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Magnetic quantization of electronic states ind-wave superconductors
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We derive a general quasiclassical approach for long-range magnetic-field quantization effects in supercon-
ductors. The method is applied to supercleand-wave superconductors in the mixed state for delocalized states
with energiese@D0AH/Hc2. We find that the energy spectrum consists of narrow energy bands whose centers
are located at the Landau levels calculated in the absence of the vortex potential. We show that transitions
between the states belonging to the different Landau levels can be observed experimentally due to resonances
in the ac vortex friction.
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I. INTRODUCTION

The unusual behavior of the thermodynamic and trans
properties ofd-wave superconductors as functions of ma
netic field has been the subject of extensive experimental
theoretical studies. This behavior is attributed to nontriv
energy dependence of the electronic density of states1–4 and
to specific kinetic processes which are very sensitive to
fine details of electronic states brought about by the prese
of vortices.5–8 There exists, however, a conceptual cont
versy about the structure of the electronic spectrum
d-wave superconductors in the mixed state. One of the vi
is that the states below the maximum gapD0 have a discrete
spectrum due to Andreev reflections; some states are lo
ized within vortex cores8,9 while others are quantized a
longer distances10–12 as a particle which moves along
curved trajectory in a magnetic field hits the gap for a curr
momentum direction where the energy becomes equa
uDpu. Other authors propose that instead of the magn
quantization, energy bands appear in a periodic vortex po
tial due to the vortex lattice.13–16

In the present paper we develop a general quasiclas
approach for calculating the long-range magnetic-field qu
tization effects in superconductors in the regime where
electron wavelength is much shorter than the cohere
length pFj@1. The proposed method is applied to sup
cleand-wave superconductors in the mixed state in the lo
field limit H!Hc2. We show in Secs. II–IV that the influ
ence of a magnetic field on delocalized excitations in
superconductor is not reduced to simply the action of
effective vortex lattice potential. The effect of magnetic fie
is rather twofold:~i! It creates vortices and thus provides
periodic potential for electronic excitations.~ii ! It also affects
the long-range motion of quasiparticles in a manner sim
to that in the normal state. The long-range effects are
pronounced for low-energy excitations. On the contrary,
spectrum of excitations with energiese*D0AH/Hc2 is de-
termined mostly by long-distance motion and exhibits m
netic quantization. We study the delocalized states with
ergiese@D0AH/Hc2 and calculate their energy spectrum
We find that the spectrum consists of energy bands as
would indeed expect to be the case for a periodic poten
PRB 620163-1829/2000/62~14!/9770~10!/$15.00
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However, these bands in the quasiclassical limit are ra
narrow; their centers are located at the Landau levels ca
lated in Refs. 10–12. We thus demonstrate that the pictur
the energy spectrum is in fact a compromise between the
above-mentioned extremes. We emphasize that both the
siclassical assumptionpFj@1 and the high-energy conditio
e@D0AH/Hc2 are crucial for our results to hold. Because
an increasing role of the periodic vortex potential, the sta
with lower energies deviate strongly from the Landau-le
picture and resemble more the band structure of a solid
tained within the tight-binding approximation. We note al
that the results of numerical solutions of the Bogoliubov–
Gennes equations of Refs. 15 and 16 cannot be directly c
pared with our analytical results because the calculation
these works were done for conditions where at least one
our basic assumptions is not fulfilled.

In this paper we restrict ourselves to a more qualitat
analysis and concentrate on situations where the exact b
structure of the electronic states is not essential, leaving
detailed numerical solution of our equations for a forthco
ing publication. In Sec. V, we demonstrate that the obtain
Landau-level structure of electronic states is important
understanding dynamic and transport properties ofd-wave
superconductors in a wide temperature rangeTcAH/Hc2
!T!Tc . We consider effects of the energy spectrum on
vortex dynamics which can be accessed by magneto-op
experiments in the far-infrared region~compare with Ref.
17!. We show that the vortex friction for oscillating vortice
displays resonances at transitions between the states be
ing to different Landau levels.

II. LONG-RANGE EFFECTS OF THE MAGNETIC FIELD

We start with the standard Bogoliubov–de Gennes eq
tions

F S p̂2
e

c
AD 2

2pF
2 Gu12mD p̂v52meu,

F S p̂1
e

c
AD 2

2pF
2 Gv22mD p̂

* u522mev, ~1!
9770 ©2000 The American Physical Society
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wherep̂52 i¹ is the canonical momentum operator. Equ
tions ~1! have particle-hole symmetry such thatu→v* ,v
→2u* under complex conjugation ande→2e. For a vor-
tex array, the order parameter phase is a multiple-val
function defined through

curl¹x5(
i

2pd~r2r i !. ~2!

As a result

¹x5(
i

z3~r2r i !

ur2r i u2
~3!

such that, on average,¹x'eHr/c for large r.
Consider a quasiparticle in a magnetic field in the pr

ence of a vortex lattice for energies above the gap at infin
If the particle mean free path is longer than the Larmor
dius, i.e.,vct@1 wherevc is the cyclotron frequency, suc
a particle can travel away from each vortex up to distance
the order of the Larmor radiusr L5vF /vc . This brings new
features to Eqs.~1!. Assume for a moment thatD50. Then
the wave functionu describes a particle with kinetic momen
tum P15p2(e/c)A and energye5P1

2 /2m2EF while v de-
scribes a hole with kinetic momentumP25p1(e/c)A and
energy e5EF2P1

2 /2m. A particle and a hole which star
propagating from the same point will then move in differe
directions and along different trajectories which transfo
one into another under the transformationH→2H. For a
finite order parameter the wave function is a linear combi
tion of a particle and a hole. It is not convenient, however
use such a combination at distances where the trajectorie
the particle and the hole go far apart, i.e., when the ve
potential is no longer small compared to the Fermi mom
tum pF .

