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Dynamics of vortex nucleation by rapid thermal quench
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By numerical and analytical studies of the time-dependent Ginzburg-Landau model we show that vortex
nucleation in superfluid3He by rapid thermal quench in the presence of superflow is dominated by a transverse
instability of the moving normal-superfluid interface. The instability threshold is found analytically as a
function of supercurrent density and the front velocity. The dynamics of vortex evolution at long times after the
quench is investigated.
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I. INTRODUCTION

Formation of topological defects under a rapid quench
fundamental problem of contemporary physics promising
shed a new light on the early stages of the evolution of
Universe. For homogeneous cooling a fluctuation-domina
formation mechanism has been suggested by Kibble
Zurek ~KZ!.1–3 Normally, cooling is associated with an in
homogeneous temperature distribution accompanied b
phase separating interface which moves through the sys
as temperature decreases. A generalization of the KZ
nario was suggested in Ref. 4 for inhomogeneous phase
sitions in superfluids: if the thermal front moves faster th
the normal-superfluid interface a large supercooled reg
which is left behind becomes unstable towards fluctuati
induced nuclei.

Superfluid 3He offers a unique ‘‘testing ground’’ for
rapid phase transitions.5 In recent experiments with a rotatin
superfluid3He, vortex formation was revealed during a rap
second-order phase transition triggered by absorption
neutrons.6,7 The sample was locally heated well above t
critical temperature due to the energy produced by each
sorption event. The heated region then cooled down rap
below the superfluid transition. Such an inhomogene
cooling is associated with propagation of normal-superfl
~NS! interface and with formation of a large supercool
normal region behind the interface.4,8 The fluctuation-
dominated mechanism may thus be responsible for crea
of initial vortex loops in the supercooled region. It is com
monly accepted that these initial vortex loops are further
flated by the superflow and give rise to a macroscopic nu
ber of large vortex lines filling the bulk superfluid.

In this paper we report a different mechanism of the v
tex formation which overtakes the growth of the initi
fluctuation-dominated loops. Preliminary account of so
results had been published in Ref. 9. Studying the en
process of the vortex formation in the presence of a su
flow using the time-dependent Ginzburg-Landau~TDGL!
dynamics, we account for the temperature evolution ass
ing a thermal diffusion. The TDGL scheme is modified
allow for a complex relaxation rate which models the vort
dynamics at temperatures considerably belowTc .

We find analytically and confirm by numerical simul
0163-1829/2001/63~18!/184501~12!/$20.00 63 1845
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tions that the NS interface becomes unstable with respec
transverse undulations in the presence of a superflow. Th
undulations quickly transform into large primary vorte
loops which then separate themselves from the interface
multaneously, a large number of small secondary vort
antivortex nuclei are created in the supercooled region
fluctuations, resembling the conventional KZ mechanis
The primary vortex loops screen out the superflow in
inner region causing the annihilation of the second
vortex-antivortex nuclei. The number of thesurvivedsecond-
ary vortex loops is thus much smaller then that anticipa
from the KZ conjecture. The dynamics of the vortex-loo
evolution at very long times after the quench is studied
merically. We find that the number of vortex loops in th
bulk of the supercooled region decays with time as 1/t which
complies with the complete screening of superflow.

The structure of the paper is as follows. In Sec. II w
formulate the TDGL model for3He. Section III describes the
results of three-plus-one and two-plus-one-dimensional
merical simulations of the generalized TDGL model. In S
IV we present analytical studies of the NS interface insta
ity. An estimate for the number of vortex loops created a
result of the NS interface instability is presented in Sec.
Section VI treats the long-term dynamics of vortices in t
transient state. The results of weakly nonlinear analysis
the interface instability are presented in Appendix B.

