National Aeronautics and Space Administration

Mars Exploration Program Analysis Group July 29, 2009

Rover Family Tree

MSL—The First Astrobiology Mission Since Viking

- Ten instrument packages with the objective to explore and quantitatively assess a region of Mars as a potential habitat for life, past or present.
 - MSL will carry an analytical laboratory of unprecedented capability,
 - SAM: Gas Chromatograph/Mass Spectrometer & TLS
 - In rocks, soil, and atmosphere, will be able to measure mineralogy, organics, and isotopes
 - Chemin: X-Ray Diffractometer for state-of-the-art mineral identification
 - ChemCam: New to planetary exploration instrumentation, is a laser induced breakdown spectroscope for meters-distant remote sensing of elemental/chemical composition.
 - The other instruments
 - MastCam stereo camera, 12 filters, 10 frames/s, 7.4 cm/pixel @ 1km
 - MAHLI color hand lens, 15 um/pixel with white and UV light sources
 - MARDI Mars Descent Imager
 - RAD (ESMD) high-energy radiation (direct & secondary)
 - APXS (Canada) alpha Particle X-ray Spectrometer, all elements above sodium
 - REMS (Spain) pressure, humidity, UV radiation, wind speed, & temperature
 - DAN (Russia) water distribution in the near subsurface
- With its sophisticated instruments, MSL is the first astrobiology mission since Viking, and will characterize the nature of current and ancient Martian environments.

MSL Payload

Delivered to ATLO In Storage @ Instrument Provider In-Work @ Instrument Provider

Remote Sensing (Mast)

ChemCam: Laser Induced
Breakdown Spectrometer & Remote
Micro Imager
Mastcam: Color Medium and NarrowAngle Imager

Contact Instruments (Robotic Arm) •MAHLI: Hand-Lens Imager •APXS: X-Ray Backscatter Spectrometer

Analytical Laboratory •SAM: Gas Chromatograph/Mass Spectrometer/Tunable Laser

•CheMin: X-Ray Diffraction

Environmental Characterization

 MARDI: Descent Imager
 REMS: Meteorological Monitoring
 RAD: Surface Radiation Environment Monitor
 DAN: Neutron Backscatter

Subsurface Hydrogen Detection

MSL Science Payload Status July 2009

Sample Processing System

Turret

MSL Upcoming Milestones

2009

July 31: AA review of SAM

Aug 6: REMS Risk Technical Interchange Review

Aug 19: SAM Go-Forward Review

Aug 13: Mastcam Review and Delivery

Aug 22: CheMin Delivery

Sep 24: MSL V&V Plan Review

Oct: Call for Potential 5th Landing Site Candidate

Oct: REMS: Review and Delivery

Nov 17-19: MSL Readiness-to-Proceed Review

2010

Summer: SAM delivery (TBD Aug 19)

Sep : Landing Site Workshop

MSL Landing Sites

Eberswalde Crater (24°S, 327°E, -1.5 km) contains a clay-bearing delta formed when an ancient river deposited sediment, possibly into a

Holden Crater (26°S, 325°E, -1.9 km) has alluvial fans, flood deposits, possible lake beds, and clay-rich sediment.

Gale Crater (4.5°S, 137°E, -4.5 km) contains a 5km sequence of layers that vary from clay-rich materials near the bottom to sulfates at higher

Mawrth Vallis (24°N, 341°E, -2.2 km) exposes layers within Mars' surface with differing mineralogy, including at least two kinds of clays.

Project has baselined the *option* of adding a new site by early summer 2010 — Bar will be very high from science perspective; Site must be at least as safe as current sites

Mars Science Laboratory

- MSL is the first astrobiology mission since Viking. Ten instrument packages with the objective to explore and quantitatively assess a potential habitat for life, past or present. Analytic and in-situ measurements will provide essential ground truth to anchor regional and global remote sensing mineralogy data
 - These in-situ data will:
 - Test hypotheses of early Martian environmental evolution, including climate history
 - Determine which environments might have best preserved environmental signals, and possibly biosignatures
 - Test interpretations of global mineralogy inferred from orbit
- Feed Forward Engineering:
 - New EDL system will enable future high-mass landings
 - Develop experience with sample collection, manipulation, and sample preparation
 - Targeted landing—critical capability for accessing high-priority science targets
 - Next generation of complex lab instruments to another planetary surface

- Mars Missions -Progress of Capabilities for Mars Exploration

Kg	Pathfinder 1994	MGS 1996	MPL 1998	Odyssey 2001	MER 2003	MRO 2005	Phoenix 2007	MSL 2011
Launch Mass	894	1,060	576	725	1,063	2,180	670	4,000
Fuel	94	300	64	348.7	50	1,149	67	450
Cruise Stage or Orbiter	200	600	82	330	193	860	570	650
EDL System	230	N/A	140	N/A	287	N/A	172	2000
Landed Mass	370	N/A	290	N/A	348 + rover	N/A	350	900
Mobile Mass	10.6	N/A	N/A	N/A	185	N/A	N/A	900
Science Instru- ments	8 kg .75 kg on rover	6 instr. (75kg)	3 instr.	3 instr. (45 kg)	5 instr (5.5 kg)	6 instr. (130 kg)	6 instr. (35 kg)	13 instr. (75.5 kg) (3 shell)

Powered Descent Sky Crane

MSL EDL

Touchdown Bridle/Umbilical Cut, Flyaway

Flight Heat Shield with PICA

ATLO EDL SkyCrane Testing

MSL's value to Society

- MSL will quantitatively assess the habitability through time of a region, based on well-chosen site with stratigraphic sequences demonstrating clear evidence of hydrated minerals and morphologic attributes evincing former interaction with water
- MSL is a critical step towards answering, is there life outside Earth
 - We now believe that Mars preserves a record of habitable environments, some of which may be active today
 - Mars' environmental record is both diverse and dynamic it has changed in time and space and is preserved in the stratigraphic record
 - Our next step is to determine whether or not life ever started on Mars