

Extant and Extinct Lunar Regolith Simulants: Modal Analyses of NU-LHT-1M and -2m, OB-1, JSC-1, JSC-1A and -1AF FJS-1, and MLS-1

Christian Schrader [1]*, Doug Rickman [2], Carole Mclemore [2], John Fikes [2], Stephen Wilson [3], Doug Stoeser [3], Alan Butcher [4], Pieter Botha[4]

[1] BAE Systems-MSFC, Huntsville AL; [2] NASA-MSFC, Huntsville AL; [3] USGS, Denver CO; [4] Intellection Ltd., Brisbane, QLD Australia

Participants

NASA - Marshall Space Flight Center leads this simulant development and characterization

JSC, GRC, and KSC contribute other work towards the characterization of simulant and lunar materials

> The United States Geological Survey in Denver assists in characterization and leads in the manufacturing of NU-LHT series

- This work is part of a larger effort to compile an internally consistent database on lunar regolith (Apollo samples) and lunar regolith simulants.
 - Characterize existing lunar regolith and simulants in terms of
 - Particle type
 - Particle size distribution
 - Particle shape distribution
 - Bulk density
 - Other compositional characteristics
 - Evaluate regolith simulants (Figure of Merit) by above properties by comparison to lunar regolith (Apollo sample)

This presentation covers new data on lunar simulants.

User's handbook

The NASA-MSFC simulant group is compiling a simulant user's handbook with a matrix of simulant properties.

This will help guide users choose a simulant for their applications.

- 1) Simulant types and specific simulants
- 2) New work modal data
 - A. QEMSCAN® instrument and approach
 - B. Preliminary results of modal analysis of simulants
 - i. Plagioclase
 - ii. Pyroxene
 - iii. Olivine
 - iv. Glass
- 3) Phase chemistry (mostly previous work)
 - A. Plagioclase composition
 - B. Glass composition

4) Examples of other new results

Lunar simulants -- mare and highlands

JSC-1A lunar mare simulant

NU-LHT-1M lunar highlands simulant

Current emphasis

NASA lunar architecture places the first permanent bases near a pole, which is likely dominated by lunar highlands-type terrain.

NASA-MSFC and USGS are focusing on process control. Current prototypes are characteristic of lunar highlands material.

We plan to characterize and prototype mare types in the future.

Overview of lunar simulants

Simulant(s)	Туре	Primary Reported Use	Manufacturer	feedstock	status
NU-LHT series	Highlands	General	NASA-MSFC and USGS	Stillwater mine (MT), commercial minerals	In production and use
OB-1	Highlands	Geotechnical	Norcat	Shawmere anorthosite, olivine slag glass	In production and use
JSC-1 (-1A, -1AF)	Mare, low- Ti	Geotechnical and lesser chemical	Orbitec, Inc.	Basalt ash, San Francisco volcanic field (AZ)	In production and use
FJS-1	Mare, low- Ti	Geotechnical	Japanese, (JAXA, LETO)	Mt. Fuji area basalt	No longer available
MLS-1	Mare, high- Ti	Chemical	University of Minnesota	Basalt sill, Duluth complex	No longer available

QEMSCAN® instrumentation

Carl Zeiss custom SEM

OEMSCAN® uses advanced e-beam technology from Carl Zeiss and combines this with high resolution BSE and SE imaging, and state-ofthe-art Energy Dispersive Spectrometers. It integrates these using iDiscover software to provide a solution capable of identifying most rock-forming minerals in just milliseconds

Intellection

QEMSCAN[®] analysis

Digital photograph of polished block

QEMSCAN[®] Backscattered Electron photo-micrographic montage of a polished block

C.M. Schrader 6/2/2008

QEMSCAN[®] analysis

Digital photograph of a 30mm diameter polished block

QEMSCAN[®] false-coloured, digital particle mineral map montage of a polished block

BAE SYSTEMS

Results: QEMSCAN[®] modal analysis Average of two replicate runs

These modal data are total % of phase proportion regardless of occurrence, e.g., as free minerals, in a lithic fragment or agglutinate...

