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Charge transfer between a superconductor and a hopping insulator
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A theory of the low-temperature charge transfer between a superconductor and a hopping insulator
is analyzed, and the corresponding interface resistance is calculated. This resistance is dominated by
proposed electron-hole processes similar to Andreev reflection, but involving localized states in the
insulator. The possibility of a new type of qubit where one of the quantum states is split between
two spatially separated centers is discussed.
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The transmission of the charge through the normal
metal-superconductor interface occurs via the electron-
hole conversion known as the Andreev reflection process:
an electron incident from the metal side with an energy
smaller than the energy gap in the superconductor is con-
verted into a hole which moves backward with respect to
the electron. The missing charge 2e (an electron has
charge −e and a hole +e) propagates as an electron pair
into the superconductor and joins the Cooper pair con-
densate [1]. Correspondingly, a Cooper pair transfer from
the superconductor is described as the Andreev reflection
of a hole. This Andreev transport channel is character-
ized by the so-called Andreev interface contact resistance.
Since transport current is introduced into a superconduc-
tor via normal leads, the Andreev reflection phenomenon
is a foundation for most applications of superconductors
(see Ref. [2] for a review).

There exists however an important experimental sit-
uation of the hopping insulator coupled to a measuring
circuit via superconducting leads (see, for example, [3]).
The transport in hopping semiconductors occurs via lo-
calized non-propagating single particle states [4]. A single
particle transport through the interface though is expo-
nentially suppressed, ∝ e−∆/T , where ∆ is the super-
conductor gap, the temperature, T , being measured in
energy units. At the same time the hopping transport
occurs via single-electron hops. Thus one needs Andreev-
type processes capable to facilitate two particle trans-
port through the hopping insulator/superconductor in-
terface. However, the conventional Andreev reflection
picture does not literally apply. The transport through
such an interface has been discussed in Ref. [5] but no
quantitative theory of hopping transport - supercurrent
conversion was presented.

In this Letter we propose a theory for the transport
through the hopping insulator-superconductor interface
and calculate the corresponding contact resistance. We
show that the low-temperature charge transfer occurs via
the correlated processes mediated by the pairs of hop-
ping centers located near the interface. We demonstrate
that while this process resembles the conventional An-

dreev electron-to-hole reflection into a normal metal, the
exponential suppression of transport specific to a single-
particle processes is lifted. Thus, despite the limitation
in the number of coherent hopping centers that are suit-
able for Andreev transport, the resulting contact resis-
tance can become low as compared to the resistance of
the hopping insulator.

Let a superconductor (S) and a hopping insulator (HI)
to occupy the adjacent 3D semi-spaces separated by a
tunneling barrier (B). The presence of the barrier sim-
plifies calculations which will be made in the lowest non-
vanishing approximation in the tunneling amplitude T0.
This models the Schottky barrier usually presenting at
a semiconductor-metal interface. In the linear response
theory the conductance is determined by the Kubo for-
mula [7] for the susceptibility,

χ(ω) = i

t
∫

−∞

〈[

Î+(t′), Î(t)
]〉

eiωt′ dt′ (1)

as G = limω→0 ω−1 Im χ(ω). Here the current operator
Î(t) is defined as [6]:

Î(t) = ied T0

∫

d2r [a+(r, t)b(r, t) − h.c.] ,

where r is the coordinate in the interface plane, a+(r, t)
and b(r, t) are creation and annihilation operators in the
semiconductor and superconductor, respectively, d is the
electron localization length under barrier. The suscep-
tibility, χ(ω), is calculated by analytical continuation of
the Matsubara susceptibility [8],

χM (Ω) =

∫ β

0

〈TτI(τ)I(0)〉 eiΩτ dτ . (2)

Here Tτ means ordering in the imaginary time, β ≡ 1/T .
In the expression for 〈TτI(τ)I(0)〉 one should keep terms
up to the second order with respect to the tunneling
Hamiltonian,

HT (τ) = dT0

∫

d2r
[

a+(r, τ)b(r, τ) + h.c.
]