Equation~1! shows that the phase ofu differs from that of
v by the order parameter phasex. To construct a prope
basis, one needs to bring the phases ofu andv in correspon-
dence with each other. We note that the usual transforma

S u

v D 5S eix/2ũ

e2 ix/2ṽ
D , č5S ũ

ṽ
D , ~4!

which leads to a substitution ofA with 2(mc/e)vs5A
2(c/2e)¹x in Eq. ~1!, is not convenient when considering
particle which can move at distances much larger than
size of one unit cell. Though it accounts correctly for t
phase difference betweenu and v, it introduces an extra
overall phase6x/2 into the new wave functionč as com-
pared to the initial particle~or hole! basis; see the discussio
later in this section. This overall phase increases with d
tance and is equivalent to a gauge transformation to a ‘
tating frame’’ where the magnetic field drops out ofvs be-
cause curlvs vanishes on average but a Coriolis~i.e., the
Lorentz! force appears instead18 ~see also Sec. V!. Math-
ematically it follows from the fact that the transformatio
eix/2 is singular, (¹ i¹k2¹k¹ i)x5” 0, i.e., from Eq.~2!. It
means that the momentum in the new frame is not an inte
of motion even in absence of the vortex potential associa
with the superconducting velocity and spatial variations
the order parameter magnitude. The transformation of
-
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~4!, however, is not dangerous if particles are bound to d
tances of the order of few unit cells because the phase
dient is limitedu¹xu!pF ; in other words, the Lorentz force
does not affect the trajectory considerably. However, fo
vortex array, the phase gradient can reach values compa
with pF .

To avoid these complications we use here another tra
formation which also removes the coordinate dependenc
the order parameter phase. The results, of course, shou
independent of the choice of transformation due to the ga
invariance. Following Refs. 11 and 14 we put in Eq.~1!

u5u8, v5exp~2 ix!v8. ~5!

This is a single-valued transformation. We obtain

@P̂1
2 2pF

2 #u812me2 ixD P̂
18

v852meu8, ~6!

@~P̂122mvs!
22pF

2 #v822meixD P̂
18

* u8522mev8, ~7!

whereP̂15p̂2(e/c)A is the operator of the particle kineti
momentum, and

P̂18 5p̂2¹x/25P̂12mvs .

The superconducting velocity is

2mvs5“x2
2e

c
A.

In Eqs. ~6! and ~7! we use that, for a general pairing sym
metry,D p̂8}uv* depends actually onp̂85(p̂u1p̂v)/2 where
p̂u,v are the canonical momentum operators which act on
Bogoliubov wave functionsu andv, respectively. The term
2¹x/2 appears in the order parameter together with the
nonical momentump because only one half of the mome
tum operator inD p̂8 acts on each of the wave functionsu or
v.

The transformation of Eq.~5! is ‘‘ u like;’’ it brings the
phase ofv in correspondence with the phase ofu. Equation
~5! defines the particlelike basis; within it, Eq.~7! describes
the motion of a hole as it is seen by a particle. Note that
distinct from Eq.~1!, a particle and a hole determined b
Eqs. ~6! and ~7! for D50 move along the same trajector
though, of course, in different directions.

The resulting equations are not symmetric with respec
u and v: the termvs is present in the second equation t
gether withP̂ while it does not appear in the first equatio
Let us perform one more transformation

S u8

v8
D 5S U1

V1
D eixv/2, ~8!

where“xv52mvs such that

curl“xv5(
i

2pd~r2r i !2
2e

c
H

andxv5x2xA where

¹xA5
2e

c
A. ~9!
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The ‘‘phase’’xv is not single valued within each unit cell;
depends on the particular path of integration. However, i
single valued on average, i.e., on a scale much larger than
intervortex distance since

E curl“xvd2r 50.

It also implies that¹xv does not have large terms increasi
with distance. The transformation, Eq.~8!, is thus not dan-
gerous. The total transformation, Eqs.~5! and ~8!, has the
form

u5exp~ ix/22 ixA/2!U1 ,

v5exp~2 ix/22 ixA/2!V1 . ~10!

With this transformation we finally obtain

@~P̂11mvs!
22pF

2 #U112mD̃ P̂1
V152meU1 , ~11!

@~P̂12mvs!
22pF

2 #V122mD̃ P̂1
U1522meV1 , ~12!

where

D̃ P̂1
5e2 ixD p̂2(e/c)A5eixD p̂2(e/c)A

* .

Another equation can be obtained using the transfor
tion

u5eixe2 ixv/2U25exp~ ix/21 ixA/2!U2 ,

v5e2 ixv/2V25exp~2 ix/21 ixA/2!V2 . ~13!

We get

@~P̂21mvs!
22pF

2 #U212mD̃ P̂2
V252meU2 , ~14!

