more about IT networking and protocols.

What devices can act as network tied I/O devices: Arduino, beagle boards, raspberry pi, etc?

David Grant, PE, CEM, DCEP

HPC Mechanical Systems

Modernization Project Office

Oak Ridge National Laboratory

ORNL is managed by UT-Battelle for the US Department of Energy