	NU-LHT-	1					
Minerals	1 M	OB-1	JSC-1	JSC-1A	JSC-1AF	FJS-1	MLS-1
Plagioclase	51.87	44.35	32.47	37.83	48.47	48.78	25.45
Clinopyroxene	8.95	2.95	14.67	18.77	21.15	24.39	35.86
Orthopyroxene	6.76	0.19	0.65	0.66	1.62	1.37	1.37
Olivine	5.79	6.27	18.29	12.44	9.22	4.94	1.06
Glass	24.07	43.22	30.86	26.67	15.68	7.15	22.29
Magnetite	0.15	0.07	0.02	0.01	0.00	0.04	0.45
Chromite	0.11	0.01	0.01	0.00	0.00	0.01	0.00
Ilmenite	0.53	0.00	0.07	0.11	0.08	3.65	12.38
Sulphides	0.02	0.35	0.19	0.17	0.31	0.16	0.10
Iron	0.20	0.01	0.00	0.00	0.00	0.00	0.06
MgFeAI Silicate	1.13	1.83	1.76	3.06	3.09	1.53	0.82
K Feldspar	0.13	0.08	0.39	0.07	0.11	7.24	0.07
Quartz	0.21	0.48	0.50	0.01	0.04	0.47	0.00
Calcite	0.06	0.08	0.07	0.11	0.14	0.00	0.02
Others	0.04	0.12	0.07	0.07	0.08	0.27	0.08
Total	100.00	100.00	100.00	100.00	100.00	100.00	100.00

C.M. Schrader 6/2/2008

Results: QEMSCAN[®] modal analysis Average of two replicate runs

C.M. Schrader 6/2/2008

Results: QEMSCAN[®] modal analysis Replicate runs

C.M. Schrader 6/2/2008

Modal Analysis

Modal analysis measures the proportion by area% of a phase (mineral or glass) in a material. Area% is the same as volume% in a randomly oriented material and mass% can be computed if composition is known.

Physical characteristics such as hardness, fracture and cleavage behavior (which control abrasiveness, e.g.) are intrinsic characteristics of minerals and glass.

Geo-mechanical behavior of a material is controlled largely by the proportions of these constituent parts, as well as by the size and shape distributions of particles.

Modal proportions of phases are also the first piece of information necessary in understanding physiochemical behavior important to melting, oxygen extraction, etc.

C.M. Schrader 6/2/2008

Results: QEMSCAN[®] modal analysis Average of two replicate runs

	Apollo	NU-							
	16:	LHT-		Apollo 11					
Minerals	64001/2	1M	OB-1	&12	JSC-1	JSC-1A	JSC-1AF	FJS-1	MLS-1
Plagioclase	43-44	51.87	44.35	11-15	32.47	37.83	48.47	48.78	25.45
Clinopyroxene	0.6-0.7	8.95	2.95		14.67	18.77	21.15	24.39	35.86
Orthopyroxene	~2.5	6.76	0.19		0.65	0.66	1.62	1.37	1.37
Total Pyroxene	~3	15.71	3.14	25-37	15.32	19.43	22.77	25.76	37.23
Olivine	0.8-0.9	5.79	6.27	2-10	18.29	12.44	9.22	4.94	1.06
Glass	44-46	24.07	43.22	31-45	30.86	26.67	15.68	7.15	22.29

Highlands data are from QEMSCAN[®] analysis of thin sections from 64001,6031 and 64002,6019 Apollo 16 drive core.

Mare data are from Taylor et al. (1996) from 10084,1618, 12030,122, and 12001,7 Apollo 11 and 12 samples of low-Ti mare samples of varying maturity. Values determined by SEM EDS

C.M. Schrader 6/2/2008

Other crucial phases

Minerals that occur in much less abundance such than those mentioned can be very important to ISRU processes.