@~P̂22mvs!
22pF

2 #V222mD̃ P̂2
U2522meV2 , ~15!

where P̂25p̂1(e/c)A is the ‘‘hole’’ kinetic momentum.
The transformation, Eq.~13!, is ‘‘ v-like;’’ it brings the phase
of u in correspondence with that ofv. Equation~13! defines
the holelike basis such that Eq.~14! describes motion of a
particle as seen by a hole. Again, both particles and h
with D50 move along the same trajectory.

Note that the vector wave function

Č15S U1

V1
D

defined by Eq.~10! differs from č in Eq. ~4! by an additional
overall phase,č5e2 ixA/2Č1 . It is exactly of the same ori-
gin as the extra phase present inč as compared to the initia
particlelike basis. One can say that the transformation~4!
‘‘removes’’ the magnetic field while the phase2xA/2 ‘‘re-
stores’’ it. Similarly, the phase1xA/2 in Eq. ~13! restores
the magnetic field in the holelike basis.

One can transform Eqs.~11! and ~12! further by putting

Č15expS i E p•dr D f̌, f̌5S f1

f2
D , ~16!
s
he

a-

s

where

S p2
e

c
AD 2

5pF
2 , ~17!

and f̌ is a slow function which varies over distances of t
order of j. This approximation works ifpFj@1. We shall
call it the first-level quasiclassical approximation. It is ex
pected to be valid for most superconductors. Of course
accuracy is not very good for those high-Tc materials which
havepFj not considerably larger than unity.

If div A50, we have

P1~2 i¹1mvs!f11mD̃P1
f25mef1 ,

P1~2 i¹2mvs!f22mD̃P1
f152mef2 . ~18!

Using Eq.~16! we can transform Eqs.~14! and ~15! to their
first-level quasiclassical version which is Eq.~18! whereP1

is substituted byP2 under the conditionuP2u25pF
2 . Equa-

tion ~18! and itsv-like analog possess particle-hole symm
try. Under the transformation

p→2p,e→2e; f1→f2* ,f2→2f1* ,

they go one into another. Moreover, each set of equati
has particle-hole symmetry separately for a given position
the trajectory if the kinetic momentaP65p7(e/c)A are
reversed for a fixed position of the particle. Due to Eq.~17!,
p2(e/c)A5(q cosa, qsina), wherea is the local direction
of the momentum. The reversal corresponds toa→p1a.

We take thez axis along the magnetic field. To solve E
~18! we define the quasiclassical particlelike trajectory by

dx

dy
5

P1x

P1y
5

px2~e/c!Ax

py2~e/c!Ay
. ~19!

When the magnetic-flied penetration length is much lon
than the distance between vortices,lL@a0, the magnetic
field can be considered homogeneous. WithA taken in the
Landau gauge,

A5~2Hy,0,0!, ~20!

the trajectory is a circle:

~x2x0!21~y1cpx /eH!25~p'c/eH!2, ~21!

where p'
2 5pF

22pz
2 . The local direction of the kinetic mo

mentum ispx1eHy/c5p'sina, py5p'cosa. The distance
along the trajectory isds5r Lda where the Larmor radius is
r L5p' /mvc . Equation~18! can now be written in terms o
the quasiclassical trajectory Eq.~19!. We have

v'S 2 i
]

]s
1mv tDf11D̃~a!f25ef1 ,

v'S 2 i
]

]s
2mv tDf22D̃~a!f152ef2 . ~22!

Herev'5p' /m, andv t is the projection ofvs on the local
direction of the trajectory.D̃(a) andv t are functions of co-
ordinatesx(s), y(s) and of the anglea(s) taken at the tra-
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jectory. Equations~22! look exactly as the quasiclassic
Bogoliubov–de Gennes equations obtained using the tr
formation, Eq. ~4!, with the important difference that th
trajectory is now a circle rather than a straight line.

III. ELECTRONIC STATES IN ZERO LATTICE
POTENTIAL

We take the order parameter ind-wave superconductor
in the form D̃p5D0(2pxpy)/(px

21py
2) so that D̃p2(e/c)A

5D0sin(2a). Consider first the limitvs50 andD05const.
Equations~22! become

2 ivc

]f1

]a
1D0sin~2a!f25ef1 ,

ivc

]f2

]a
1D0sin~2a!f15ef2 .

These equations can be solved with asecond-levelquasiclas-
sical ansatz

f̌5Č exp@ i f ~a!#.

We obtain

f ~a!56E da

vc
Ae22D0

2sin2~2a!.

The quantization rule also includes the integral over
momentump defined by Eqs.~16! and ~17!. We have

R p dr6 R da

vc
Ae22D0

2sin2~2a!52pn. ~23!

This second-level quasiclassical approximation is less g
eral as compared to the first-level approximation: In addit
to the conditionpFj@1, it also requires that the quantu
numbersn@1 be large.19 The 6 signs distinguish betwee
particles and holes. As was already mentioned, a par
@with the plus sign in Eq.~23!# and a hole~with the minus
sign! move along the same trajectory, Eq.~21!, but in the
opposite directions. The phasexv which was introduced in
Eqs. ~8! and ~10! gives a contribution to the action of th
order of 2p because it is limited from above by an increme
of the order of circulation around one vortex unit cell; it c
thus be neglected for largen.

