Mars Science Orbiter (MSO) Science Definition Team (SDT) Update Report

Michael Smith (NASA/GSFC)

3 March 2009

NOTE ADDED BY JPL WEBMASTER: This document was prepared by the Goddard Space Flight Center. The content has not been approved or adopted by, NASA, JPL, or the California Institute of Technology. This document is being made available for information purposes only, and any views and opinions expressed herein do not necessarily state or reflect those of NASA, JPL, or the California Institute of Technology.

Original MSO SDT History:

- Telecons/meetings October–December 2007
- Final written report January 2008
- Report to MEPAG February 2008

MSO SDT Telecon Update:

- Telecon held February 17, 2009
- Briefing to Michael Meyer
- Briefing to MATT-3

The purpose of the SDT Telecon Update was to consider the previous MSO SDT findings in light of:

- Reported detection of methane in the Mars atmosphere and its possible extreme variation in space and time
- The reduced funding available for a 2016 mission opportunity

Questions to the SDT:

- Do the measurement priorities change?
- What is the minimum scientifically credible mission that could be flown to address the measurement priorities?

MSO SDT Telecon Update Participation:

Michael Smith, Chair, NASA Goddard Space Flight Center Don Banfield (not present, sent email), Cornell University Jeff Barnes, Oregon State University Phil Christensen (not present), Arizona State University Todd Clancy, Space Science Institute Phil James, University of Toledo (retired) Jim Kasting, Pennsylvania State University Paul Wennberg, Caltech Daniel Winterhalter, JPL Michael Wolff, Space Science Institute Rich Zurek, JPL (Mars Program Office) Jan Chodas (not present, now on JUNO), JPL Michael Meyer (present at beginning), NASA Headquarters Tomas Komarek, JPL (MSO Mission Concept Manager)

The SDT originally identified five major objectives for MSO:

Atmospheric Composition

Sensitive and comprehensive survey of the abundance and temporal and seasonal distribution of atmospheric species and isotopologues

Atmospheric State

Provide new observations that constrain and validate models (winds), and extend the present record of martian climatology to characterize interannual variability and long-term trends

Surface Change Science

Investigate surface changes as recorded in surface properties and morphologies due to seasonal cycling, aeolian movement, mass wasting, small impact craters, action of present water

Site Certification Imaging

HiRISE-class imaging (~30 cm resolution) for certification of future landing sites

Telecommunications Support

Support relay of science data from, and commands to, landed assets

Given funding limits and the potential importance of the reported methane, the MSO components are prioritized as follows:

1a. Atmospheric Composition

Sensitive and comprehensive survey of the abundance and temporal and seasonal distribution of atmospheric species and isotopologue (not just methane) is the most direct follow-up to the questions raised by the reported methane discovery

1b. Atmospheric State

The first priority is for temperature, dust, and water vapor measurements required to extend long-term climate records for validating transport and photochemical models.

2. Atmospheric State

The second priority is to improve temperature and water vapor measurement accuracy in the presence of dust and to better characterize atmospheric transport by making wind measurements and mapping temporal variations of key transported species (e.g., CO) and methane with good spatial resolution

3. Surface Change Science

This science, important in its own right, does not directly follow up on the reported methane discovery. In a financially constrained environment, it may not fit with instruments required to address (1) and (2) above. Does not necessarily require HiRISE-class resolution.

Site Certification Imaging

HiRISE-class imaging is not included due to resource constraints and science priority

Telecommunications Support

Assumed to be a requirement

Minimum mission ("MSO-min"):

- Include instrumentation (next slide) to support priority #1:
 - Measure concentrations of a suite of trace gases of photochemical and radiative importance, including methane and potential molecular species related to characterizing its origins and loss (life cycle process); emphasis is on detection (bright source, limb path, spectral survey) and low-spatial resolution mapping
 - b) Measure those aspects of atmospheric state needed to constrain photochemical and dynamical (transport) models (T, dust) and to provide context for trace gas detections (dust, H₂O); emphasis is on extending climate record used to validate climate simulations
- Relax constraints for near-polar orbit

Optimize inclination to support solar occultation (atmospheric composition survey) measurements

Sample "strawman" MSO Payload

Solar occultation FTIR spectrometer*

Atmospheric composition: Addresses Priority #1a and some of #1b

Sub-millimeter spectrometer+

Wind velocity and water vapor, temperatures, etc. without dust effects Addresses Priority #2