. (3)
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Keeping only those second order terms that contain
〈Tτb(r, τ)b(r0, 0)〉 〈Tτb+(r1, τ1)b

+(r2, τ2)〉 products and
thus represent the Andreev-type processes, one arrives
at the expression

〈

Tτ Î(τ)Î(0)
〉

= e2|T0|4
∫

dτ1 dτ2

∏

i

d2ri(A + B) ;

A({xi}) = F (x − x0)F
+(x1 − x2)G(x1, x)G(x2, x0) ,

B({xi}) = F (x − x1)F
+(x0 − x2)[G(x0, x)G(x2, x1)

−G(x0, x1)G(x2, x)] . (4)

Here x ≡ {r, τ}, x0 ≡ {r0, 0}, xi ≡ {ri, τi}; F (x − x′) =
〈Tτb(r, τ)b(r′, τ ′)〉 is the anomalous Green function in the
superconductor while G(x, x′) = −〈Tτa(r, τ)a+(r′, τ ′)〉 is
the Green function in the hopping insulator. One can
show that the Andreev-type process we are interested in
is given by the first term of B({xi}) in Eq. (4). The
relevant diagram is shown in Fig. 1. Keeping only this

FIG. 1: The diagram describing processes of Andreev type.
Lines with one arrow correspond to the Green’s functions in
the hopping insulator. They are associated either with center
1, or with center 2. Lines with two arrows correspond to
anomalous Green’s functions, see [8]. Squares correspond to
matrix elements of the tunneling Hamiltonian (3).

term and using the Matsubara frequency representation
one obtains

χM (Ω) = 2Te2|T0|4d4

∫

∏

i

d2ri

∑

ωn

F (r− r1, ωn)

×F+(r0 − r2, ωn)G(r0, r, ωn − Ωm)G(r2, r1, ωn).(5)

Here Ωm = 2πmT , ωn = (2n+1)πT . The normal Green’s
functions can be expressed through the wave functions of
the localized states, ϕs(r) = (πa3)−1/2 exp(−|r − rs|/a),
as

G(r, r′, ωn) =
∑

s

ϕ∗
s(r)ϕs(r

′)

iωn − εs
. (6)

Here we have assumed that for all of the sites under con-
sideration the voltage drops between the site and the su-
perconductor are the same. This is true when the partial
interface resistance due to an electron-hole pair is much
larger than the typical resistance of the bond forming the
percolation cluster. This situation resembles that consid-
ered by Larkin and Shklovskii for the tunnel resistance
between the hopping conductors [9].

The anomalous Green function, F (R, ωn), is

F (R, ωn) =
∆

(2π~)3

∫

d3p

(2π~)3
∆

∆2 + ξ2
p + ω2

n

eip·R/~

=
πgm∆

2
√

∆2 + ω2
n

sin(RkF )

RkF
e−

R
πξ

√
∆2+ω2

n

∆ . (7)

Here ξp = (p2 − p2
F )/2m, gm = mpF /π2

~
3 is the density

of states in a metal, kF = pF /~, while ξ is the coher-
ence length in a superconductor. Since F (R) oscillates
with the period 2π/kF integration over spatial coordi-
nates along the interface yields the factor a4/k6

F |ρls|2.
Here ρls is projection of the vector Rls connecting the
centers on the interface plane.

The summation over the Matsubara frequencies, ωn, is
standard,

T
∑

ωn

f(ωn) =

∮

dε

4πi
f(ε) tanh

ε

2T
.

The contour of integration rounds the cuts |ε| > ∆ along
the real axis. After the proper analytical continuation
one ends up with the following expression for the con-
ductance:

G =
π

2

e2

~

g2
m|T0|4d4

Tk6
F a2

∑

s6=l

n(εs)n(εl)

|ρls|2
(

∆2

∆2 − ε2
s

)

×e−2(rs⊥+rl⊥)/a e−2|ρls|
√

∆2−ε2
s/πξ∆δ (εs + εl + Uc) .

