

The In-Situ State: The Elusive Ingredient in Lunar Simulant

Ernest S. Berney IV John F. Peters Research Civil Engineers

NASA LRSM Workshop, Jan. 24-26, 2005

NASA Involvement

 Modular Regolith Characterization **Instrument Suite for Construction and In Situ Resource Utilization Surveys** - Project Lead: Dr. Jerome Johnson – CRREL - Mechanical Property Probe Lead Dr. David Cole – CRREL – Geotechnical Property Lead • Dr. Ernest Berney – GSL In-Situ Investigation of Lunar Surface and **Subsurface Material Properties**

Key Issues

 Past Lunar Mission Exploration Primarily shallow depths (< 0.5 m) Shallow excavation (scoops) • Few deep probes New Lunar Missions - Primarily deep depths (2 m) Deep probes – Coring Excavation – Mining

WHAT'S BELOW THE SURFACE?

Regolith Deposition

- Comminution (Meteor Impact)

 Impact fragmentation
 - Mineral melting (Breccias)
 - Consolidation
- Agglutination
 - Melting
 30-50% of regolith
- Mixing

 Mixing
 Interlocking of fragments, breccia and aggultinates

Structure

- Common in Terrestrial Soils
 - Loess
 - Glacial Till
 - Quickclays
- Present in lunar soils
 Partial regolith induration → Quickclay
 Regolith breccia → Glacial Till
 Agglutinates → Loess

Typical Lunar Structure

Intermediate layer, 2, represents complex response due to influence of structure on strength, compressibility and removal

Depositional Colluvium

Comminuted Regolith

Megaregolith

Intact Bedrock

Very loose material

Considerable structure and stability

Very hard material at depth

Beyond range of interest

NASA LRSM Workshop, Jan. 24-26, 2005

4

What do we measure?

 Strength - Friction angle - Cohesion - Angle of Repose Compressibility - Indices - Modulus Rippability - Energy

All these properties have been measured from past missions on reconstituted material

WHAT'S MISSING ?

Influence of Structure

- Strength increases

 Maturity
 Maturity
 - overconsolidation,
 - induration
 - Aggregate interlock
 - Compressibility varies
 Stiff initial response
 - Collapse potential
 - void ratios higher than simulant
 - natural formation prevents achievement of most stable configuration

Links particles like a jigsaw puzzle

What does this mean to ISRU

- Higher energy requirements
 - Probe insertion
 - Rippability/Excavation
 - In-situ strength
- Durability
 - Abrasion
- Drillability
 - What tools work best on the moon
 - What materials should the tools consist of

Current Lab Formation

- Not representated by simulant compaction
 - Lacks natural interlock
 - Lacks induration of mature regolith
- Oxidation of terrestrial basalt simulant alters surface texture from lunar basalts
- Need to create structure with in-situ material !

Creating Structure

- **Crushing of larger** aggregate in-situ
 - Can create impact, i framentation
 - Fill gaps with C compacted regolith
 - Allows for larger void. structure

Creating Structure

Cementatious agents

- Creates bonding within compacted aggregate
- Simulates induration or melting
- Allows for increased resistance to excavation
- Heating
 - Temperature indurate simulant
 - Heat activated epoxy resin coatings

contact melting

Why should we care?

• Energy is the #1 Issue - Conservation is critical to mission **SUCCESS** We do not want to underestimate Limits the potential of extra-terrestrial instruments - Can cause premature failure Cost \$\$ if we are wrong

NASA LRSM Workshop, Jan. 24-26, 2005

What to do?

- Literature can tell us ranges of influence between in-situ and reconstituted terrestrial material

 Provides factor of safety in instrument design for added resistance

 Attempt to simulate structure in
 - laboratory environment
- Use of DEM to predict behavior of soil structure

Conclusions

- New lunar missions seek to explore deeper into the subsurface
- Structure of in-situ regolith will play a role in affecting exploration
- There is a need to account for structure in development of simulant/additives

Questions?

