
Europhys. Lett., 51 (1), pp. 110–115 (2000)

EUROPHYSICS LETTERS 1 July 2000

Vortex plasma and transport in superconducting films
with magnetic dots

D. E. Feldman1,2,3, I. F. Lyuksyutov1,4, V. L. Pokrovsky1,2 and
V. M. Vinokur5

1 Department of Physics, Texas A&M University - College Station, TX 77843, USA
2 Landau Institute for Theoretical Physics
142432 Chernogolovka, Moscow region, Russia
3 Condensed Matter Physics Department, Weizmann Institute of Science
76100 Rehovot, Israel
4 Institute of Physics - 252028 Kiev, Ukraine
5 Material Science Division, Argonne National Laboratory - Argonne, IL 60439, USA

(received 9 March 2000; accepted in final form 2 May 2000)

PACS. 74.60.Ge – Flux pinning, flux creep, and flux lattice dynamics.

Abstract. – We consider a superconducting film supplied with a magnetic dot array. The
dot magnetization is random and oriented perpendicular to the film. The concentration of the
superconducting vortices bound to the dots is a step-like function of the dot magnetic flux.
The concentration of the unbound vortices is an oscillating function of the same variable. The
resistivity is determined by the thermal drift of the vortices through the corner points of a
checker-board formed by positive and negative unbound vortices.

The emerging heterogeneous magneto-superconducting systems open a new class of phys-
ical phenomena related to formation of the spatially modulated vortex plasma, analogous by
its structure to the electrone-hole liquid in overcompensated semiconductors. The current
interest is motivated not only by an important technological promise, but also by the wealth
of physical effects produced by the interplay of inhomogeneous magnetic field acting on super-
conducting film and the potential relief due to induced superconducting vortices. In this letter
we focus on the vortex plasma which consists of spatially separated vortex nano-droplets with
alternating sign pinned on the nanoscale. Such a plasma appear in the extensively investi-
gated arrays of magnetic dots deposited on thin (about 100 nm) superconducting films [1]. It
was predicted [2] that the magnetic dots with moments normal to the film induce randomly
oriented vortices upon zero-cooling below superconducting transition temperature Tc. These
vortices are localized near their parental dots and, in their turn, create a potential relief fa-
voring thermal generation of free vortex pairs. Secondary vortices are not bound by dots.
Therefore, the pairs will dissolve and vortices will separate according to their signs giving rise
to a peculiar random checker-board structure (see fig. 1). A typical size of the cell in such a
checker-board is the effective penetration length in the film λeff = λ2/d, where λ is the London
c© EDP Sciences
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Fig. 1 – The checker-board average structure of the vortex plasma.

penetration length and d is the sample thickness [3]. The unbound vortices were suggested to
be in a resistive state [2].

We study the thermodynamics and transport of such checker-board vortex plasma. We find
the dependence of the concentrations of bound and unbound vortices on the magnetic moment
of a single magnetic dot and temperature. Having established thermodynamic properties of
vortex plasma, we calculate the resistivity of this system.

The model. – The random potential favoring formation of the vortex plasma is the
superposition of slow (logarithmically) varying single-bound-vortex potentials. For the sake
of simplicity we replace this slowly varying potential V (r) by a potential having a constant
value within the single cell: V0 = 2ε0 at the distance r < λeff and zero at r > λeff , where
ε0 = Φ2

0/(16π
2λeff), Φ0 is the magnetic flux quantum. Considering the film as a set of almost

unbound cells of the linear size λeff we arrive at the following Hamiltonian for such a cell:

H = −U
∑

i

σini + ε
∑

i

n2
i + 2ε0

∑
i>j

ninj , (1)

where ni is integer vorticity on either a dot or a site of the dual lattice (between the dots)
which we conventionally associate with location of unbound vortices. σi = ±1, where the
subscript i relates to the dot, describes the random sign of the dot magnetic moments. σi = 0
on the sites of the dual lattice. The first term of the Hamiltonian (1) describes the binding
energy of the vortex at the magnetic dot and U ≈ ε0Φd/Φ0, with Φd being the magnetic flux
through a single dot. The second term in the Hamiltonian is the sum of single vortex energies,
ε = ε0 ln(λeff/a), where a is the period of the dot array, ξ is the superconducting coherence
length. The third term mimics the intervortex interaction. Redefining the constant ε, one
can replace the last term of eq. (1) by ε0(

∑
ni)2. The sign of the vorticity on a dot follows

two possible (“up-” and “down-”) orientations of its magnetization. The vortices located
between the dots (ni on the dual lattice) are correlated on the scales of order λeff and form
the above-mentioned irregular checker-board potential relief.

