
Report of the 2018 Joint Mars Rover Mission Joint Science Working Group (JSWG)

Feb. 28, 2012

Dave Beaty, Gerhard Kminek, Allwood, A.C., Arvidson, R.,
Borg, L.E., Farmer, J. D., Goesmann, F., Grant, J. A., Hauber,
E., Murchie, S.L., Ori, G.G., Ruff, S. W., Rull, F., Sephton, M.
A., Sherwood Lollar, B., Smith, C. L., Westall, F., Pacros,
A.E., Wilson, M.G., Meyer, M.A., Vago, J.L., Bass, D.S.,
Joudrier, L., Laubach, S., Feldman, S., Trautner, R.,
Milkovich, S.M.

JSWG Charter

- Joint Science Working Group (JSWG) was chartered by the Joint Mars Exploration Executive Board to serve as the science definition team for a 2018 mission concept
- <u>Assumptions</u>:
 - The joint rover is tightly cost-constrained
 - The joint rover needs to incorporate the scientific objectives and requirements from the ESA ExoMars rover
 - The joint rover needs to incorporate scientific objectives and priorities related to preparing for the eventual return of samples from Mars from the NRC's Decadal Survey and from the MEPAG End-to-End international Science Analysis Group

Contains Pre-decisional Material: For Planning and Discussion Only. Subject to future Approval Processes from both NASA and ESA

