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Abstract
Within the phenomenological Ginzburg–Landau theory we investigate the phase
diagram of a thin superconducting film with ferromagnetic nanoparticles. We
study the oscillatory dependence of the critical temperature on an external
magnetic field, similar to the Little–Parks effect, and formation of multiquantum
vortex structures. The structure of a superconducting state is studied both
analytically and numerically.

The Little–Parks effect [1], i.e. oscillations of the critical temperature Tc of multiply connected
superconducting samples in an applied magnetic field H , is one of the striking phenomena
demonstrating the coherent nature of the superconducting state. Such oscillatory behaviour
of Tc(H ) is not specific to superconducting thin wall cylinders and can be observed also in
superconductors with columnar defects and holes (see [2–4]) and mesoscopic simply connected
samples of the size of several coherence lengths [5, 6]. Generally, the oscillations of Tc with
change in the external magnetic flux are caused by the transitions between the states with
different vorticities (winding numbers) characterizing the circulation of the phase of the order
parameter. For a system with cylindrical symmetry the vorticity parameter just coincides
with the angular momentum of the Cooper pair wavefunction. The states with a certain
angular momentum m can be considered as m-quanta vortices. Experimental and theoretical
investigations of these exotic vortex structures (multiquanta vortices and vortex molecules) in
mesoscopic superconductors have attracted a great deal of attention. As we change an external
homogeneous magnetic field, multiquanta vortices and vortex molecules can transform into
one another via first or second order phase transitions.

In this paper we focus on another possibility for creating multiquantum vortex states:
nucleation of the superconducting order parameter in a hybrid system consisting of a thin
superconducting film and an array of magnetic nanoparticles. The interest in such structures
is stimulated by their large potential for applications (e.g., as switches or systems with a
controlled artificial pinning). Enhancement of the depinning critical current density jc has

0953-8984/03/386591+07$30.00 © 2003 IOP Publishing Ltd Printed in the UK 6591

http://stacks.iop.org/JPhysCM/15/6591


6592 A Yu Aladyshkin et al

been observed experimentally for superconducting films with arrays of submicron magnetic
dots [7–9] and antidots [10], and for superconductor–ferromagnet (S/F) bilayers with domain
structure in ferromagnetic films [11]. The matching effects observed for magnetic and transport
characteristics were explained in terms of commensurability between the flux lattice and the
lattice of magnetic particles. Vortex structures and pinning in the S/F systems at rather low
magnetic fields (in the London approximation) have been analysed in the papers [12–21].

Provided that the thickness of a superconducting film is rather small as compared with
the coherence length, the critical temperature of the superconducting transition as well as
the structure of the superconducting nuclei should be determined by a two dimensional
distribution of a magnetic field component Bz(x, y) (perpendicular to the superconducting
film plane) induced by the ferromagnetic particles. Obviously, the highest critical temperature
corresponds to the nuclei which appear near the lines of zeros of Bz due to a mechanism
analogous to the one responsible for the surface superconductivity (see, e.g., [22]) and domain
wall superconductivity [23–25]. Provided that these lines of zeros have the shape of closed
loops, the winding number of a superconducting nucleus will be determined by the magnetic
flux through the loop. Thus, changing this flux (e.g., increasing an external H field applied
along the z axis) we can control the winding number. The resulting phase transitions between
the multiquantum states with different m can cause the oscillations of Tc. Such oscillatory
behaviour has been, in fact, observed in [26] for a Nb film with an array of GdCo particles.
Note that a change in the slope of the phase transition curve Tc(H ) (which is probably a
signature of the transition discussed above) has also been found in [27] for a Pb film with
CoPd particles. Provided that the dimensions of the sample in the (xy) plane are compared
with the coherence length, we can expect a rather complicated picture which is influenced both
by the sample edges and by the distribution of an inhomogeneous magnetic field. Recently
oscillatory behaviour of Tc(H ) has been observed experimentally in a mesoscopic Al disc
with a single magnetic dot [28]. For several model profiles of the magnetic field the resulting
phase transitions between different types of exotic vortex state in a mesoscopic disc have been
studied numerically in [29]. The interplay between the boundary effects and magnetic field
inhomogeneity also influences the formation of multiquantum vortex states around a finite size
magnetic dot embedded in a large area superconducting film [30, 31]. The transitions between
different multiquantum vortex states with change in magnetic field and magnetic dot parameters
were studied in [29–31] for certain temperature values. These effects are closely related to
the ones observed in mesoscopic and multiply connected samples, and, consequently, we can
expect the oscillations of Tc(H ) (analysed below) also to be a common feature to multiply
connected superconductors and thin film systems with magnetic dots.