Thermodynamics. – We consider a cell with a large number of dots of each sign
∼ (λeff/a)2 � 1. The energy (1) is minimal when the “neutrality” condition Q ≡ ∑

ni = 0
is satisfied. Indeed, if Q �= 0 the interaction energy grows as Q2, whereas the first term of
the Hamiltonian behaves as |Q| and cannot compensate for the last one unless Q ∼ 1. The
neutrality constraint means that the unbound vortices screen almost completely the “charge”
of those bound by dots, that is K ∼ (N+ −N−) ∼

√
N± ∼ λeff/a, where K is the difference

between the numbers of positive and negative dots and N± are the numbers of positive and
negative vortices, respectively. Neglecting the total charge |Q| as compared with λeff/a, we
minimize the energy (1) accounting for the neutrality constraint. At Q = 0 the Hamiltonian
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(1) can be written as the sum of one-vortex energies:

H =
∑

Hi; Hi = −Uσini + εn2
i . (2)

The minima for anyHi is achieved by choosing ni = n0
i , an integer closest to the magnitude

σiκ = σiU/(2ε). The global minimum consistent with the neutrality is realized by values of ni

that differ from the local minima values n0
i not more than over ±1. Indeed, in the configuration

with ni = n0
i , the total charge |

∑
n0

i | ∼ κ|
∑
σi| = κK. Hence, if κ	 λeff/a, then the change

of the vorticity at a small part of sites by ±1 restores neutrality. To be more specific, let us
consider K > 0. Let n̄ be the integer closest to κ, and consider the case κ < n̄. Then the
minimal energy corresponds to a configuration with vorticity ni = −n̄ at each negative dot
and with vorticity n̄ or n̄ − 1 at positive dots. The neutrality constraint implies that the
number of positive dots with vorticity n̄ − 1 is M = Kn̄. In the opposite case κ > n̄ the
occupancies of all the positive dots are n̄, whereas the occupancies of the negative dots are
either n̄ or n̄+1. Note that in our model the unbound vortices are absent in the ground state
unless κ is an integer. Indeed, the transfer of a vortex from a dot with the occupancy n to
a dual site changes the energy by ∆E = 2ε(κ − n + 2). Hence, the energy transfer is zero if
and only if κ is an integer, otherwise the energy change upon the vortex transfer is positive.
At integer κ, the number of the unbound vortices can vary from 0 to Kn̄ without change of
energy. The ground state is degenerate at any non-integer κ since, while the total number of
dots with different vorticities is fixed, the vortex exchange between two dots with vorticities n
and n± 1 does not change the total energy. Thus, our model predicts a step-like dependence
of dot occupancies on κ at the zero temperature and peaks in the concentration of unbound
vortices as shown in fig. 2. The thermal behavior of the model is governed by its partition
function

Z =
1
2π

∫ +∞

−∞
dk

∑
ni

exp
[
− H̃

T

]
, (3)

where H̃ is the truncated Hamiltonian which includes the two first terms of eq. (1) but no
intervortex interactions; the integration over k ensures the neutrality. After the summation
over ni the integral can be calculated by the saddle-point method. The result is

Z = Θ
N+K

2 (x, ik0 + y)Θ
N−K

2 (x, ik0 − y)ΘN (x, ik0) , (4)

where x = ε/T , y = U/T , k0 is the saddle-point, and

Θ(x, y) =
n=+∞∑
n=−∞

exp[−xn2 + yn] . (5)

The function Θ(x, y) can be expressed in terms of the elliptic theta-functions [4]. Since
γ = K/N is small, the saddle-point value k0 is also small and assumes the form

k0 =
2iγF (x, y)

G(x, y) +G(x, 0)
, (6)

where F (x, y) = ∂/∂y[lnΘ(x, y)], G(x, y) = −∂/∂x[lnΘ(x, y)] − (F (x, y))2. Let Ñ± denote
the absolute values of the vortex charge on all positive (negative) dots, n± = Ñ±/N . Then

n ≡ n+ + n− =
1
N

∂

∂y
[lnZ(x, y)] = F (x, y) , (7)



D. E. Feldman et al.: Vortex plasma and transport in superconducting etc. 113

0 1 2 3 4 5
κ

0

2

4

6

q/
γ

Fig. 2

0 0.2 0.4 0.6 0.8 1
t

0

1

2

3

4

ρ,
 m

Ω
Fig. 3

Fig. 2 – The average number of the unbound vortices in the cell of size a via the parameter κ
proportional to the dot magnetic moment. The dot-dashed line corresponds to T/ε0 = 0.15, the solid
line corresponds to T/ε0 = 0.4, the dashed line corresponds to T/ε0 = 2.