Here n(ε) ≡
(

eε/T + 1
)−1

is the Fermi function, while Uc

is the energy of the inter-site Coulomb repulsion.
In the following we replace

∑

l,s by

g2
∫

d3rl d3rs dεl dεs where g is the the effective
density of states in the hopping insulator. This is the
density of states in the layer adjacent to the interface.
Due to screening by the superconductor it is not affected
by the Coulomb gap and can be considered as constant.
Since we are dealing with the pairs close to the interface
the Coulomb repulsion is suppressed by screening.
This screening can be conveniently regarded as an
interaction of the charged particle with its image having
the opposite charge. Thus the Coulomb correlation
manifest themselves as the dipole-dipole interaction
and for ρsl ≫ a one arrives at Uc = e2a2/κρ3

sl. Re-
quiring it to me smaller than T one obtains a cut-off
ρsl ≡ ρsc > aζ2/3 = rh/ζ1/3. Here ζ ≫ 1 is the critical
hopping exponent [10], while rh = aζ is the typical
hopping distance in the bulk.



3

In what follows we restrict ourselves to the low-
temperature case, T ≪ ∆, because otherwise the effect
would be dominated by a quasiparticle transfer. In this
case the combination (2T )−1 cosh−2(εs/2T ) can be re-
placed by δ(εs).

As a crude estimate, we will assume that d4 ∼ k−4
F

while T0 ≈ Tpe
−Λ with Tp ≈ εF . Bearing this in mind

one has g2
mT 2

p /k6
F ∼ g2

mε2
F /k6

F ∼ 1. As a result,

G ∼ e2

~

[

gaS
Tp

(akF )2

] [

gaρ2
sc

Tp

(akF )2

]

e−4Λ . (8)

Here S is the contact area.
One can compare the estimate (8) with the conduc-

tance of a boundary between a normal metal and a hop-
ping insulator,

Gn ∼ e2

~
(gaS)

Tp

(akF )2
e−2Λ .

Taking into account that Tp/(akF )2 ∼ εs where εs is
the typical energy of a localized state we interpret the
product gaSTp/(akF )2 as the number of localized cen-
ters within the layer of a thickness a near the boundary
interface. The ratio G/Gn is

G
Gn

=

[

gaρ2
sc

Tp

(akF )2

]

e−2Λ ≈ gaρ2
scεse

−2Λ . (9)

The first factor is just the probability to find a close pair
of localized centers which dominate the Andreev pro-
cesses discussed above.

The above approach holds, as we have already men-
tioned, only when the resistance of the typical Andreev-
type resistor is much larger then the critical hopping re-
sistor, Rh = (h/e2γ) eζ. Here γ is a dimensionless factor
depending on the mechanism of electron-phonon interac-
tion. This inequality holds with the exponential accuracy
as long as 4Λ > ζ.

There are many realistic situations where the barrier
strength, Λ, is not too large. In particular, that may
be the case of the Schottky barrier at the natural inter-
face [5]. Consequently, if ζ ≫ 1, i. e. for a situation
remote from a metal-to-insulator transition, the proce-
dure of summation over the localized states should be
modified. Namely, the choice of the pairs facilitating the
charge transport depends on structure of the bonds con-
necting these pairs to the percolation cluster.

Let us note that according to the above considerations
the voltage applied to the hole is concentrated on the
bonds connecting the superconductor to the percolation
cluster in the HI. Correspondingly, these bonds end at
the sites forming the Andreev-type resistor.

To find the typical Andreev-type resistor let us spec-
ify the thickness z of the layer adjacent to the interface
containing the electron-hole pairs with the typical spa-
tial separation r12 > z between the two sites forming the

pair. Correspondingly, r12 describes also the typical dis-
tance between the “ending” sites of the bonds belonging
to the percolation cluster. According to the percolation
theory [10], if one specifies the exponents for the critical
resistance within the bonds as ζ+δζ then the typical dis-
tance between the “ending” sites of the bonds in question
is L ∼ aζ(ζ/δζ). Equating this length to r12 we relate
r12 to δζ. The relation between z and r12 can be found
by optimizing the total resistance of the circuit including
the Andreev resistor and the bond connected in series.
According to the estimates given above the conductance
of the Andreev-type resistor is