II. MODEL

In our calculations we use the simplest time-depend
description, namely the TDGL model with a scalar ord
parameterc. There are two major assumptions behind th
model. First, we expect that a complex scalar order par
eter is sufficient to describe vortex dynamics and vor
nucleation in3He-B at least not too close to theA2B tran-
sition line.3,4 Approximation of the3He-B order paramete
structure by a complex scalar ignores the actual rich struc
of the nine-component complex order parameter specific
superfluid3He. Of course, we are thus unable to differentia
between various types of vortices that can exist in superfl
3He and to follow all kinds of transitions between them
However, we believe that this model gives a correct qual
tive account for vortex dynamics. Certainly, this consid
©2001 The American Physical Society01-1
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ation cannot describe properly the exact quantitative va
of the vortex mutual-friction parameters which depend
3He-specific structure of the vortex cores. The other assu
tion concerns the nature of the TDGL model itself. Th
model seems to be a reasonable description for3He-B very
close toTc . It is expected to be exact in the so-called gapl
regime when the order-parameter magnitude is smaller
the quasiparticle relaxation rate~for 3He, the corresponding
temperature range is, unfortunately, beyond the reach
present experiments!. Moving away fromTc , kinetics of ex-
citations becomes important, so that a description that
ploys the order parameter as the only relevant varia
breaks down. For a vortex dynamics, in particular, a differ
feature becomes important: a nondissipative force on a m
ing vortex appears perpendicular to the vortex velocity
addition to a dissipative viscous force. The dissipative fo
is, in principle, taken care of by a simple TDGL model.10 To
account for a nondissipative dynamics we allow for a co
plex relaxation rate of the order parameter in the TDG
equation. An imaginary part of the relaxation constant
known to result in a transverse force on vortices
superconductors.11,12 We write our starting equations in th
form

~12 ih!] tc5Dc1@12 f ~r ,t !#c2ucu2c1z~r ,t !. ~1!

This equation interpolates between two extremes: close tTc
the parameterh→0, which corresponds to the usual TDG
model, while largeh corresponds to low temperatures. T
latter case resembles the dissipationless Gross-Pitae
equation devised originally for a weakly interacting Bose g
at T50 and then applied also for superfluid helium II at lo
temperatures.13,14

Here f describes local temperature evolution. Since
energy released due to relaxation of the order parameterc is
very small in Fermi superfluids, especially nearTc , because
only a small fraction of particles participate in paired co
densate, we can consider evolution of temperature inde
dent on the order-parameter dynamics.

In Eq. ~1!, D is the three-dimensional~3D! Laplace op-
erator, and distances and time are measured in units o
coherence lengthj(T`) and the characteristic timetGL(T`),
respectively. These quantities are taken at temperatureT` far
from the heated bubble. For a Fermi liquid, the microsco
values of the Ginzburg-Landau parameters are

tGL~T`!5p\/8~Tc2T`!,

the coherence length is

j~T!5j0S 7z~3!

12~12T/Tc!
D 1/2

, j05
\vF

2pTc
.

Close toTc the local temperature is controlled by norma
state heat diffusion and evolves as

f ~r ,t !5
T2T`

Tc2T`
5

E0 exp~2r 2/st !

t3/2
, ~2!
18450
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where s is the normalized diffusion constants
5@48/7z(3)#@Dt0 /j0

2#; l /j0, wheret05p\/8Tc . Here D
is the usual diffusion constant, whilel is the quasiparticle
mean free path. In3He, s is very large becausel @j0 . E0
determines the initial temperature of the hot bubble and
proportional to the deposited energyE0 such that

E05E0@C~Tc2T`!j3~T`!~ps!3/2#21,

whereC is the heat capacity. Since the deposited energ
large compared to the characteristic superfluid energy,
assumeE0@1. Representative values ofE0 in our calcula-
tions are of the order of 30–50. An important parameter i
time tmax5E0

2/3 at which the temperature in the center of t
hot bubble drops down toTc .