In this work we do not consider the magnetic phase transitions in the mixed state for
T < Tc and focus on the oscillatory behaviour of Tc(H ) in a large area superconducting
film caused only by the quantization associated with the characteristics of the inhomogeneous
magnetic field produced by ferromagnetic particles. We neglect the influence of the edge and
proximity effects in the S/F system and consider a nanoparticle only as a source of a small
scale magnetic field. Our further consideration is based on the linearized Ginzburg–Landau
model:
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ξ2(T )
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Here �(r) is the order parameter, A(r) is the vector potential, B(r) = ∇ × A(r), �0 is
the magnetic flux quantum, ξ(T ) = ξ0/

√
1 − T/Tc0 is the coherence length, and Tc0 is

the critical temperature of the bulk superconductor at B = 0. For the sake of simplicity
we neglect the effects of interference between the superconducting nuclei appearing near
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different nanoparticles (i.e. we assume the interparticle distance to be rather large as compared
with the superconducting nucleus size) and consider a single magnetic particle with a fixed
magnetic moment chosen perpendicular to the film plane xy. For a rather thin film (of
thickness less than the coherence length) we can neglect the influence of the field components
Bx, By in the film plane and consider an axially symmetrical two dimensional problem (1)
in the field Bz(r) = H + b(r), where b(r) is the z component of the field induced by
the ferromagnetic particle and (r, θ, z) is a cylindrical coordinate system. Choosing the
gauge Aθ (r) = Hr/2 + a(r) one can find the solution of the equation (1) in the form
�(r) = gm(r) exp(imθ)/

√
r , where m is the vorticity, and gm(r) ∝ r |m|+1/2 for r → 0.

The function gm(r) should be determined from the equation

−d2gm

dr2
+

[
(�(r)/�0 + m)2

r2
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]
gm = 1

ξ2(T )
gm. (2)

Here �(r) = 2πr Aθ (r) is the total flux through the circle of radius r . The lowest eigenvalue
1/ξ2(T ) of the Schrödinger-like equation (2) defines the critical temperature Tc of the phase
transition into a superconducting state. Note that the similar problem of the energy spectrum
of two dimensional electronic gas for a specific inhomogeneous magnetic field profile (i.e., the
field of a magnetic antidot) has been studied in [32].

Obviously, for rather small fields H the superconducting order parameter can nucleate
either far from the magnetic particle (r → ∞) where the critical temperature T H

c is defined by
the homogeneous field Bz = H or in the region close to the circle of radius r0 where Bz(r0) = 0
and Tc is controlled by the slope of Bz(r) at r = r0 and by the flux through the area of the
radius r0. In the first case we obtain 1 − T H

c /Tc0 = 2π |H |ξ2
0 /�0. For the second case we

can analyse the behaviour of Tc(H ) assuming that the characteristic length scale � of the order
parameter nucleus is much less than the characteristic scale of the magnetic field distribution.
Within such local approximation (similar to the one used in [25] for the description of domain
wall superconductivity) we can expand the flux in powers of the distance from r0:
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Introducing a new coordinate t = (r − r0)/� we obtain the dimensionless equation

−d2g
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+ (t2 − Q)2g = Eg, (3)

where the parameters E and Q are given by the expressions
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We obtain E(Q) � Q2 +
√−2Q when Q � −1, and E(Q) � 2

√
Q when Q 	 1. The

minimal value of E(Q) is E = Emin � 0.904 at Q � 0.437. The final expression for the
critical temperature reads
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The superconducting nuclei are localized near the ferromagnetic particle at a distance r0. The
states with different energetically favourable winding numbers m correspond to multiquantum
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vortex structures very similar to the ones observed in a mesoscopic disc. As we change an
external field H , we change the flux �(r0) and, thus, change the energetically favourable
vorticity number and position of the nucleus.