Wide-angle camera (MARCI-like)*

Daily global view of surface and atmospheric dust and clouds Addresses Priority #1b

Thermal-IR spectrometer (TES-like)*

Daily global observations of temperature, dust, ice, water vapor Direct comparison to previous climatology record Addresses Priority #1b

• High-resolution camera (HiRISE-class or TBD)

Surface change science and site certification Addresses Priority #3

^{* 2016 (}MSO-min) Constrained Payload +included in MSO-lite

MSO Orbit characteristics:

- Near-circular at low altitude (300 km)

Allows best global mapping
Allows most solar occultation opportunities

- Near-polar inclination (82.5°)

Lower inclination gives faster precession of local time and more uniform latitude distribution of solar occultation points

Science requires full diurnal cycle in less than a Martian season

Higher inclination favors polar surface imaging

Desire to image rotational pole at airmass of two or less

 Orbit altitude increased to 400 km at some point for planetary protection

MSO-min (or MSO-lite) Orbit Characteristics:

- Near-circular at low altitude (300 km) unchanged
- High (but not near-polar) inclination (~74°)

Optimized for solar occultation

 Orbit altitude raise an option for relay; consider burn/breakup option for planetary protection

Atmospheric Composition for MSO-min → Same as MSO

Atmospheric evidence for present habitability

Key measurement objectives:

```
Photochemistry (H_2O_2, O_3, CO, H_2O)
Transport (CO, H_2O)
Isotopic Fractionation (isotopomers of H_2O and CO_2)
Surface exchange (CH_4 \text{ and } H_2O)
Inventory (H_2O, HO_2, NO_2, N_2O, CH_4, C_2H_2, C_2H_4, C_2H_6, H_2CO, HCN, H_2S, OCS, SO_2, HCI, CO, O_3)
```

Measurement goals:

Solar occultations to obtain sensitivity of 1–10 parts per trillion Limb-geometry mapping at sensitivity of 1–10 parts per billion with latitude/longitude/altitude/local time coverage

Intermediate Mission (preferred if resources available): MSO becomes "MSO-lite"

- Include MSO-min capabilities (previous slides)
- Augment with instrumentation to address priority 2, with the following prioritized (first to last) capabilities:
 - a) Map selected trace gases (CO, H₂O, H₂O₂, [TBD]) with greater spatial resolution and unaffected by presence of atmospheric dust to better constrain transport models
 - Map temperature with greater spatial resolution and unaffected by presence of atmospheric dust
 - c) Map winds by direct observation
 - ⇒ Capabilities similar to sub-millimeter "strawman" instrument, but there may be other options
- MSO-min orbit is deemed acceptable for MSO-lite

Summary

MSO-min: Minimum mission could follow up on the methane discovery within the harsh constraints outlined for a 2016 U.S. Mars mission

- ⇒ Will significantly improve knowledge of atmospheric composition and chemistry within the context of understanding Mars habitability
- ⇒ Extend record of climatology to characterize long-term trends for climate & transport model validation

MSO-lite: Augmented mission can provide significant gain given increased resources or foreign partnering

- ⇒ More detailed mapping more likely to identify localized source regions
- ⇒ Validate and significantly improve knowledge of current climate and models of transport

MSO: Full-up mission provides opportunity for all of the above, longer life, and surface change detection

Note: Telecom support included in all concepts

Back-Up

MSO: Atmospheric State

Climate processes responsible for seasonal / interannual change

Key measurement objectives:

Wind velocity

Water vapor and atmospheric temperature without influence of dust

Diurnal coverage of all parameters

Vertical profiles of all parameters

Continue climatology monitoring

Measurement goals:

2-D wind velocity, temperature, aerosol optical depth, water vapor at 5 km vertical resolution over broad height range diurnal coverage twice per martian season 85% or better coverage along orbit

- ⇒ Extend record of climatology to characterize long-term trends
- ⇒ Validate and significantly improve models of transport and state

MSO: Surface Change Science

Recent processes of surface-atmosphere interaction

Key measurement objectives:

Polar layered terrain ("Swiss cheese")

Aeolian features (dust devil tracks, streaks, dust storm changes)

Gullies, avalanches, dune motions

Formation of small impact craters over time

Measurement goals:

1 meter resolution sufficient for these goals Ability to image all areas (including poles)

- ⇒ Understanding of active processes and the role of volatiles in this activity
- ⇒ Exchange of volatiles between the polar surface and atmosphere, and the current evolution of the polar terrains