The Langevin forcez with the correlator

^z~r ,t !z~r 8,t8!&52Tfd~r2r 8!d~ t2t8!

describes thermal fluctuations with a strengthTf that corre-
sponds to the heat bath temperatureTc ~see the review Ref.
15 for detail!. The effective noise strength in reduced units

Tf5@27/7z~3!p4#1/2Gi21@12~T/Tc!#
21/2,

where Gi5n(0)j0
3Tc;104 is the Ginzburg number,n(0) is

normal density of states. This value ofTf results from the
microscopic expression for the Ginzburg-Landau free ene
of a Fermi superfluid with a scalar order parameter~see, for
example, Ref. 16!. We neglect dependence ofTf on the local
temperature in what follows.

III. RESULTS OF SIMULATIONS

We solved Eq. ~1! by the implicit Crank-Nicholson
method. The integration domain was equal to 1503 units of
Eq. ~1! with 2003 mesh points. The computations were pe
formed on massive parallel computer at Argonne Natio
Laboratory. The boundary conditions were taken as]c/]z
5 ikc with a constantk at the top and the bottom of th
integration domain. This implies a uniform superflowj s
5kuc0u2 along thez axis far away from the temperatur
bubble, and the equilibrium value of the order parameterc0
is related tok as follows:uc0u2512k2.

Consider first simulations for fully dissipative case wi
h50. Selected results are shown in Fig. 1. The ‘‘explosio
~heat pulse! was created att50 at the origin located at the
center of each panel in Fig. 1. One sees from Figs. 1~a!–~c!
that without fluctuations~numerical noise only17! the vortex
loops nucleate upon the passage of the thermal front. No
of the loops survive: small loops collapse and only big on
grow. This type of behavior is characteristic for the vort
motion in a dissipative environment described by the TDG
equation withh50:13 a single vortex ring in the presence o
uniform superflow either shrink or expand depending on
circulation. ForhÞ0 the vortex ring also drifts parallel su
perflow direction.18 Although the vortex lines are centere
around the point of the quench, they exhibit a certain deg
of entanglement. After a long transient period, most of
vortex loops reconnect and form the almost axisymme
configuration.
1-2
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DYNAMICS OF VORTEX NUCLEATION BY RAPID . . . PHYSICAL REVIEW B63 184501
We find that the fluctuations have a strong effect at ea
stages: vortices nucleate not only at the normal-superfl
interface~we call them ‘‘primary’’ vortices!, but also in the
bulk of the supercooled region~‘‘secondary’’ vortices!, see
Figs. 1~d! and ~e!. However, later on, small vortex loops i
the interior collapse and only larger primary vortices surv
and expand@Fig. 1~f!#.

To elucidate the details of nucleation we considered
quasi-three-dimensional axisymmetric version of Eq.~1! de-
pending on onlyr andz coordinates,

D5] r
21~1/r !] r1]z

2 . ~3!

The domain was 5002 with 10002 mesh points. We have
found that without thermal fluctuations vortices nucleate
the front of the NS interface@black/gray border in Fig. 2~a!#
analogous to the previous nonaxisymmetric case. Note
black areas on Figs. 2~a!, ~d!, and also Fig. 3~a! correspond
already to supercooled normal regions (T,Tc). The initial
instability is seen as a corrugation of the interface. The
terface propagates towards the center, leaving the vort
behind. As thermal fluctuations are turned on, the vor
loops also nucleate in the bulk of the supercooled reg
@black spot in Fig. 2~d!# resulting in the creation of the sec
ondary vortex-antivortex pairs. We have found that prima
vortices prevent the supercurrent from penetrating into
region filled with the secondary vortices. One sees that
primary vortices encircle the brighter spots in Figs. 2~b!, ~c!,
~e!, and ~f! indicating a larger value of the order parame
and thus a smaller value of the supercurrent. As a result

FIG. 1. 3D isosurface ofucu50.4 for s5400, E0530, andk
50.5.~a!–~c! Tf50. Images are taken at timest536,48,80.~d!–~f!
Tf50.002, t524,48,80.
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secondary vortices either annihilate with antivortices due
their mutual attraction or collapse due to the absence of
inflating superflow.