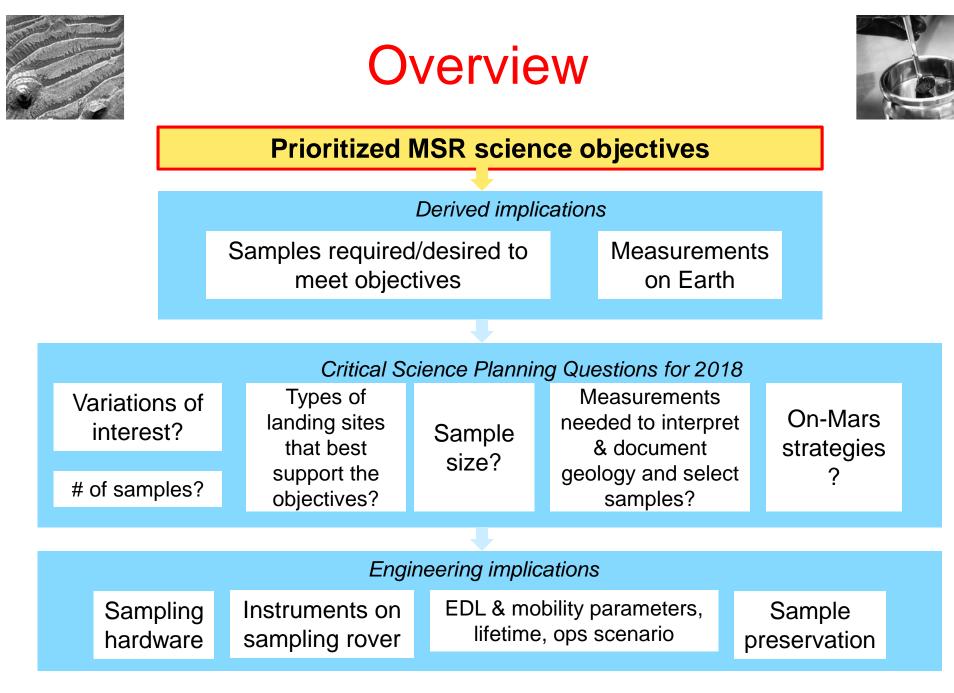
MEPAG E2E-iSAG

Report of the MEPAG E2E-iSAG

Lisbon, Portugal; June 16, 2011

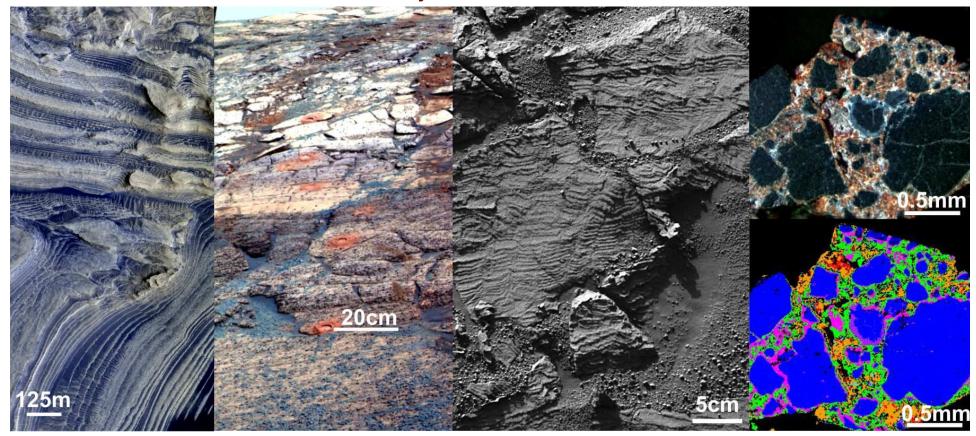
Scott McLennan and Mark Sephton, E2E-iSAG co-chairs, and the E2E-iSAG team

Pre-decisional: for discussion purposes only



The E2E Team

Co-Chair	Mark Sephton Scott McLennan	Imperial College, London, UK SUNY Stony Brook, NY	Organics, ExoMars Sedimentology, geochemistry Co-I MER
	Carl Allen	JSC, Houston, TX	Petrology, sample curation, Mars surface
	Abby Allwood	JPL, Pasadena, CA	Field Astrobio., early life, liason MAX-C
	Roberto Barbieri	Univ. Bologna, IT	Astrobiology, paleontology, evaporites
	Penny Boston	NM Inst. Mining & Tech, NM	Cave geology/biology, member PSS
	Mike Carr	USGS (ret.), CA	Mars geology, water on Mars
	Monica Grady	Open Univ. UK	Mars meteorites, isotop., sample curation
Science Members	John Grant	Smithsonian, DC	Geophys., landing sites, MER, MRO
	Veronika Heber	UCLA	Gas geochemistry
	Chris Herd	Univ. Alberta, CAN	Petrology, sample curation
	Beda Hofmann	Nat. Hist. Museum, Bern, CH	Geomicrobiology, ExoMars (Deputy CLUPI)
	Penny King	Univ. New Mexico	Petrology, geochemistry, MSL
	Nicolas Mangold	Univ. Nantes, FR	Geology, spetroscopy MEX, MSL
		IRSPS, Pescara, IT	Mars geology, sedimentology, MEX, MRO
	Angelo Pio Rossi		Planetary geology, HRSC, SHARAD
	François Raulin	Univ. Paris 12, FR	Astrobio., extraterrestrial material, Deputy MOMA
	Steve Ruff	Arizona State Univ.	MER operations, spectral geology, MGS, MER
	Barb Sherwood Lo	ollar Univ. Toronto, CAN	Astrobology, stable isotopes
	Steve Symes	Univ. Tennessee	REE, geocronology, member CAPTEM
	Peter Falkner	ESA	Advanced mission planning, MSR
Eng. Reps.	Mike Wilson	JPL	Advanced mission planning, MSR
Ex-officio	Dave Beaty	Mars Program Off., JPL	Liason to MEPAG, cat herder



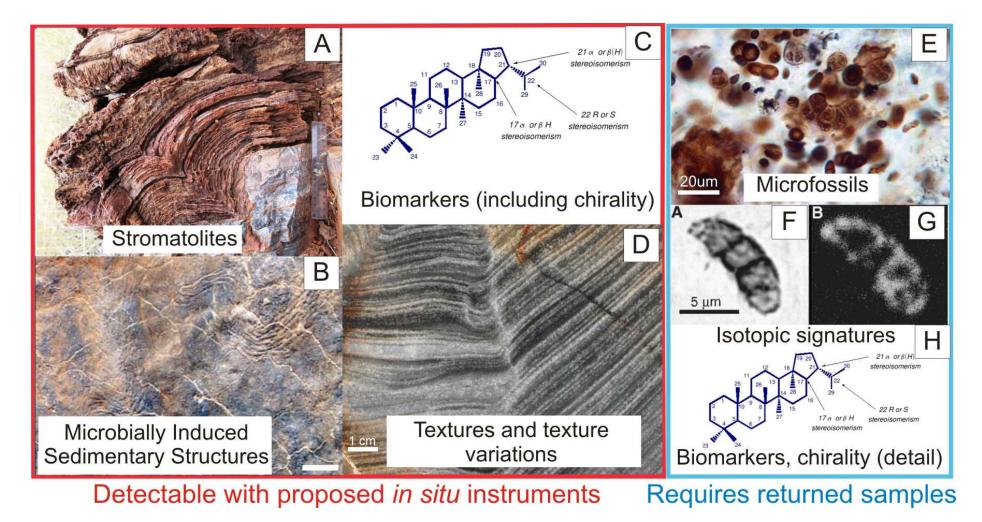
How did this information flow forward to JSWG/JEWG?