Fig. 3 – The static resistance ρ of the film vs. dimensionless temperature t = T/Tc at typical values
of parameters.

q ≡ n+ − n− = 2γF (x, y)G(x, 0)
G(x, y) +G(x, 0)

. (8)

The values (7) and (8) can be treated as the concentrations of the bound and unbound
vortices, respectively. The dependencies of the unbound vortex concentration on κ = y/(2x)
for several values of x = ε/T are shown in fig. 2. Oscillations are well pronounced for x � 1
and are suppressed at small x (large temperatures). At low temperatures, x � 1, the half-
widths of the peaks in the density of the unbound vortices are ∆κ ≈ 1/x and the heights of
peaks are ≈ γn.

Incomplete screening of the intervortex interactions also smears the peaks. Since the
relative amplitude of the fluctuations of interaction energies is a/λeff , the half-widths of the
peaks due to these fluctuations is of the same order of magnitude. In the presence of the
external magnetic field B the neutrality constraint is to be replaced by the condition Q =
Bλ2

eff/Φ0 (Φ0 is the magnetic flux associated with a vortex), and the above calculations can
be carried over to the finite field case. The density of the bound vortices does not depend on
the field up to B ∼ Φ0/a

2, while the density of unbound vortices q changes substantially even
at small fields B ∼ γΦ0/a

2:

q =
(b+ 2γF (x, y))G(x, 0)
G(x, y) +G(x, 0)

, (9)

where b = Ba2/Φ0. At b > 2γκ the irregular checker-board vanishes and vortices of one sign
determined by the magnetic field prevail. The oscillations of q vs. κ vanish at b ∼ γ or x ∼ 1.
At b	 γ the only qualitative change in the κ-dependence of the density is the appearance of
an additional maximum at κ = 0.

Vortex transport. – At moderate external currents j the vortex transport and dissipation
are controlled by percolation of unbound vortices through the corners of the checker-board
cells where the saddle-points in the potential relief for the vortices are located.
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The typical energy barrier associated with the corner ridge is ε0, this barrier indeed exceeds
the bulk single vortex barriers due to point defect pinning [5], thus dominating the transport.
The unbound vortex density is m ∼ a−2γ ∼ (aλeff)−1 and oscillates with κ as was shown
above. The average distance between the unbound vortices is l ∼ √

aλeff , which is also
an average distance between the corner saddle-point and the nearest unbound vortex. The
transport current exerts the Magnus (Lorentz) force FM = jΦ0/c acting on a vortex. Since
the condiditon T 	 ε0 is satisfied in the vortex state everywhere except for the regions too
close to Tc, the percolation through the coner occurs via the thermally activated jumps with
the rate

ν = ν0 exp[−ε0/T ] = (µjΦ0/cl) exp[−ε0/T ], (10)

where µ = (ξ2σn)/(4πe2) is the Bardeen-Stephen vortex mobility [6]. The induced electric
field near the corner is, accordingly,

Ec = lḂ/c = mΦ0νl/c , (11)

The Ohmic losses per corner are Wc = jEcλeffa = jΦ0νl/c giving rise to the dc resistivity as

ρdc =
Wc

j2λ2
eff

=
µΦ2

0

c2λ2
eff

exp[−ε0(T )/T ] . (12)

The energy barriers at the corner are random and fluctuate around ε0; this average value
of the corner barrier corresponds to the percolation level through the checker-board.

For typical values ε0|T=0/Tc ∼ 2, λeff = 10−3 cm, µ ∼ 2 × 1015 CGS the dependence of
ρdc on T is shown in fig. 3. Interestingly, the static resistivity does not depend on the dot
density, but is proportional to the corner density λ−2

eff . Note the non-monotonic dependence of
ρdc on temperature T . The low fequency, ω 	 ∆, ac resistivity is governed by two competing
processes, corresponding to two kinds of motion each unbound vortex can participate in. The
first process is the bulk energy dissipation due to oscillations of unbound vortices within the
cells of the checker-board [7]. The second process is the activation of the vortices through the
corners of the irregular checker-board considered above. Summing up the ac contributions
from different channels similarly to [7] we arrive at

ρac = ρdc(1 + iω/ν) +
iqωΦ2

0

c2(−αL + iωη)q2
, (13)

where αL � ε0ln(λeff/a)/λ4
eff is the rigidity of a random potential well associated with the

bulk pinning, and η is the vortex viscosity. The predicted oscillations of q vs. κ can be
observed in the high-frequency limit of ρac. In conclusion, we have found the density of the
unbound vortices in the superconducting film supplied with the periodic array of ferromagnetic
randomly magnetized dots. We have found that this density is an oscillating function of the
flux through a dot. The resistivity of such a system is determined by thermally activated
jumps of vortices through the corners of the irregular checker-board formed by the positive
or negative unbound vortices and oscillates with Φd. These oscillations can be observed by
additional deposition (or removal) of the magnetic material to the dots.
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