Numerical solution of Eq.~1! with nonzeroh50.5 shows
close similarity with previous results; see Fig. 3. However,
contrast to the caseh50, for a nonzeroh the shape of the
resulting vortex configuration is asymmetric in the directi
of applied current. This is due to oblique motion of the vo
tices with respect to the current direction: ForhÞ0 the vor-
tex loop not only changes its size but also drifts in the dir
tion of superflow~see Ref. 18 for detail!. Similar behavior
occurs forh@1. Our simulations performed forh55 dem-
onstrate that the superflow is expelled from the region s
rounded by primary vortex loops: the order parameter is
pressed considerably by the flow pattern around the regio
the primary vortices. Thus the presence of the transve
force on vortices resulting from an imaginary part of t
relaxation constant does not change qualitatively the mec
nism of vortex formation and evolution during a rapid the
mal quench.

We now summarize the main results of the numeri
3D11 simulations. ~i! Without fluctuations, vortices are
nucleated at the interface between the superfluid and no

FIG. 2. Images ofucu for axisymmetric Eq.~1! for s55000,
E0550, andk50.5, black corresponds toucu50 and white toucu
51; gray (ucu;0.8) indicates suppression of order parameter
current. Current is along thez axis. Vortices are seen as black do
~a!–~c! Tf50, images are shown fort540,100,200;~d!–~f! Tf

50.002, fort530,50,200.
1-3
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I. S. ARANSON, N. B. KOPNIN, AND V. M. VINOKUR PHYSICAL REVIEW B63 184501
phases~primary vortex loops!. These vortices survive th
collapse of the interface and remain in the superfluid ph
after the cooling process is completed.~ii ! Fluctuations pro-
duce vortex loops also inside the supercooled bubble~sec-
ondary vortices!; however, these vortices disappear on la
stages of the process.~iii ! The supercurrent inside the regio
surrounded by primary vortex loops is considerably sma
than outside this region which is seen as brighter inte
regions in Figs. 1–3.~iv! Primary vortex loops expand an
move very slowly away from the place where they have b
formed. Indeed, as seen from Figs. 1–3, vortices move o
slightly during the time span of a decade from 30 to 3
units. We discuss these results in more detail in the follow
sections of the paper.

IV. INSTABILITY OF THE NORMAL-SUPERFLUID
INTERFACE

Our numerical simulations shown in Figs. 1–3 indica
that nucleation of vortices happens predominantly within
relatively narrow region at the NS interface. The fact th
vortices are nucleated there even without fluctuations s
gests that the interface becomes unstable. In this section
perform the stability analysis and demonstrate that the in
face indeed develops an instability towards the formation
vortices.

Following Refs. 3, 8, and 9, we expand the local tempe
ture 12 f nearTc . Let us putx5r c2r wherer c is the radius
of the surface at whichT5Tc or f (r c ,tc)51, i.e., r c

2

5(3/2)stcln(tmax/tc). A positivex is directed towards the ho
region. We write 12 f (r ,t)'2a@x2v(t2tc)#, where

a52@] f /]r # f 5152r c /stc

FIG. 3. Images ofucu obtained by numerical solution of axisym
metric Eq. ~1! for h50.5. Other parameters areE0550, s
55000, k50.5, Tf50.002. Images are shown for timet530 ~a!,
t540 ~b!, t5150 ~c!, andt5300 ~d!.
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is the local temperature gradient andv5(atQ)21 is the tem-
perature front velocity defined through the quench ratetQ

21

52@] f /]t# f 51. We have for the front velocity v
52drc(tc)/dtc5(3stc22r c

2)/4r ctc . The front starts to
move towards the center att.t* 5tmax/e and disappears a
t5tmax when the temperature drops belowTc . The front
velocity accelerates as the hot bubble collapses. Since
radiusr c is large compared to the coherence length, the te
perature front can be considered flat. We choose the coo
natesy,z parallel to the front. In a two-dimensional proble
the solution is assumed independent ofy.

We transform to the frame moving with the velocityv
and perform the scaling of variables

x̃5vx,z̃5vz, t̃ 5tv2, ~4!

c̃5c/v,u5v3/a. ~5!

