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Motivation!
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Prior Work in HPC!

•  Song et al., 2009: Application-specific patterns from 
run to run and (less so) across machines!

•  Laros et al., 2009: 2 traces from same application 
on different platforms look alike!

•  Kamil et al., 2008: Can possibly distinguish classes 
of workloads!

•  but CPU-intensive workloads all look like LINPACK!
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(all from visual inspection of power traces)!



Our Questions!
•  Do applications exhibit distinctive power 

consumption behavior, even across different!

•  runs!

•  input data!

•  hardware platforms or resources?!

•  Can we identify an application from its power trace?!

•  ...and can we do this automatically?!
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Who cares?!

•  Patterns => application-specific power 
optimizations!

•  Recognizing a job from power traces => make 
better resource allocation decisions!
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Our Context!
•  Examples of prior work!

•  Identifying websites visited by a Mac Mini from power 
traces sampled at 250 KHz [Clark et al.]!

•  Periodicity in long-term power traces from cloud providers 
[Wang et al., Herbst et al.]!

•  HPC is different!!

•  Time granularity of measurements!

•  Probably less periodic in general; definitely masked at 1 Hz!
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Outline!

•  Clustering: Are there patterns?!

•  Classification: Recognizing an application from 
its power trace!

•  Novelty detection: Using "none of the above" to 
identify new workloads!

•  Current & future work!
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Clustering!
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Representations and 
Distance Metrics!

•  Time series!

•  Mean squared 
distance!

•  Dynamic time 
warping!

•  Feature-based!
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Hierarchical Clustering!
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hclust 
Results!
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Circle color: 
workload!

Square color: 
machine!

!
Very clean 2-

clustering (CPU-
intensive vs. not)!



Quantitative Validation!
•  Quantifying clustering goodness is surprisingly 

complicated -- see Combs et al., E2SC 2014!

•  Takeaways from a larger (220-trace) dataset 
focused on CPU-intensive kernels:!

•  There is a signal here!

•  Feature vectors work as well as DTW and are 
much cheaper in space and time
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Feature vectors!
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Input: set of power traces!
labeled by workload!

Output: set of signatures,!
one per trace, plus workload label!

[DCSkewness, DCKurtosis, 
DCNonlinearity, 

DCSerialCorrelation, hurst, 
kurtosis, lyapunov, max, 

mean, median, min, 
nonlinearity, skewness, 

standard_deviation, 
serial_correlation, 
trend, (workload)] 

 
from Wang et al, 2006 



Classification!

•  Given a set of traces from known workloads, can 
we identify the workload of an unlabeled trace?!

•  Approach: random forest [Breiman '01]!

•  Automatically build a bunch of decision trees 
and let them vote!

•  ~90% accurate for original 220-trace set!

14!



Additional Workloads!

•  NPB workloads: serial, MPI, OMP with different 
#s threads!

•  Mahout big data analysis workloads!
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Novelty Detection!

•  Given an unknown power trace, identify its 
workload or say "None of the above"

•  Helpful for identifying new / emerging task types!
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Approach: Metaclassifier!

•  That forest of decision trees is full of information 
-- let's use it!!

•  Input to novelty detector is predictions from 
workload classifier: how is the forest different for 
known vs. unknown workloads?!
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Example: Certainty!
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Average Results!
•  Precision: when we 

call something a 
novelty (or a known), 
are we right?!

•  Recall: are we 
finding all the 
novelties (or knowns) 
in the dataset?!
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Known Novelty

Precision 72.4%! 80.4%!

Recall 83.3%! 68.4%!



Current and Future Work!

•  Phase detection: can we identify phases of a 
power trace?!

•  Early classification: can we identify a power 
trace online, while the workload is still running?!

•  Dataset evaluation: how to quantify trace 
complexity or dataset completeness?!
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Conclusion!

•  Applications exhibit distinctive power 
consumption behavior, even across datasets 
and machines!

•  Compact feature vectors are enough to ID an 
application from its power trace!

•  …or to identify an unknown application!
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Wish List!
•  Two words: Ubiquitous instrumentation !

•  Power sensors, with as high a sampling rate as possible!

•  Per node!

•  Per job!

•  Synchronization of power data...!

•  With workload start and end times!

•  With internal counters like RAPL!

•  The dream: having this instrumentation on low-end/mobile systems too, 
since power optimizations in these domains filters into HPC !
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