δG12 ≥ e2

~

(

a

r12

)2

exp

(

−4Λ − 4z

a

)

. (10)

Hence, the condition for the involved resistance to be
smaller then or at least equal to the resistance of the
bonds reads as
(

a

r12

)2

exp
(

−4Λ − 4
z

a

)

≤ γ exp

(

−ζ − ζ2 a

r12

)

. (11)

The sum of the resistances represented by the left hand
and right hand sides of Eq. (11) should be minimized
with respect to parameters z and r12. Thus one estimates
z ≈ aζ/4. With the logarithmic accuracy one can neglect
both Λ and ln γ and obtain the ratio κ = r12/a from the
equation

κ ln κ = ζ2 . (12)

As it follows from the above considerations, δζ/ζ ≈
ln κ/ζ ≪ 1.

Denoting the resistance for the i-th pair, which can be
estimated from Eq. (10), as RA,i and the bond resistance
as Rc,i one can define the Andreev boundary resistance
as, see [5],

RA ≡
(

∑

i

1

(RT,i + Rc,i)

)−1

−
(

∑

i

1

Rc,i

)−1

=

∑

i

RA,i

Rc,i(RA,i + Rc,i)

∑

i

1

Rc,i

∑

i

1

Rc,i + RA,i

. (13)

The physical meaning of RA is the difference between
the values of the boundary resistance in the supercon-
ducting and normal states of the lead. Since RA,i are
exponentially scattered only those with RA,i ≈ Rc,i effec-
tively contribute. The relative part of such Andreev-type
resistors is just ζ−1. Taking into account that the total
number of the bonds is ∼ S/L2, while the typical bond
conductance, Rc, is of the order of the r.h.s. of Eq. (11)
the resulting Andreev resistance can be estimated as

RA ∼ Rcr
a2

S

κ
4

ζ
. (14)
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Here Rcr = (h/e2γ)eζ is the critical hopping resistance
while κ is given by Eq. (12). The resistance estimated
above can be experimentally measured as a magnetoresis-
tance in magnetic fields higher than the critical field for
superconductivity (similar effect for quasiparticle chan-
nel was studied in [5]).

Note that, in principle, the transport involving dou-
ble occupied localized states is possible. However, such
a transport would require an additional activation expo-
nential factor, ∝ e−U/T , where U is the on-site corre-
lation energy. One can also consider processes where a
double occupied center (so-called D−-center) serves as an
intermediate state for the phonon-assisted two-electron
tunneling. This channel is unfavorable (at least in the
case of a large interface barrier) because of the above-
mentioned exponential factor and a small preexponential
factor due to phonon-assisted tunneling. For the weak
tunnel barriers the conductance is controlled by “typical”
hopping sites. In this case D− channel is suppressed ei-
ther by the additional tunneling exponential, ∝ e−4rh/a,
or by a small probability to form a close triple of hopping
sites. Thus we believe that in this case the D− channel
can be also neglected.

It is worth mentioning that here we operate with a
coherent superposition of two quantum states: (i) two
empty centers and N Cooper pairs in a superconduc-
tor, and (ii) two center occupied by electrons with op-
posite spins and N − 1 Cooper pairs in a superconduc-
tor. These two states, in principle, can act as a qubit in
which both the longitudinal and transverse splitting can
be controlled by properly designed gates. An interest-
ing feature of such structure is that one of the quantum
states involves spatially separated centers. Thus knowing
the state of one center we automatically obtain informa-
tion about the state of the second center. The qubit can
be manipulated by two gate electrodes each of which be-
ing attached to one dot.

To conclude, we have analyzed low-temperature charge
transfer between a superconductor and a hopping in-
sulator and calculated the interface resistance. This

resistance is dominated by Andreev-type processes in-
volving localized states in the insulator. We emphasize
that only these processes allow low-temperature measure-
ments of hopping transport using superconducting elec-
trodes. Even in the case when the interface contribution
is less than the typical resistance of the hopping system
the former can be separated by a relatively weak mag-
netic field which drives the superconductor to the normal
state, but doe not affect the hopping transport.
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