We drop tildes in what follows. If the radius of the ho
bubbleR large comparing with coherence lenghtj, which is
the case for large deposited energies, one can neglec
curvature of the hot bubble. ThereforeD']x

21]z
2 , and Eq.

~1! takes the form

~12 ih!] tc5Dc1~12 ih!]xc2
x

u
c2ucu2c. ~6!

The parameteru;(s2/tmax)/ln
2(tmax/t) is the only parameter

of the problem~in addition toh); it characterizes the quenc
rate. For thermal diffusion in3He, the parameteru is large
due to a large magnitude ofs. We discuss the physica
meaning ofu in more detail in Sec. IV A.

A. Steadily moving interface

Consider first a dissipative system withh50. Equation
~6! admits a family of stationary current-carrying solution

c5F~x!exp~ ikz! ~7!

with amplitudeF satisfying the equation

]x
2F1]xF2S x

u
1k2DF2F350. ~8!

We solved Eq.~8! numerically, using matching-shooting a
gorithm with Newton iterations from NAG library. The so
lutions to Eq.~8! for various values ofu are shown in Fig. 4.
As one sees from the figure, the supercooled normal reg
with T,Tc expands with increase ofu. A large-u limit for
the stationary solution was studied in Ref. 8.

One can obtain an approximate solution to Eq.~8! for u
@1. Let us put

x5 x̄2ug2uk2, ~9!

whereg is to be determined later. For not very largex̄ one
can neglectx̄/u in Eq. ~8! to get the equation

] x̄
2
F01] x̄F01gF02F0

350 ~10!
1-4
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DYNAMICS OF VORTEX NUCLEATION BY RAPID . . . PHYSICAL REVIEW B63 184501
for an approximate interface solutionF0. The interface
F0( x̄) connects the two equilibriaF56Ag and F50; see
Fig. 5. The functionF0 approximates the exact solutionF to
Eq. ~8! fairly well for not very largex̄. For large negative
x̄!u, the solution should be replaced by its final asymptot

F5Ag2 x̄/u. For large positivex̄, the solution of Eq.~10!
should be matched with the true asymptotics forF→0 found
from Eq. ~8!. It is given by the expression

F;exp~2 x̄/2!Ai @u2/3~g21/42 x̄/u!#. ~11!

As it was shown in Ref. 8, foru→` the matching is possible
for g→1/4. Indeed, for largex̄, one has for the Airy function

Ai ~2z!;z21/4sin~r1p/4!, ~12!

FIG. 4. The steady NS interfaceF vs x for different values ofu.
The termal frontT5Tc is at x50 and is moving to the right.

FIG. 5. Solution to Eq.~10! for g50.275~solid line!. For com-
parison is show solution for Eq.~8! for u51728~long dashed line!.
Short-dashed line showsF0

2exp(x). Inset: the ratio of integrals
*2`

` F0
4exdx/*2`

` F0
2exdx as a function ofg, to be used in Appendix

A.
18450
s

where r52/3z3/2, and z5u2/3(V22 x̄/u) while V

5Ag21/4. Expandingr for x̄/u!1 one obtains from Eq.
~11!

F;exp~2 x̄/2!sinS 2

3
uV31

p

4
2V x̄D . ~13!

On the other hand, Eq.~10! gives for smallF0,

F05C exp~2 x̄/2!sin~V x̄1f!, ~14!

whereC andf are constants. The functionF0, of course, is
independent ofu, and the constantf cannot be large. Match
ing of Eqs. ~13! and ~14! thus requiresV→0 where g
51/41O(u22/3).

The same consideration applies also for a complex re
ation constanthÞ0. We now put in Eq.~6!

c5F~x!exp~ ikz1 ivt1 ikx!, ~15!

where v and k are the frequency and longitudinal wav
number which will be defined later. One sees that an in
esting feature for anyhÞ0 is the emition of oblique waves
from NS interface. Substituting Eq.~15! into Eq. ~6! one
obtains

iv~12 ih!F2~12 ih!~]xF1 ikF !