A. Subgap states

In the rangeueu,D0, the turning points correspond to
vanishing of the square root ata56ae where sin(2ae)
5ueu/D0. We have

4

vc
E

0

ae
daAe22D0

2sin2~2a!52pn, ~24!

wheren.0. The first integral in Eq.~23! disappears becaus
the turning points of the momentump are not reached: the
particle cannot go far along the trajectory, Eq.~19!, and re-
mains localized on a given trajectory at distancess
;r L(e/D0) smaller than the Larmor radiusr L . Note also
that the contribution fromxv vanishes identically becaus
s-

e

n-
n

le

t

the particle after being Andreev reflected transforms int
hole which returns to the starting point along the same
jectory. Using the substitution sinx5(D0 /e)sin(2a) we find

E
0

ae
daAe22D0

2sin2~2a!

5
D0

2 FES e

D0
D2S 12

e2

D0
2D KS e

D0
D G ,

whereK(k) andE(k) are the full elliptic integrals of the firs
and second kinds, respectively. Applying the Boh
Sommerfeld quantization rule, Eq.~23!, we obtain

2D0

vc
FES en

D0
D2S 12

en
2

D0
2D KS en

D0
D G52pn. ~25!

These states are degenerate with the same degree as
normal state: for eachn, there areF/2F05Nv/2 states for
particles andNv/2 states for holes, whereF is the total mag-
netic flux through the superconductor, andNv is the total
number of vortices.

Considere!D0. Expanding in smallk

E~k!5
p

2 S 12
k2

4 D , K~k!5
p

2 S 11
k2

4 D ,

we find from Eq.~25!

en56A4D0vcn. ~26!

Equation~26! agrees with the result of Refs. 10 and 11.

B. Extended states

If ueu.D0, we get for the Landau gauge, Eq.~20!, px
5const and

R p dr5 R py dy

52E
y1

y2Ap'
2 2~px1eHy/c!2dy

5pcp'
2 /eH.

The turning pointsy1,2 correspond to the values of Larmo
radius wherepx1eHy1,2/c56p' . The corresponding tra
jectory is a closed circle wherea varies by 2p. The second
integral in Eq.~23! gives

E
0

2p da

vc
Ae22D0

2sin2~2a!5
4e

vc
ES D0

e D . ~27!

The quantization rule~23! yields

6
2en

p
ES D0

en
D5vcn1

pz
2

2m
2EF . ~28!

For ans-wave superconductor we get, in particular,

6Aen
22D0

25vcn1
pz

2

2m
2EF . ~29!
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IV. EFFECTS OF THE PERIODIC POTENTIAL

A. Bloch functions

At low magnetic fieldsH!Hc2, one can consider that th
particle trajectory always passes far from cores. The osci
ing part of the vortex potential comes mostly from the sup
conducting velocity. The corresponding Doppler energyz
5p'v t is of the order ofD0AH/Hc2. This periodic potential
transforms the discrete energy spectrum into energy ba
Equations~12! and ~15! or the quasiclassical version, E
~18!, are invariant under the magnetic translations by peri
of the regular vortex lattice. Consider the particlelike equ
tions ~12! or ~18!. The particlelike operator of magneti
translations in a homogeneous field is20

T̂~Rl !5expF2 iRl S p̂1
e

c
AD G , ~30!

wherep̂52 i¹ is the canonical momentum andRl is a vec-
tor of the vortex lattice. Its zero-field version corresponds
a shift

T̂0~Rl ! f ~r !5exp@2 iRl p̂# f ~r !5 f ~r2Rl !.

The operatorT̂(Rl) commutes with the Hamiltonian becau
vs andD are periodic in the vortex lattice and the commu
tor:

F S p̂1
e

c
AD

i

,S p̂2
e

c
AD

j
G50.

SinceP1 does not change under the action of the opera
Eq. ~30!, magnetic translations for functionsf̌ in Eq. ~18!

are equivalent to the usual translationsT̂0(Rl) in space for a
fixed kinetic momentum of the particle.

It is more convenient to consider magnetic translations
the symmetric gaugeA5H3r /2. In this case,

T̂~Rl ! f ~r !5expS 2
ie

2c
Rl@H3r # D f ~r2Rl !.

For this gauge, the wave functions, Eq.~16!, can be more
conveniently written in a slightly different form

Č~px ;r !5expF ieHxy/2c1 ipxx1 i E
y1

y

pydy8G f̌. ~31!

The extra phase factor exp@ieHxy/2c# is associated with ou
choice of the vector potential and allows us to reduce
problem to the Landau gauge. The particle trajectory ta
the form of Eq. ~21! with py5Ap'

2 2(px1eHy/c)2. The

function f̌ satisfies Eq.~22!.
If a0 and b0 are the unit cell vectors alongx and y, re-

spectively, the magnetic translation operators for functio
of Eq. ~31! are

T̂x~ la0!Čn~px ;x,y!5e2 ipxla0Čn~px ;x,y!, ~32!

T̂y~ lb0!Čn~px ;x,y!5ČnS px2
eHlb0

c
;x,yD . ~33!
t-
-

s.

s
-

o

-

r,

n

e
s

s

When deriving these expressions we have used the perio
ity of vs and the fact that the trajectory depends ony only
throughy1cpx /eH. The turning pointy1 is thus shifted by
lb0 whenpx is shifted by2eHlb0 /c.

The functions, Eq.~31!, can be used to construct tw
independent basis functions

F̌n
1~kx ,ky ;x,y!5(

l
eiky2lb0T̂y~2lb0!Čn~kx ;x,y!,

~34!

