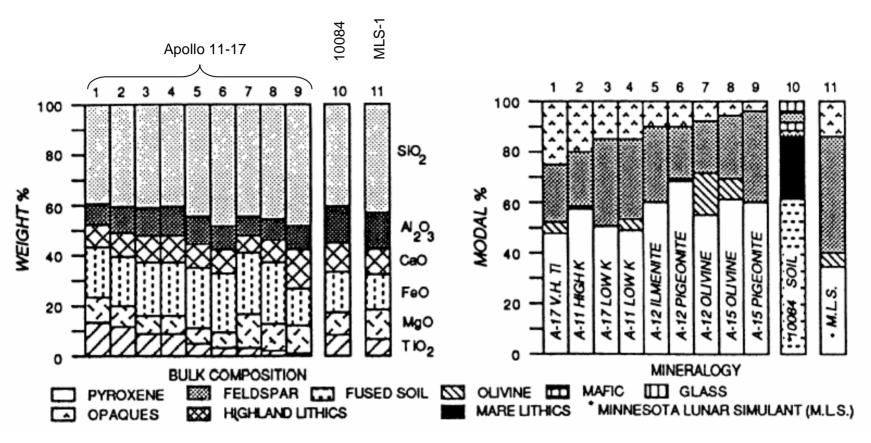

Minnesota Lunar Regolith MLS-1

Susan Batiste, susan.batiste@colorado.edu
Stein Sture, stein.sture@colorado.edu

Source for MLS-1

- Dr. Paul Weiblen and researchers at the University of Minnesota
 - Weiblen PW, and Gordon, KL. (1988) "Characteristics of a Simulant for Lunar Surface Materials", Symposium on Lunar Bases and Space Activities in the 21st Century, Paper No. LBS-88-213, Houston.
- Bulk chemistry closely resembles Apollo 11 mare soil sample 10084
 - Basalt portion

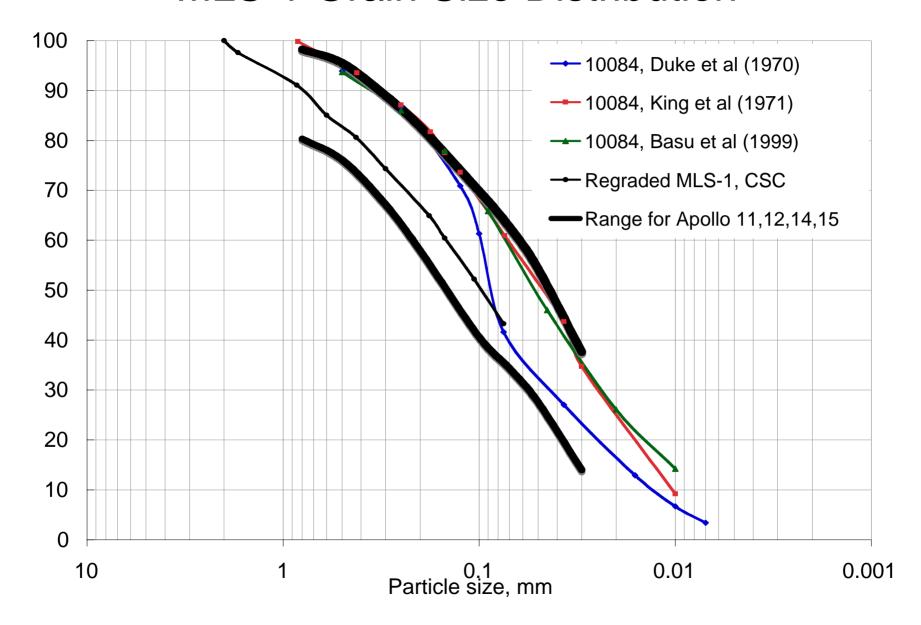

Quarrying and Processing

- Source location
 - Abandoned quarry in Duluth, Minnesota
 - 1-2 m thick sill of basaltic rock
 - Sill extends 50 m across a rock face
- Processing at University of Minnesota
 - Mechanically crushed and ground

MLS-1 Mineralogy

- High-Ti basalt
- Plagioclase, olivine, pyroxene and ilmenite
 - Crystallized simultaneously
 - Grain size similar to coarser lunar mare basalts
- Differences from Apollo 11 lunar mare
 - Less pyroxene
 - More feldspar
 - Small amount (<3% by vol) of biotite
 - Surface ferric iron (3.5% by wt)
 - Ilmenite and mafic silicates
 - 0.4% water
 - Surface oxidation
 - No glass or agglutinates (majority of 10084)

Mineralogy: Apollo Regolith & MLS-1



Weiblem&Gordon (1988), from Papike et al., (1976, 1981)