5]x
2F12ik]xF2S x

u
1k21k2DF2F3. ~16!

Fixing

k5h/2,v5k5h/2 ~17!

one derives Eq.~8! with the k2 replaced byk21k2, which
can be excluded by a proper shift ofx.

The coordinate transformation Eq.~9! determines the po-
sition of the interface as a function of the quench parame
u. With an increase inu, the interface shifts to negativex
leaving a supercooled normal region withT,Tc behind as
seen in Fig. 4. The size of the supercooled region isdr
;u/v in the GL units. The growth of fluctuations is de
scribed by linearized Eq.~1!:

] tc5~ t/tQ!c.

The fluctuation grows exponentially with a characteris
Zurek time tZ;tQ

1/2. According to Eq.~1!, the coherence
length decreases with decreasing temperature and reache
characteristic Zurek length atjZ;tQ

1/4 at this time. Topologi-
cal defects can be created by fluctuations if the size of
supercooled regiondr is considerably larger thanjZ . The
estimate givesdr /jZ;u/vtQ

1/4;u3/4. Therefore fluctuation
can produce vortices during such a phase transition onl
the condition of a rapid quenchu@1 is satisfied.4 We shall
see now that the same condition determines an instabilit
the interface in presence of a supercurrent towards forma
of vortices. Thus at a rapid transition withu@1 two pro-
cesses take place simultaneously: formation of vortices at
1-5
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I. S. ARANSON, N. B. KOPNIN, AND V. M. VINOKUR PHYSICAL REVIEW B63 184501
interface between the superfluid and normal supercooled
gion and creation of vortices by fluctuations inside the n
mal region.

B. Linear analysis

Let us examine the transverse stability of stationary so
tion to Eq. ~6!. For h50 we put c5@F1w(x,z,t)#
3exp(ikz), wherew is a perturbation. For the functionw we
derive from Eq.~6!

] tw5]x
2w1]z

2w12ik]zw1]xw2S x

u
1k2Dw

2F2~2w1w* !2F~2uwu21w2!2uwu2w. ~18!

Separating real and imaginary parts ofw5a1 ib one has

] ta5]x
2a1]z

2a22k]zb1]xa2S x

u
1k2Da23F2a

2F~3a22b2!2~a21b2!a, ~19!

] tb5]x
2b1]z

2b12k]za1]xb2S x

u
1k2Db2F2b22Fab

2~a21b2!b. ~20!

Dropping nonlinear terms ina,b and representing the solu
tion to Eqs.~19! and ~20! in the form

S a
bD5S A

iB Dexp~l~q!t1 iqz!, ~21!

whereq is the transverse undulations wave number andl is
the growth rate, we obtain (x5kq,L5l1q2)

LA12xB5]x
2A1]xA2~x/u1k2!A23F2A,

LB12xA5]x
2B1]xB2~x/u1k2!B2F2B. ~22!

In the case of a complex relaxation constant perturba
solution to Eq.~6! is sought in the formc5(F1w)exp(ikz
1ivt1ikx). Substituting this ansatz into Eq.~6! one obtains
Eq. ~22! where k2 is replaced withk21k2, and x5kq
2 ilh/2. Therefore all the results on linear stability can
easily carried over to the case of arbitraryh.

Solution to Eqs.~22! can be obtained numerically for a
bitrary u andx. Moreover, one can find analytical solution
in two limits: long-wavelength limitx!1 and large-velocity
limit u@1.

C. Long-wavelength limit

The eigenvalueL for x→0 can be found as an expansio
in x: L5xL11x2L2

21••• and similarly for A and B.
Within the zeroth order inx, the second Eq.~22! coincides
with the equation for the stationary solution Eq.~8!. One has
A050,B05F. Within the first order, we deriveB150 and

]x
2A11]xA12~x/u1k2!A123F2A152F. ~23!
18450
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The solutionA152u]xF is obtained by differentiating Eq
~8!. The second-order terms in Eq.~22! give

]x
2B21]xB22~x/u1k21F2!B254u]xF1L2F. ~24!

