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Depinning of a vortex chain in a disordered flow channel
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PACS. 74.60.Ge – Flux pinning, flux creep, and flux-line lattice dynamics.
PACS. 71.45.Lr – Charge-density-wave systems.
PACS. 83.50.Lh – Slip boundary effects (interfacial and free surface flows).

Abstract. – We study depinning of vortex chains in channels formed by static, disordered
vortex arrays. Depinning is governed either by the barrier for defect nucleation or for defect
motion, depending on whether the chain periodicity is commensurate or incommensurate with
the surrounding arrays. We analyze the reduction of the gap between these barriers as a
function of disorder. At large disorder, commensurability becomes irrelevant and the pinning
force is reduced to a small fraction of the ideal shear strength of ordered channels. Implications
for experiments on channel devices are discussed.

The depinning and dynamics of periodic elastic media in a random potential have received
a great deal of recent attention [1]. It was shown, in particular for vortex lattices (VLs) in
superconductors, that the depinning transition in most cases involves plastic deformations [2].
A system in which plastic depinning can be studied in a controlled way is that of narrow, weak
pinning flow channels in a superconducting film [3]. In such a system, strongly pinned vortices
in the channel edges (CEs) provide confinement as well as an effective pinning potential for
chains of vortices inside the channel. By changing the magnetic field B, one can vary the
ratio between channel width and lattice spacing and thus induce incommensurability between
the vortex spacing inside and outside the channel. This leads to topological defects in the
channel which sensitively affect the threshold for plastic flow, as evidenced by oscillations of
the critical current density Jc vs. field [3].

Simulations of channels with perfect hexagonal vortex arrays in the CEs showed sharp
peaks in Jc for channel widths w equal to an integer number n of vortex row spacings, i.e.
w = nb0. At mismatch (w �= b0) defects occurred in the channel and Jc vanished due to the
small Peierls barrier for defect flow [4]. This, however, contrasts the smooth oscillations found
experimentally. Moreover, in reality the CE arrays may contain quenched positional disorder
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Fig. 1 – Simulated f -v curves at weak disorder (∆ = 0.025) for w/b0 = 1 (•) and w/b0 = 0.98 (◦)
(dashed and full lines are the respective results for ∆ = 0). Inset: channel geometry with pinned
vortices in the gray areas. Their equilibrium positions rn,m are denoted by (◦). The disordered arrays
(with the shifts dx exaggerated for clarity) are denoted by (•).

due to random pinning. This should modify Jc and its dependence on commensurability. In
this letter we consider the simplest near-to-commensurability situation w ∼ b0, and investigate
the effect of disorder on depinning of a single vortex chain. We find that commensurate chains,
with a periodicity equal to that of the VL in the CEs, depin at a force fn below the ideal
shear strength f0

c by nucleation of defect pairs. At incommensurability, fc is determined by
the pinning force fd of existing defects. At weak disorder, a gap is found between fn and
fd, but for larger disorder commensurability becomes irrelevant and fc saturates at a small
fraction of f0

c . This has important consequences for the interpretation of the experiments [3].
Generally, our results are relevant to a wealth of 1D problems including models for interface
growth [5], dynamics of Josephson junctions [6] and charge density waves (CDWs).

We consider a channel at T = 0 with boundaries (CEs) formed by two static, disordered
arrays with vortex positions Rn,m = rn,m + dn,m, where rn,m denote the hexagonal lattice
with spacing a0 = 2b0/

√
3 (see the inset to fig. 1), the channel width is defined by the spacing

between rows m = ±1 and dn,m are random shifts. We restrict ourselves to longitudinal
shifts [7] and choose dn,m = dn�ex such that the strain (dn+1−dn)/a0 is uniformly distributed
in the interval [−∆,∆] with ∆ the disorder parameter. The field B sets both the vortex density
in the CEs (ρe = (a0b0)−1 = B/Φ0 with Φ0 the flux quantum) and the density ρc = (aw)−1

inside the channel. Hence, vortices in the channel have an average spacing a = a0b0/w which
can be commensurate with the CE arrays (w = b0, a = a0) or incommensurate (a �= a0). The
equation of motion for vortex i in the channel is

γ∂tri = f −
∑
j �=i

∇V (ri − rj)−
∑
n,m

∇V (ri − Rn,m). (1)

V (r) is the interaction potential, j labels other vortices in the channel, γ = BΦ0/ρf with ρf
the flux flow resistivity and f = JΦ0 is the drive along x due to a uniform current density J
applied perpendicular to the channel.