F̌n
2~kx ,ky ;x,y!5(

l
eiky(2l 11)b0T̂y@~2l 11!b0#

3Čn~kx ;x,y!, ~35!

with even and odd translations, respectively. Starting fr
Eq. ~34! we replacepx with kx . The functionsF̌6 belong to
the same energy. The wave vectorky has an arbitrary value
at this stage; we shall establish it later. The generic tran
tion is 2b0 which is the size of the magnetic unit cell alon
the y axis. The magnetic unit cell contains two vortices b
cause the superconducting magnetic flux quantum co
spond to one-half of the 2p phase circulation of a single
particle wave function. The functionsF̌6 transform into
each other under odd translations

T̂y@~2m11!b0#F̌6~kx ,ky!5e2 iky(2m11)b0F̌7~kx ,ky!.

~36!

The functions, Eqs.~34! and ~35!, have the Bloch form

T̂x~ la0!F̌6~kx ,ky!5~61! le2 ikxla0F̌6~kx ,ky!, ~37!

T̂y~2mb0!F̌6~kx ,ky!5e2 iky2mb0F̌6~kx ,ky!. ~38!

We omit the coordinatesx,y in the arguments ofF̌6 for
brevity.

Since the magnetic translationT̂y( lb0) commutes with the
Hamiltonian, the energy is degenerate with respect toky .
This degeneracy is spurious, however. To see this, cons
the transformations, Eqs.~37! and ~38!. For l 51, the trans-
formed function in Eq.~37! is periodic inkx with the period
2p/a0. This period corresponds to the shift of the center
orbit y05ckx /eH by one size of the magnetic unit cell 2b0.
Obviously, the transformation, Eq.~38!, should also have the
same symmetry. For one magnetic unit cell, a shift by 2b0
~i.e., for m51) along they axis should combine with one
period along thex axis. The period inky is p/b0; it should
thus correspond to the shift of the coordinatex0 by a0. We
thus put

ky5eHx0 /c. ~39!

The energy depends on the position of the trajectory wit
the vortex unit cell through the Doppler energyz. The en-
ergye(kx ,ky) has a band structure due to periodicity ofz; it
is periodic with the periodseHb0 /c5p/a0 and eHa0 /c
5p/b0 in kx and ky , respectively, which correspond t
shifts of the center of orbit by one vortex unit cell vector.
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B. Spectrum

Consider energiese@D0AH/Hc2. Applying the second-
level quasiclassical approximation to Eq.~22! we find

f̌5Č exp@6 iA~s!#, ~40!

where the action is

A~s!5E
s1

s
A~e2z!22D0

2sin2~2a!
ds

v'

. ~41!

This quasiclassical approximation is justified because
wave vector]A/]s;e/vF is much larger than the invers
characteristic scale 1/a0 of variation of the vortex potentialz
for e@D0AH/Hc2. The functionz5p'v t is taken at the tra-
jectory which is a part of a circle specified by the coordina
of its centerx0 andy052cpx /eH; they determine the posi
tion of the trajectory within the vortex unit cell.

For energiesD0AH/Hc2!e,D0, quasiparticle trajectory
is extended over distances of the order ofr L(e/D0). The
quantization rule defines the energy

E
s1

s2A~e2z!22D0
2sin2~2a!

ds

v'

5pn. ~42!

Here s1 and s2 are the turning points. Expanding in sma
z!e we find

mE
y1

y2 Ae22D0
2sin2~2a!

dy

py

2mE
y1

y2 z~x,y!e

Ae22D0
2sin2~2a!

dy

py

5pn. ~43!

Here z(x,y)5(kx1eHy/c)vsx1pyvsy while y1 and y2 are
the turning points which correspond to a vanishing of
square root:kx1eHy1,2/c5p'sin(2ae). The energyen is a
function of kx and x0 which determine the location of th
particle trajectory with respect to vortices. The energy is th
periodic in kx with the periodeHb0 /c and in x0 with a
period a0 when the center is shifted by one period of t
vortex lattice.

Thez term under the second integral in Eq.~43! oscillates
rapidly over the range of integration and mostly avera
out. The remaining contribution determines the variations
energy with kx and x0 and can be estimated as follow
Variation of action fore!D0 due to a change in energyde is

dA;~de/vF!~e/D0!r L;~ede!/~D0vc!.

Variation of action due to a shift of the center of orbit b
a distance of the order of the lattice period isdA
;(a0 /vF)z;1. The corresponding energy variation is th
de;D0vc /e. Sincex0 is coupled toky through Eq.~39!, the
energy can be written as

en~kx ,ky!5A4D0vc@n1z0~kx ,ky!#, ~44!

wherez0;1. The energy, Eq.~44!, has a band structure; th
bandwidth is of the order of the distance between the Lan
levels. It is small as compared to the energy itself. It is cl
that the spectrum for energiese*D0 can also be obtained
from Eqs. ~25!, ~28!, and ~29! through the substitutionn
→n1z0(kx ,ky).
e

s

e

s

s
f

u
r

Equation~44! needs a discussion. First, we show that t
vortex potential indeed does not destroy theAn dependence
of the particle energy for fixed quasimomentakx andky , Eq.
~26!, if e@D0AH/Hc2. We note in this connection that th
An behavior of the levels in Eq.~26! is preserved if the
contribution to the action from the oscillating potenti
changes by an amount much less than unity for transiti
between the neighboring levels withn→n61. For an energy
e, the distance between the neighboring levels isde
;D0vc /e. This corresponds to a change in the length of
trajectory by

dse;
vF

vc

de

D0
;

vF

e
.