Contains Pre-decisional Material: For Planning and Discussion Only. Subject to future Approval Processes from both NASA and ESA

Proposed Objective 1:

Analyze the local geology over kilometer to sub-millimeter scales and to a depth of ~2 meters, with emphasis on supporting the objectives 2–4

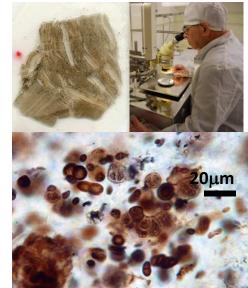
Proposed Objective 2:


Investigate geological settings indicative of past habitability & favorable for preserving physical or chemical signs of life and organic matter

Key Strategy: Seek the signs of life in paleoenvironments with high habitability and preservation potential.

Proposed Objective 3:

Search for evidence of abiotic carbon chemistry, and for physical and chemical signs of life

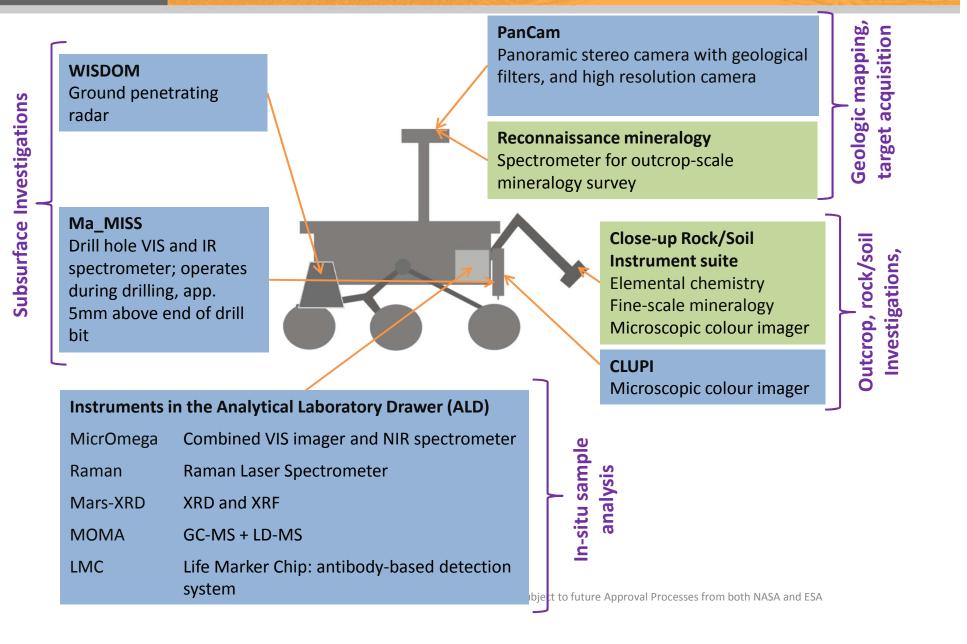

Proposed Objective 4:

Select, establish context for, collect, and cache samples that could be returned to Earth for definitive analysis

Reasons for returning samples for analysis on Earth...

Instrumentation not amenable for flight to Mars.

Use of techniques requiring complex sample preparation.



Application of a virtually unlimited array of different instruments, and investigation pathways that are discovery-responsive.

Five Primary Proposed Science Strategies

- 1. Land and operate a rover safely at a landing site of compelling scientific interest.
- 2. Equip the rover with a set of instruments capable of investigating the surface outcrops, rocks and soils at multiple scales
- 3. Have subsurface exploration capabilities, including a deep drill to support the characterization of the local geology and the search for martian organic chemistry and life.
- 4. Achieve a scientifically compelling cache of samples using several linked strategies, including careful establishment of geologic context, high selectivity from a wide range of possibilities, and sample encapsulation to preserve scientific value.
- 5. Pursue the search for martian life using three complementary investigation strategies: observation of field relationships, in-situ analysis on Mars, and analysis of returned samples.

Instrument Summary