CU-Boulder Processing

- Apollo 11 sample 10084 forms upper bounds of grain size distribution curve for Apollo samples
- MLS-1 was further processed at CU-Boulder to fall within band of grain size distributions
 - Sieved into respective grain sizes
 - Course material ground in a rodding mill
 - By USBR in Denver
 - Needed to obtain enough fines
 - 40% of lunar regolith is smaller than #200, or 75μm)
 - Recombined

MLS-1 Grain Size Distribution

Mechanical Properties 1

- Specific Mass: 3.2
- Unit weight (particle-void composite)
 - $-\rho_{\text{max}}$, g/cm³: 2.07-2.20
 - $-\rho_{min}$, g/cm³: 1.48-1.60
- Conventional triaxial compression

	Density, ρ, g/cm³	Confining Stress σ_3 , kPa	Friction Angle, φ, deg	
Lunar Regolith	1.89	26.0	48.8	
(Scott, 1987)	1.71	52.6	40.7	
	1.90	13.8	49.8	
MLS-1	1.90	34.5	48.4	
(Perkins, 1991)	1.70	34.5	42.9	
	1.70	68.9	41.4	

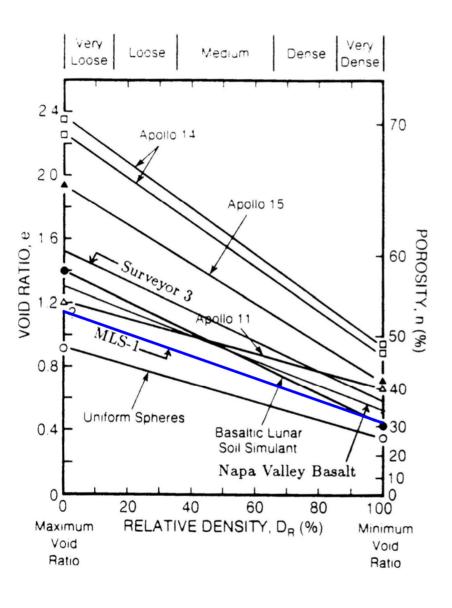
Combined friction, cohesion data

- Comparing data based on density
- Friction angle for ρ =1.7-1.75 comparable
 - Lab tests were performed at relatively high confining stress
 - Future tests should use comparable stress

Material	Depth, cm or	Density,	Cohesion,	Friction
	Conf. Stress, kPa	g/cm ³	kPa	Angle, deg
Lunar	0-15 cm (0-0.1 kPa)	1.50	0.52	42.0
Regolith	30-60 cm (0.2-0.4 kPa)	1.75	3.0	54.0
MLS-1	1.72 kPa (360 cm)	1.70	0.10	51.4
	1.72 kPa (200 cm)	2.17	1.5	62.3

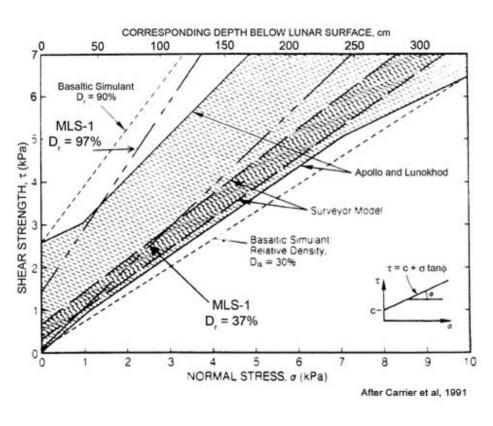
In situ data

For $K_0 = 0.25$


Direct shear

Triaxial (CTC)

MLS-1 Composition


- No glasses
 - Lack of glasses is not considered to have a significant impact on engineering properties
- No agglutinates
 - May be significant as they are easily broken
- UM attempted agglutinate production by passing MLS-1 through a plasma torch (6000C)
 - Did not produce the intricate and delicate shapes of the agglutinate particles

Density Range of MLS-1

- MLS-1 minimum void ratio
 - Slightly more dense than lunar soils
 - Static compaction
 - Same method as Apollo 11 and Surveyor 3 samples
- MLS-1 max void ratio
 - Not as loose as lunar regolith
 - Due to lack of agglutinates, which have highly irregular shape
 - Close to Apollo 11 data
 - Possible test error suggested
 - No agglutinate data with tests

Mohr-Coulomb Peak Strength

- $D_r = 97\% \implies 2.17 \text{ g/cm}^3$
- $D_r = 37\% \implies 1.90 \text{ g/cm}^3$

- MLS-1 strength properties tend to bracket in-situ regolith values
- Cohesion intercept for dense MLS-1 is low in comparison to regolith
- MLS-1 deficiencies that may lead to low cohesion
 - Electrostatic charging
 - Agglutinate particles
 - Highly angular, interlocking cohesion

Conclusions

- MLS-1 is a reasonable simulant of the lunar basalt
 - Similar chemistry
 - Similar engineering properties
 - Lacks the cohesion properties of lunar regolith
- For a more-realistic simulant for engineering
 - Add agglutinates to MLS-1
 - Perform check cohesion and friction properties