The variation in the length is much smaller than the interv
tex distancea0;jAHc2 /H if e@D0AH/Hc2, and the action
changes by a quantity much less than 1. It shows that
distance between the levels with differentn as given by Eq.
~26! is not affected by the vortex potential. Finally, we dem
onstrate that small regions on a trajectory where the exp
sion under the square root in Eq.~42! is negative do not
affect the spectrum ife@D0AH/Hc2. Let s0 be the size of
the region where (e2z)2,D2(a). The estimate shows tha
s0;(z/e)a0. One can write

~e2z!22D2~a!;sez/s0 .

The imaginary part of the action becomes

Im A;
s3/2

vF
Aze

s0
.

The decay lengthl of the wave function isl;s0(e/z)1/3.
We see that it is much longer than the length of the cla
cally inaccessible regions0: The wave function does not fee
the inaccessible regions and the trajectory is not destroy

The situation changes drastically for smaller energiee
&D0AH/Hc2: The centers of bands will deviate strong
from the positions determined by Eq.~26! due to a consid-
erable contribution from the periodic vortex potential to t
turning points in Eq.~42!. Moreover, the applicability of the
quasiclassical approximation, Eq.~42!, itself is violated; the
potentialz is strong enough to break the particle trajecto
into separate pieces14 and to cause large deformations of th
energy spectrum. Some states can even become effect
localized near the vortex cores.9 We conclude that the con
dition e@D0AH/Hc2 is vital for existence of the Landau
quantization.

In the present paper we do not calculate the band struc
of the spectrum exactly. The corresponding numerical an
sis will be published elsewhere. In the following sections,
rather consider a situation where the particular band struc
is not essential while the Landau-level quantizations are
crucial importance.

V. INDUCED TRANSITIONS BETWEEN THE LANDAU
LEVELS

In this section, we discuss how the Landau quantizat
affects transport properties of superconductors. We sh
that, by studying some transport characteristics, one can
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perimentally observe the Landau-level structure of the
ergy spectrum. It is known that the vortex motion induc
transitions between the quasiparticle states. The transit
between low-energy core states withe!D0AH/Hc2 were
considered in Ref. 9. It was shown that the vortex core st
determine the vortex response to dc and ac electric fields.
temperaturesTcAH/Hc2!T extended states dominate. It wa
found in Ref. 9 that the vortex response is determined
what was called ‘‘collective modes’’ which are associat
with the electron states outside the vortex cores. In this s
tion we demonstrate that these collective modes are not
but transitions between the electronic states, Eq.~44!, speci-
fied by the same quasimomentum but by different princi
quantum numbersn. We start with noting that the transitio
matrix elements are proportional to21 ^F̌n(k i)¹Ȟ1F̌m(k j )&
where the HamiltonianȞ1 is composed ofDP andz, while k
is the quasimomentum.Ȟ1 is periodic with the period of the
vortex lattice; thus transitions are possible between
quasimomenta which differ by vectors of the reciprocal l
tice. Since the band energy is periodic in the quasimome
with the periods of the reciprocal lattice, the energy diffe
ence for these transitions corresponds to the energy di
ence for states with the same quasimomentum but with
ferent quantum numbersn. Forz0!n the transition energy is
just the distance between the Landau levels:den(kx ,ky)
5den determined by Eqs.~25!, ~28!, or ~29!. For low ener-
gies in a d-wave superconductor, one hasde(kx ,ky)
52D0vc /en in accordance with Eq.~26!.

Consider the vortex-induced transitions between the
els in more detail. We use the microscopic kinetic-equat
approach which has been applied earlier fors-wave super-
conductors in Ref. 22. The kinetic equations for the distrib
tion functionsf 1 and f 2 have the form18

Fe~vF•E!g21
1

2
S f 2

]̂Dp*

]t
1 f 2

† ]̂Dp

]t
D G] f (0)

]e
1~vF•¹!

3~g2 f 2!1g2

] f 1

]t
1Fe

c
@vF3H#g2

2
1

2
~ f 2¹̂Dp* 1 f 2

† ¹̂Dp!G• ] f 1

]p

1
1

2 S f 2

]Dp*

]p
1 f 2

† ]Dp

]p D •¹ f 15J ~45!

and

g2~vF•¹! f 150. ~46!

HereJ is the collision integral,

ǧR(A)5S gR(A) f R(A)

2 f †R(A) 2gR(A)D
are the retarded~advanced! quasiclassical Green function
and ǧ25(ǧR2ǧA)/2. In Eq. ~45! we encounter the Lorent
force which has appeared due to the transfromationu

5eixA/2ũ, v5e2 ixA/2ṽ used for derivation of this equation.18

This is exactly the point which we discussed in Sec. I
connection with the transformation of Eq.~4!.
-
s
ns

es
or

y

c-
ng

l

e
-
ta
-
r-
f-

-
n

-

For an extended state with an energye.Dp , the particle
trajectory crosses many vortex unit cells at various distan
from vortices. Since the distribution functionf 1 is constant
along the trajectory according to Eq.~46!, it should be also
independent of the impact parameter~i.e., of the distance
from the trajectory to the vortex!. We thus look for a distri-
bution functionf 1 which is independent of coordinates. On
can then omit the last term in the left-hand side~LHS! of Eq.
~45!. Let us average Eq.~45! over an area which contain
many vortex unit cells but has a size small compared w
the Larmor radius,a0!r !r L . Sincer !r L , the momentum
p is still an integral of motion. We have~compare with Ref.
18!