Ilmenite (FeTiO₃) is an important lunar mineral for oxygen extraction by H_2 -reduction.

Halogen (F, CI)-bearing phases like apatite can have significant adverse effects on many ISRU processes. Sulfur, phosphorus, bromine and iodine bearing phases are also almost certain to be important.

Data on these minerals is still being refined.

Chemical composition of minerals and glass

In addition to modal proportions, the chemical make-up of phases exerts a huge control over physiochemical processes such as melting and those processes necessary to oxygen extraction.

Plagioclase feldspar, a major constituent of lunar regolith, is a good example.

Plagioclase chemistry

Another consideration is the chemical composition of the plagioclase mineral grains.

Plagioclase feldspar is a solid solution mineral that varies between two end-member compositions:

Anorthite - CaAl₂Si₂O₈

and

Albite - NaAlSi₃O₈

 \Rightarrow The Ca/Na and Al/Si ratios vary simultaneously.

Plagioclase composition

Lunar Highlands:	An >90%
NU-LHT-1M range:	An 75-85%
OB-1:	Shawmere, approx. An 75%?
Lunar Mare:	An 75-95%
JSC-1:	An 64-71% (Carpenter 2005)
JSC-1A:	An 70% (average Hill et al., 2007)
JSC-1AF:	An 70% (Carpenter, 2006)
MLS-1:	An 44-50% (Carpenter, 2005; Hill et al., 2007

Example - Why mineral chemistry matters

melts at ~750° C

C.M. Schrader 6/2/2008

NU-LHT series glass: plasma melting

NU-LHT-1M and -2M: glass is derived from melting fine-grained material (mill sand) from the Stillwater mill.

Zybek Advanced Products

Glass in lunar simulants

NU-LHT-1M:	Glass is derived by plasma-melting of noritic feedstock Ca-Al-Si with moderate Fe and Mg
OB-1:	Glass is an olivine slag Fe and Mg-rich with Si
JSC-1 series:	Natural basalt glass Fe-Mg-Ca-Al-Si with lesser Na
FJS-1:	Natural basalt glass no analyses available
MLS-1:	Glass is derived by plasma-melting of basaltic feedstock Fe-Mg-Ca-AI-Si with lesser Na

Some simulant glass chemistry

oxide	NU-LHT	JSC-1A	JSC-1AF
SiO2	46.6	46.8	46.11
TiO2	0.115	2.44	2.8
AI2O3	21.55	13.9	14.92
FeO**	5.08	12.1	12.66
MnO	0.09	0.21	0.22
MgO	9.5	5.6	5.07
CaO	12.6	10.5	9.98
Na2O	0.965	3.89	3.96
K2O	0.12	1.17	1.43
P2O5	0.07	1.04	1.02
Cr2O3	0.12	b.d.l.	0.01
LOI	2.74	n.d.	n.d.
Total	99.55	97.65	98.18

NU-LHT values are from an analysis of the feedstock Stillwater "mill sand" melted to form glass.

JSC-1A and -1AF analyses from Hill et al. (2007) and Paul Carpenter (2005, 2006) reports and presentations.

**total Fe as FeO

Conclusions

We are compiling huge numbers of data points on lunar regolith and simulants. Analysis and refinement is continuing.

Modal composition is one important parameter to both geotechnical and to physiochemical behavior.

For physiochemical behavior important to many ISRU purposes, phase chemistry is also very important, perhaps particularly with regards to glass chemistry.