For ∆ = 0 the vortex chain can be described by a Frenkel-Kontorova model for interacting
particles in a periodic potential [4]. The ratio between the chain stiffness and the height of the
periodic potential is given by g ∝ λ/a0 � 1 with λ the penetration depth. A commensurate
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Fig. 2 – Evolution of longitudinal displacements ui(t) plotted for clarity in a transverse way vs. x
(∆ = 0.025): (a) Nucleation of defect pairs in the commensurate chain of fig. 1 (L = 1000a0).
(b) Transient response for a system with L = 3000a0. The labels 1 and 2 mark competing nucleation
centers in the long-time dynamics.

chain depins uniformly at a critical force fc = µ = 2a0c66/π
√
3 (c66 is the shear modulus)

with a velocity v =
√

f2 − µ2/γ. At incommensurability, defects of size ld = 2πa0
√

g � a0
are generated. Their pinning barrier and the critical force are essentially vanishing. For f < µ
and small defect density, given by cd = |a−1

0 − a−1| � l−1
d , the motion of defects leads to a

low mobility regime, where v = cdv
0
da0 with v0d = (π2√g/2γ)f the pure defect velocity [8].

We start with a numerical study of the behavior in the presence of disorder. Equation (1)
was solved using a modified London form for V (r) which yields the correct shear modulus [4].
We used cyclic boundary conditions, channels of length L ≥ 1000a0 and we recorded the
velocity v(f) = 〈ẋi〉i,t and vortex positions xi(t).

The data points in fig. 1 show f -v curves of a commensurate and an incommensurate chain
for ∆ = 0.025. We first focus on the commensurate case. Compared to the result for ordered
CEs (dashed line), fc in the presence of disorder is clearly reduced. The origin of this reduction
is that the random strains lower the energy barrier for formation of discommensuration pairs
in the chain (interstitial/vacancy pairs in the 2D crystal formed by the chain and the CEs).

We show the depinning process in detail in fig. 2a by plotting the time evolution of the
displacements ui = xi− ia0 [9]. At t = t1, the force is increased to a value f > fc. The motion
starts at an unstable site in the chain by nucleation of a vacancy/interstitial pair shown as
steps of ±a0 in u. We denote the force at which this local nucleation occurs by fn. The
process at this site repeats periodically with rate Rn ∝ (f − fn)β and a depinning exponent
β = 0.46±0.04, as previously reported for 1D periodic media [10]. Due to the nucleation center,
a domain forms with defect density cd = Rn/〈vd〉 and a net velocity v = cd〈vd〉a0 = Rna0 with
〈vd〉 the average defect velocity  v0d, see below. In a larger system (fig. 2b), a distribution of
unstable sites p with local rate Rn,p initially leads to the growth of several domains. However,
when two domains with rates Rn,1 > Rn,2 meet, their interstitials and vacancies annihilate
and domain 1, with the larger nucleation rate, then expands at the cost of domain 2 with a
rate ∼ (R1

n − R2
n). The stationary state, covering the entire system, is thus governed by the

nucleation center with the smallest local threshold fmin
n .

Next, we turn to the f -v curves in fig. 1 at incommensurability (w/b0 = 0.98, small defect
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Fig. 3 – Threshold force fc, defined by a criterion vc ≈ 0.02µ/γ, vs. ∆ for w = b0 (•), w/b0 = 0.98
(◦) and w/b0 = 0.95 (�). The thick solid and dashed lines represent eqs. (5) and (6). The typical
disorder strengths ∆c and ∆∗ are indicated. The insets show f -v curves for ∆ > ∆c.

density cd ∼ 1/2ld). In contrast to the curve for ∆ = 0 (full line), the data for ∆ = 0.025 show
a significant threshold force due to pinning of the existing defects by random strains in the
CEs. We define the pinning force for a single defect as fd(x) with a distribution {fd} along
the channel and a maximum value fmax

d . The shape of the distribution is roughly Gaussian
and has a width ∼ 0.1µ. The threshold force for a single defect will be fc = fmax

d . If the
defect density is low, the defects occupy only the highest values of {fd} and fc � fmax

d which
in fig. 1 is fc  0.2µ. Once defects are depinned, their velocity vd fluctuates spatially and 〈vd〉
is smaller than v0d. However, these effects strongly decrease with velocity and for f � 2fmax

d

one retains a low-mobility regime with dv/df  cdv
0
da0, as seen in fig. 1. Considering the

regime of larger drive, the data exhibits a velocity upturn for f ∼ fmin
n . At this driving force

new defect pairs start to nucleate at a strong disorder fluctuation with a rate that exceeds
the one at which existing defects travel through the system.