E
S0

g2

] f 1

]t
d2r 2

1

2
TrE

S0

d2r ǧ2~¹Ȟ !•
] f 1

]p
2E

S0

J d2r

5
1

2
TrE

S0

d2r ǧ2~vL•¹Ȟ !
] f (0)

]e
.

Here Tr is the trace in the Nambu space;S05F0 /B is the
area of the vortex unit cell. The collision integral has t
form23

J52
1

t
@~ f 1^g2&2^ f 1g2&!g22~ f 1^ f 2

† &2^ f 1f 2
† &! f 2

1~ f 1^ f 2&2^ f 1f 2&! f 2
† #,

where^•••& is an average over the Fermi surface. Using
identity

1

2
TrE

S0

d2r @~¹Ȟ !ǧ2#5p@z3v'#

derived in Ref. 22 we find

2p@z3v'#•
] f 1

]p
1

] f 1

]t ES0

g2d2r 2E
S0

J d2r

5p~vL•@z3v'# !
] f (0)

]e
. ~47!

We shall concentrate on energiese@DAH/Hc2. In the
leading approximation

g25
e

Ae22D2~a!
Q@e22D2~a!#,

f 25
D~a!

Ae22D2~a!
Q@e22D2~a!#.

We have

^ f 1&5^ f 1g2&50, ^ f 1f 2&5^ f 1f 2
† &50.

For ad-wave superconductor also^ f 2&5^ f 2
† &50.

In the collision integral, the main contribution fore
@DAH/Hc2 comes from the delocalized states. Indeed,
cluding contributions from the states in the core22 with ener-
giesEn(b) we would have
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E
S0

J d2r'2S0F(
n

p'vc

tn
E d~e2En!db1

^g2&g2

t G f 1 ,

where b is the impact parameter. The first term in squa
brackets comes from the core states. Sincetn;t and b
;jAHc2 /H, the core contribution is of the order o
t21AH/Hc2. The delocalized states, however, gi
(e/D0)t21 which is much larger than the first term. Neglec
ing the core contribution we find

J52
1

t
^g2&g2 f 1 .

Let us put

f 152
] f (0)

]e
$~@uÃp'#• ẑ!gO1~u•p'!gH%. ~48!

The functionsgO,H satisfy the following set of equations:

]gO

]a
2gH2V~a!gO1150,

]gH

]a
1gO2V~a!gH50, ~49!

which is derived from Eq.~47!. Here

V~a!5
~2 iv1^g2&/t!g2

vc
~50!

andv is the frequency of the applied field.
The general solution of Eqs.~49! can be obtained8 by

putting W65gH6 igO. We have

]W6

]a
7 iW62V~a!W66 i 50,

whence

W65FC67 i E
0

a

e7 ia82F(a8)da8Ge6 ia1F(a), ~51!

where

F~a!5E
0

a

V~a8!da8.

The constantC6 is found from the condition of periodicity
W(a)5W(a1p/2):

C65

exp@F~p/2!#E
0

p/2

exp@7 ia2F~a!#da

12exp@6 ip/21F~p/2!#
. ~52!

In the limit t→`, the functions

gH5~W11W2!/2; gO5~W12W2!/2i

have poles when
e

F~p/2!5
p i

2
~112M !, ~53!

whereM is an integer.

A. High energies

Excitations with high energies,e.D0, have resonances a

v

vc
E

0

2p e

Ae22D2~a!
da52p~112M !.

The lowest frequencyM50 exactly corresponds to the con
dition

v5~den /dn!,

where den /dn is the distance between the Landau lev
determined by Eq.~23!. The resonant frequencies are in th
range v&vc and appoach the cyclotron frequency fore
@D0. For illustration, consider ans-wave superconductor
Equations~49! have the form

gH1VgO51,

gO2VgH50, ~54!

where

V~a!5F2 iv

vc

e

Ae22D0
2

1
1

vct
GQ@e22D0

2#

since

J52
1

t
~ f 12^ f 1&!Q@e22D0

2#.

One has from Eq.~54!

gH5
1

11V2
, gO5

V

11V2
.

The resonances appear whenvct@1; the poles correspond
to V56 i so that

v5vc

Ae22D0
2

e
5

den

dn
, ~55!

whereen is determined by Eq.~29!. For not very low tem-
peraturesT;Tc , the resonances are practically not disti
guishable from the cyclotron resonance. However, the si
tion changes for lower temperaturesT!Tc , where the low-
energy states dominate.

B. Low energies

For energiese!D0, the resonant frequencies are esse
tially above the cyclotron resonance; this could be ant
pated from the fact thatden /dn@vc as follows from Eq.
~25! with e!D0. We start our discussion with the observ
tion that the condition, Eq.~53!, is not simply the distance
between the Landau levels determined by Eq.~25!. Indeed,
one has from Eq.~24!
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den

dn
E

2ae

ae e

Ae22D2~a!
da5pvc ,

whereD(ae)5e. At the same time, Eq.~53! gives the lowest
resonant frequency

v

vc

NE
2ae

ae e

Ae22D2~a!
da52p,

where N is the number of gap nodes (N54 for a d-wave
superconductor!. We see that the resonance occurs at

Nv52
den

dn
. ~56!