References:

- Heiken, G., Vaniman, D., and French, B.M., 1991, Lunar Sourcebook: A User's Guide to the Moon. Cambridge University Press, Cambridge [England], New York.
- Hill, E., Mellin, M.J., Deane, B., Liu, Y., and Taylor, L.A., 2007, Apollo sample 70051 and high and low-Ti soil simulants MLS-1A and JSC-1A: Implications for future lunar exploration, *Journal of Geophysical Research*, v. 112, E02006.
- Richard, J., Sigurdson, L., and Battle, M.M., 2007, OB-1 Lunar highlands physical simulant: Evolution and roduction, abstract and presentation at Lunar and Dust Regolith Simulant Workshop, Huntsville, AL.
- Taylor, L.A., Patchen, A., Taylor, Chambers, J.G., and McKay, D.S., 1996, X-ray digital imaging petrography of lunar mare soils: Modal analyses of minerals and glasses, *Icarus*, v. 124, pp. 500-512.

NU-LHT-1: QEMSCAN[®] particle analysis

MLS-1: QEMSCAN® particle analysis

C.M. Schrader 6/2/2008

Results: QEMSCAN[®]determined particle shape

Particle Shape Classification	NU-LHT-1M	Norcat OB1	JSC-1	JSC-1A	JSC-1AF	FJS-1	MLS1
Very Angular	2.85	1.74	2.86	4.72	1.11	1.99	0.37
Angular	4.90	2.35	5.13	7.02	3.06	4.19	3.04
Sub Angular	16.33	10.35	16.98	16.34	12.97	20.92	11.47
Sub Rounded	43.67	40.74	42.94	40.02	39.15	49.21	37.49
Rounded	32.05	44.55	31.95	31.59	43.42	23.61	30.77
Well Rounded	0.20	0.27	0.14	0.31	0.30	0.07	16.86
Total	100.00	100.00	100.00	100.00	100.00	100.00	100.00

C.M. Schrader 6/2/2008

QEMSCAN® analysis

Mosaic images are particulated using off-line image analysis software, so that each measured particle can be examined and quantified for parameters such as modal composition, texture and shape.

C.M. Schrader 6/2/2008

National Aeronautics and Space Administration

NASA Scientific and Technical Information (STI) Document Availability Authorization (DAA)

(Instructions for completing this form are on page 4)

	(Attach Copy)						
		SEC	TION 1				
		1a. DOCUMENT	IDENTIFICATION				
AUTHOR(S)							
Extant and Extinct Lunar Regolith Simulants: Modal Analyses of NU-LHT-1M and -2m, OB-1, JSC-1, JSC-1A and -1AF, FJS-1, and MLS-1			C. M. Schrader A. Butcher D. L. Rickman P. Botha C. McLemore J. Fikes S. Wilson D. B. Stoeser				
POINT OF CONTACT (If different	from author)	E-MAIL	ADDRESS				
COTO OD CENTED DESIGNATE		77 840 H					
COTTOR CENTER-DESIGNATE			ADDRESS				
Joan R. Presson		Joan.K.Presson@nasa.	NSSIC, VP31 320 Sparkman Drive Huntaville AI 2	5005			
ORIGINATING NASA CENTER A	ND ORGANIZ	ZATION	PERFORMING NASA CENTER AND ORGA	NIZATION //f different)			
MSEC VP61							
CONTRACT NUMBER	GRANT	NUMBER					
		1b. TYF	PE OF STI				
ABSTRACT BOOK NAME OF PUBLISHER: CONFERENCE PAPER CONFERENCE PRESENTATION CONFERENCE NAME/SPONSOR: Planetary and Terrestrial Mining Symposium (PTMSS)/ Northern Centre for Advanced Technology, Inc. (NORCAT) CONFERENCE LOCATION:			DOCOMENT FOR POBLIC WEB SIT	© (Must meet requirements in g on the Internet) WEB SITE			
DATES: <u>06/09/2008</u>	TO: <u>0</u>	6/11/2008					
ORAL/VISUAL PRESENTATION ADDITIONAL INFORMATION:			IF A PREPRINT (draft or revision YOU WANT IT DISSEMINATED	n being sent to journal), DO TO:			
			ONLY THE PUBLISHER				
NASA STI SERIES REPORT (See NPR 2200.2)			NASA AND ITS CONTRAC US GOVERNMENT AGENC CONTRACTORS PUBLIC	FORS CIES AND THEIR			
CONFERENCE PUBLICATION (CP)			IF A REPRINT (article published NASA CENTER FOR AEROSPA TO STI DATABASE, DID YOU G THE PUBLISHER TO DISTRIBU	by journal) BEING SENT TO CE INFORMATION TO ADD ET PERMISSION FROM TE TO PUBLIC?			
SPECIAL PUBLICATION (SP)			YES (Attach copy of permis	sion)			
TECHNICAL TRANSLATION (TT)			NO				