Let us now discuss the disorder dependence of the threshold forces. Shown in fig. 3 are fc
data vs.∆ for commensurate and incommensurate chains. For w = b0 the minimum from many
disorder realizations is plotted, i.e. fc = fmin

n . With growing disorder fmin
n decreases sharply

while for the incommensurate chain with w/b0 = 0.98, fc ∼ fmax
d grows linearly. This behavior

changes at ∆  ∆c, where ∆c is defined as the disorder strength where for w = b0 defects
first appear spontaneously. Above ∆c both curves (in)decrease more slowly with disorder and
eventually merge. This change in behavior is due to the fact that favorable nucleation sites in
the commensurate case act as strong pinning site for defects in the incommensurate case. The
simulations show that the presence of pinned defects strongly affects the formation of a new
nucleus. As a result, fmin

n decreases more slowly at larger disorder, i.e. at a higher density of
pinned defects. The curve for w/b0 = 0.95, for which the density of static, mismatch induced
defects is cd  l−1

d , shows a reduced threshold force and merges with the other curves at a
disorder strength ∆ = ∆∗. For ∆ > ∆∗, disorder-induced defects start to overlap (i.e. their
density becomes � l−1

d ) and fc decreases further. The large disorder also has a pronounced
effect on the shape of the f -v curves. As shown in the insets to fig. 3, the typical low mobility
regime at weak mismatch has vanished and all curves exhibit linear behavior, except in a
small regime for f just above fc.

To uncover the underlying physics of the phenomena described above, we now propose an
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Fig. 4 – (a), (b) Mechanical representation of eq. (4). (a) For ∆ < ∆c a gap exists between the barrier
for defect nucleation (dashed) and defect pinning. (b) When ∆ > ∆c disorder-induced defects are
always present below fc. The white line shows the random phase φ(x) of the washboard potential.
(c) Top: evolution of longitudinal displacements of individual rows at depinning for w/b0 = 3 and
∆ = 0.02. Bottom: square lattice representation of the nucleated stacks of discommensurations.
Small arrows indicate the Burgers vector of the dislocations terminating each stack.

analytical description of our system. The energy of a vortex in the channel at r0 = (x, 0) due
to interaction with shifted vortices in the CEs is

V (r0) = (2π)−2

∫
dkV (k)ρe(k)eik·r0 . (2)

V (k) = 2πU0/(k2 + λ−2) with U0 = Φ2
0/2πµ0λ

2, and ρe(k) are the Fourier transforms of
the London potential and the vortex density in the edge, respectively. For weak disorder
(∇ · d � 1), ρe can be decomposed [11]: ρe(re,d)  (B/Φ0)(1 − ∇ · d + δρe), where δρe =∑

i cos[Ki(re − d(re))] and Ki spans the reciprocal lattice. Substitution in eq. (2) yields two
terms: a quasi-periodic potential V p  (µ/k0) sin[k0(x − d)], with k0 = 2π/a0 [12] due to δρe
of the vortex rows nearest to the CEs, and a random, nonlocal contribution coming from the
density fluctuations: V r(r0) = −(B/Φ0)

∫
dreV (r0 − re)∇ · d(re) with correlator

〈
V r(0)V r(x)

〉  4∆2U2
0 (λ/a0)1+αe−(x/λ)2 . (3)

Here α depends on the disorder correlations between the rows m in the CEs. We choose
∂xd(x) to be independent of row number, which yields α = 2.

To obtain a continuum description of the chain in terms of the displacement field u(x), the
vortex density ρc in the channel is decomposed, as was done for ρe. The resulting interaction
of the chain with the CEs is Hp = a−1

0

∫
(V p+V r)[δρc(x, u)−∂xu]dx. For λ > a0, both V r and

∂xu vary slowly while V p and δρc oscillate rapidly and only two terms in Hp remain [13]. The
force −δHp/δu on the chain thus contains a commensurate term and a random compression
term −∂xV

r(x), which is independent of u. We obtain the equation of motion for u by adding
the intra-chain force κ∂2xu, with stiffness κ  U0π(λ/a0) [14], resulting in

γ∂tu = f + κ∂2xu − µ cos(k0u)− ∂xV
r(x). (4)

The reduced stiffness is now g = κ/(k0µa20) = 3π(λ/a0). Equation (4) describes the transverse
displacements of an elastic string in a tilted washboard potential with random phase φ(x) =
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− ∫ x

−∞ dx′V r(x′)/κ, see fig. 4. It corresponds to a commensurate CDW with random forward
scattering [15] rather than the usual model for a CDW in which the commensurability potential
is ignored either due to strong direct random coupling to u or due to large mismatch [16].