When the vortex oscillates, allN nodes participate in excit
ing quasiparticles which accounts for the factorN on the
LHS of Eq. ~56!. This is similar to the process of multipho
ton absorption. The factor of 2 on the RHS is explained
noting that states with momentum directionsa anda1p are
simultaneously excited.

Consider now the dynamic vortex response for energ
D0AH/Hc2!e!D0 when the states in the gap nodes
from vortex cores dominate over the contribution from t
core states.9 Solution of Eqs.~49! and ~50! for this energy
range was obtained in Ref. 9. We recall it for completene
In the main region of angles,uau.ae5e/2D0, one has ac-
cording to Eqs.~51! and ~52!

gO5A cosa1B sina,

gH512A sina1B cosa, ~57!

with

A5
elsinhl

2 sinh2l11
, B5

e2lsinhl

2 sinh2l11
. ~58!

Here

l5F~ae!, F~p/2!52l

and we useF(p/22a)52l2F(a). The expression forl is
easily obtained from Eq.~50!:

l5
p

4
^g2&

2 iv1^g2&/t

vc
. ~59!

We see that the effective relaxation rate is 1/te f f5ueu/D0t
since^g2&5ueu/D0. Note that at approximation was used in
Ref. 9 for the collision integral. To get the present express
for l from that obtained in Ref. 9 one has to replace 1/t with
1/te f f .

In the superclean limitt→`, the response, Eqs.~57! and
~58!, has poles atil5(2M11)p/4, i.e., for

v5~2M11!E0~e!, E0~e!5D0vc /ueu. ~60!

We have forM50

v5
1

2

den

dn
,

y

s
r

s.

n

whereen is determined by Eq.~26!. This condition agrees
with Eq. ~56!. The resonance frequencies are above the
clotron resonancev@vcAHc2 /H for excitations with ener-
giesD0AH/Hc2!e!D0.

These resonances were first predicted in Ref. 9. Note
different numerical factor in Eq.~60! as compared to Ref. 9
this is because a simplified version ofV(a) has been used in
Ref. 9. The main effect of resonances is that vortices ex
rience a considerable friction force, Eq.~61!, even in a su-
perclean casevte f f@1.

C. Vortex friction

A vortex moving with a velocityvL experiences a force
from the environment which is usually parametrized as~see,
for example, Ref. 18!

Fenv52hvL2h8@vL3z#. ~61!

According to Ref. 22, the delocalized states contribute to
constants as follows:

hdel5pNK E
del

gO

d f (0)

de

de

2 L
a

, ~62!

where^•••&a is an average overda. The factorh8 is deter-
mined by the same expression wheregO is replaced withgH .

The presence of resonances makes the dissipative
stanthdel finite even in the superclean limitvct→`. As we
know, excitations both below and aboveD0 can participate.
For s-wave superconductors, the contribution of the co
states withe,D0 has been considered in Ref. 24. The
resonances occur atv5v0 above the cyclotron resonanc
v0;EF /D0

2 being the distance between the Caroli–
Gennes–Matricon bound states in the vortex core.25 On the
contrary, the high-energy states for ans-wave case give

gO5
pE

2
@d~v2E!1d~v1E!#,

where E5vcA12D0
2/e2, as follows from Eq.~55!. It re-

quiresv,vc , of course. The friction constant due to hig
energy states becomes

hdel5p2ND0

v2/vc
2

~12v2/vc
2!3/2

d f (0)~e0!

de
, ~63!

wheree05D0 /A12v2/vc
2.

A detailed discussion of the resonant vortex friction for
d–wave superconductor in the frequency rangev.vc at
low temperatures can be found in Ref. 9. These resona
can be, in principle, observed in the far-infrared region
magneto-optical experiments. Indeed, for a magnetic field
8 T used in Ref. 17 the cyclotron frequency was of order
few kelvins which provides quite reasonable temperat
range for detecting the predicted resonances.

VI. CONCLUSIONS

We discussed and analyzed the ‘‘Landau-level’’
‘‘energy-band’’ opposition in the description of the structu
of the excitation spectrum in the mixed state of superc
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ductors and, in particular,d-wave superconductors. We fin
that the actual picture of quantization is an interplay betw
the two limiting images of the energy spectrum. Our analy
shows that the influence of the magnetic field on delocali
excitations in a superconductor is not reduced to a mere
tion of the effective vortex lattice potential. In fact, the ma
netic field has a twofold effect: On the one hand, it crea
vortices and thus provides a periodic potential for exc
tions; on the other hand, it also affects the long-range mo
of quasiparticles in a manner similar to that in normal meta
For low-energy excitations, the long-range effects are l
pronounced. However, excitations with energiese
.D0AH/Hc2 mostly show long-range quantization. The e
ergy spectrum consists of ‘‘Landau levels’’ which are sp
into bands by the periodic vortex potential. In the quasicl
sical approximationpFj@1, the bandwidth is of the order o
.

n,
n
is
d
c-

s
-
n
.
s

-

-

the distance between the Landau levels; it is small compa
to the energy itself.

An ac electric field induces transitions between the sta
belonging to different Landau levels. Using the microsco
kinetic equations we demonstrate that these transitions
be seen as an increase in the vortex friction due to a reso
absorption at frequencies corresponding to the energy dif
ences between the Landau levels.
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