NASA FORM 1676 JAN 08 PREVIOUS EDITIONS ARE OBSOLETE.

· · · · ·

NEW DAA

REVISION TO

EXISTING DAA

SUN 1 0 perm

2. NATIONAL SECURITY	CLASSIFICATION (Check one)
NONE (Unclassified)	SECRET TOP SECRET
IF CLASSIFIED, CENTER SECUR	ITY OFFICER (CSO) MUST APPROVE
CSO APPROVAL (Name)	
3. AVAILABI	LITY CATEGORY
3a. PUBLICLY AVAILA	BLE STI (See instructions)
X YES	NO (See 3 (b, c, and/or d) and 4)
3b. EXPORT-CONTROLLED INFORMATION (C	ontact your Export Control Administrator for help)
INTERNATIONAL TRAFFIC IN ARMS REGULATIONS (ITAR)	EXPORT ADMINISTRATION REGULATIONS (EAR)
GIVE THE US MUNITIONS LIST (USML) CATEGORY:	GIVE THE EXPORT CONTROL CLASSIFICATION NUMBER (ECCN) :
3c. PROPRIETARY/SENSITIVE INFO	DRMATION (See NPR 2200 2 Chapter 4)
	TO § 303(b) OF THE SPACE ACT
SMALL BUSINESS INNOVATION RESEARCH (SBIR/STTR)	LIMITED UNTIL DATE (mm/dd/yyyy):
LIMITED UNTIL DATE (mm/dd/yyyy):	IMMEDIATE RELEASE APPROVED TO CATEGORIES
IMMEDIATE RELEASE APPROVED TO CATEGORIES	COPYRIGHTED (If copyrighted, check with Center Patent or Intellectual Property Counsel)
TRADE SECRET/COMMERCIAL CONFIDENTIAL OTHER THAN LIMITED RIGHTS OR SBIR DATA	CAN BE RELEASED TO PUBLIC (Attach approval)
LIMITED UNTIL DATE (mm/dd/yyyy):	MUST BE RESTRICTED TO CATEGORIES INDICATED IN 3d
IMMEDIATE RELEASE APPROVED TO CATEGORIES	CONTAINS PUBLIC-WEB-SENSITIVE INFORMATION PER
	DOCUMENT DISCLOSING AN INVENTION (Complete
	tume Section 4)
NAME OF APPROVING OFFICIAL	TITLE OF APPROVING OFFICIAL
3d. DISTRIBUTION LIMIT	ATIONS (See instructions)
US GOVERNMENT AGENCIES AND US GOVERNMENT	DISTRIBUTION LIMITED TO US PERSONS
US GOVERNMENT AGENCIES ONLY	
NASA PERSONNEL AND NASA CONTRACTORS ONLY	
NASA CONTRACTORS AND US GOVERNMENT ONLY	LIMITED UNTIL DATE (mm/dd/yyyy):
NASA PERSONNEL ONLY	
4. DOCUMENT DISCL	OSING AN INVENTION
CHECK IF THIS DOCUMENT/PRESENTATION DISCLOSES AN I INTELLECTUAL PROPERTY COUNSEL (See instructions)	NVENTION AND ROUTE TO HQ OR CENTER PATENT OR
I CERTIFY THAT THIS DOCUMENT MAY BE RELEASED ON (mn	n/dd/yyyy):
PATENT COUNSEL NAME	DATE