To investigate the details of the oscillatory behaviour discussed above we consider a
particular case of a small ferromagnetic particle which can be described as a point magnetic
dipole with a magnetic moment M = Mz0 placed at a height h over the superconducting film.
The corresponding expressions for the field and the vector potential are

b(r) = M(2h2 − r2)

(r2 + h2)5/2
, a(r) = Mr

(r2 + h2)3/2
. (6)

Introducing fm(r) = gm(r)/
√

r and a dimensionless coordinate ρ = r/h we obtain the
equation (2) in the form
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where Nf = 4π M/(3
√

3h�0) is the dimensionless flux through the area with the positive
field b(r) and b0 = b(0) = 2M/h3. In the limit of small fields H → 0 the nucleation of
superconductivity occurs at large distances ρ, and critical temperatures for different winding
numbers m are very close. Thus, in this limit the critical temperature is equal to T H

c and
is not sensitive to the presence of the dipole. Below this temperature we obtain a lattice of
singly quantized vortices (with the concentration determined by H ) which is surely disturbed
under the dipole. Note, that the behaviour of Tc in this low field regime should modify
provided that we take account of the finite distance between the magnetic particles. For large
absolute values |H | (much larger than the maximum field induced by the dipole) we obtain
the following asymptotical behaviour of Tc: 1 − Tc/Tc0 = 2πξ2

0 (−H − b0)/�0 for negative
H and 1 − Tc/Tc0 = 2πξ2

0 (H − b0/(25
√

5))/�0 for positive H values (here −b0/(25
√

5)

is the minimum of the dipole field). The superconductivity nucleates near the minima of
the total field |Bz| and, thus, is localized near the dipole. In the intermediate field region
(−1 < H/b0 < 1/(25

√
5)) we should expect the oscillatory behaviour of Tc discussed above.

The number of oscillations is controlled by the parameter Nf . We have carried out numerical
calculations of equation (7) for various Nf values. For the numerical analysis of the localized
states of equation (7) we approximated it on a equidistant grid and obtained the eigenfunctions
fm(ρ) and eigenvalues by the diagonalization method of the tridiagonal difference scheme. The
results of these calculations as well as the analytical dependence of Tc given by expression (5)
are shown in figure 1. Typical profiles of the superconducting order parameter for different
values of external magnetic field are given in figure 2.

We observed a remarkable asymmetry of the phase transition curve (Tc(H ) 
= Tc(−H ))
which is caused by the difference in distribution of positive and negative parts of the dipole
field b(r): the maximum positive field (b0) is much larger than the absolute value of the
minimum negative field (b0/(25

√
5)). As a result, the Tc oscillations appear to be most

pronounced for negative H which compensates the positive part of the dipole field. Taking
M ∼ 3×10−11 G cm3 (for a ferromagnetic particle with dimensions 300 nm×300 nm×300 nm
and magnetization ∼103 G), h ∼ 300 nm, we obtain Nf � 10, b0 ∼ 103 G, and the
characteristic scales of Tc oscillations �H ∼ 100 Oe, �Tc ∼ 10−2Tc0 ∼ 0.1 K for a Nb
film with ξ0 ∼ 40 nm and Tc0 ∼ 8 K.

We expect the oscillatory behaviour of Tc to be observable, e.g., in magnetoresistance
measurements on thin superconducting films with arrays of ferromagnetic particles. The
superconducting nuclei localized near the particles should result in a partial decrease in
the resistance below the oscillating Tc(H ). As we decrease the temperature below Tc(H )
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Figure 1. Critical temperature as a function of external magnetic field for Nf = 4 (a) and
Nf = 10 (b). The solid curve is a result from direct numerical simulations of equation (7).
The dashed curve is obtained from the analytical formula (5). Certain winding numbers m for
different parts of the phase transition line are shown.
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Figure 2. Typical spatial profiles of the order parameter absolute value for different external field
values H for Nf = 10. The cross (×) marks the point where the total magnetic field Bz for a given
plot is zero.

the superconducting order parameter around a single particle becomes a mixture of angular
harmonics with different m values and we can expect the appearance of phase transitions
similar to the ones discussed in papers [29, 31]. With further decrease in temperature the
whole film becomes superconducting and the resistivity becomes zero.
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