Next, the dependence of fmin
n and fmax

d on the strain ∆ can be addressed by considering a
deformation in the CEs of wavelength ldis: ∂xd(r) = ∆ sin(2πx/ldis). When ldis � λ, the last
term in eq. (4) simplifies to −∂xV

r  g2∆U0/(2
√
3ldis) cos(2πx/ldis). To describe nucleation

(for f � µ/2), we need the string displacements δ(x) = u− u0 relative to the minimum of the
tilted washboard potential given by u0 = −k−1

0 [2(1 − f/µ)]1/2. The restoring force for such
displacements is µk20u0δ(x), while the elastic force is κ∂2xδ. Balancing these with ∂xV

r yields
δ(x) = δ0 cos(2πx/ldis). The amplitude of the displacement δ0 ∼ ldis/(l2d+k0|u0|l2dis) is largest
for a wavelength ldis = ld/

√
k0|u0| resulting in δmax

0  √
3a0g3/2∆/(8π

√
k0|u0|). Since the

critical displacement at which the string depins is  |u0| [8], the minimum nucleation force
follows from |u0| = δmax

0 :

fmin
n /µ  1−

[
4∆g3/2/

(
5
√
3
)]4/3

. (5)

For an existing defect at zero drive, the pinning energy is Ed,p(x) = a−1
0

∫
dx′∂xud(x′ −

x)V r(x′) with ud the familiar shape of a sine-Gordon kink [8] centered at x and of size ld.
Optimal pinning occurs for deformations in the CEs with ldis = ld, similar to the “optimal”
size of a nucleation center for f  µ/2. The maximum defect pinning force is then given by

fmax
d /µ  ∆g3/2/

√
3. (6)

The results (5) and (6) are plotted in fig. 3, using g = 9 as in the simulations. Equation (5)
agrees with the numerical data, while eq. (6) can be considered as upper bound. The curves
merge at ∆c 

√
3g−3/2/2, where pinned defects can appear spontaneously in the channel [17].

The disorder strength ∆∗, where the density of disorder induced defects becomes ∼ l−1
d ,

can be estimated by equating the typical (rms) pin energy of a defect with its bare energy
∼ µa0

√
g. The former is estimated using the previous form for Ed,p and eq. (3): 〈(Ed,p)2〉1/2 

2U0(g/3π)(2+α)/2g−1/4∆ leading to

∆∗  (3π/4)g−5/4, (7)

also in reasonable agreement with the data in fig. 3. These results show that the effect of
disorder rapidly grows on increasing the interaction range λ/a0.

Finally, we shortly discuss how these results carry over to channels with multiple chains
near matching (w/b0  n, with n an integer ≥ 2). Without disorder fc has sharp peaks at
matching of height f0

c = µb0/w = µ/n [4]. With disorder, the behavior of fc is similar to that
in fig. 3 [18]. In fig. 4(c) we show the depinning process for w/b0 = 3, ∆ = 0.02 and f = 0.7f0

c .
As observed, the defects involved with depinning consist of stacks of discommensurations,
coupled between the chains. Each stack is terminated by a pair of dislocations with opposite
Burgers vector along the CEs. This quasi-1D behavior at weak disorder can also be described
by eq. (4) by substituting µ/n for µ. For larger disorder the threshold near matching reduces
to ∼ 30% of f0

c . The merging of the commensurate and weakly incommensurate threshold
forces now occurs for ∆n

∗ = ∆∗/n1/4. For a realistic value of λ/a0 ∼ 4, we estimate ∆∗ ∼
0.03 meaning that rms strains in the CEs � 2% already cause strong disorder. At strong
disorder and large mismatch the quasi-2D nature of the system causes new phenomena: for
w/b0  n± 1/2 transitions from n → n± 1 rows occur, involving pinning of dislocations with
misaligned Burgers vector [19]. The threshold force then exceeds fc near matching [19].
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In summary, depinning of a vortex chain in a channel formed by disordered vortex arrays
with (nearly) the same periodicity occurs by nucleation of defect pairs or motion of existing
defects. The gap between the barriers for these two processes and the sharp peak in fc at
commensurability vanish with increasing disorder. For large disorder in the channel edges fc
saturates at a small fraction of the ideal lattice strength.
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