A zero mode of Eq.~24! is F. Equation~24! is not self-
adjoint, therefore the adjoint zero modeB† does not coincide
with F. The corresponding adjoint operator has the form

]x
2B†2]xB

†2~x/u1k21F2!B†50. ~25!

One checks by substitution that functionB†5F exp(x) satis-
fies Eq.~25!. Equation~24! has a solution if the orthogonal
ity condition with respect to the zero mode is fulfilled

E
2`

`

dxFex~4u]xF1L2F !50. ~26!

After integration we obtainL252u. Returning to the origi-
nal notations, we obtain theexactresult

l5q2~2uk221!1O~q4!. ~27!

For hÞ0 we obtain an implicit condition for the instabil
ity growth rate:

l52u~kq2 ilh/2!22q2. ~28!

It is easy to check that the threshold is given by the condit
2k2u51 irrespectively ofh. The growthratel near the
threshold 2k2u21→0 is @compare with Eq.~27!#

l'q2
2uk221

12 i2uhkq
. ~29!

The instability occurs above the thresholdkv
25(2u)21 or

kv
2;a2/3/u1/3;s21ln~ tmax/t !

in the Ginzburg–Landau units. The threshold is mu
smaller than the bulk critical valuekc51/A3 for a rapid
quenchu@1; it can be exceeded for a very small superflo

To visualize the outcome of instability and to demonstr
that it indeed leads to formation of vortices we perform
numerical simulations using Eq.~6!. The results are pre
sented in Fig. 6. They clearly show that the instability resu
in nucleation of vortices at the interface.

FIG. 6. Images ofucu obtained by numerical solution of Eq.~6!
for u5100, k50.1, size of the integration domain 2403240, num-
ber of grid points 4003400, images are shown fort590 ~a!, t
5125 ~b!.
1-6
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D. Large-u limit

The instability threshold obtained above does not prov
the optimal wave numberqmax for the most unstable pertur
bation. This wave number can be found by evaluat
higher-order terms inl(q) up to q4, which will provide the
fall off of the growth rate. A full analytical solution of the se
of Eqs. ~22! can be obtained in the limit of a largeu ~fast
quench rate!. Let us start first withh50 and consider the
large-u limit in more detail. In this limit one assumesL
;x;1/u. Let us put againx5 x̄2ug2uk2 in Eqs.~22!. For
u@1 we treat the terms containingL, x, andx̄/u as pertur-
bations. The steady-state solution of Eq.~8! should also be
written within the same accuracy. Therefore, we use the
proximate solutionF0 of Eq. ~10! as discussed above. I
general, the interface has a formF0( x̄2x0) wherex0 is an
arbitrary constant determining the position of the interfa
The positionx0 is fixed by the corresponding solvability con
dition, see below.

Having established the properties of the steady-state s
tion to Eq.~10!, we turn to the stability analysis of the set
Eqs. ~22!. In the large-u limit these equations assume th
form

LA12xB1exA5]x
2A1]xA1gA23F0

2A,

LB12xA1exB5]x
2B1]xB1gB2F0

2B. ~30!

We omit the bar overx for brevity.
For e50 Eqs. ~30! have zero modes: (A,B)5„0,F0(x

2x0)…, similar to Eqs.~22!. In addition, Eq.~30! has an extra
zero mode (A,B)5„F08(x2x0),0… that manifests the transla
tion invariance fore50 ~we put F08[]F0 /]x). For anye
Þ0 the translation invariance is broken by the perturbat
;x/uA, x/uB in the left-hand side of Eqs.~30!. The corre-
sponding solvability condition will specify the value ofx0.

In contrast to the case ofx→0 considered in the previou
section, the solvability conditions must be fulfilled simult
neously for both zero modes of Eq.~30!. Thus representing
the general zero-mode solution of Eq.~30! at the zeroth order
in the form

S A
BD5S a0F08~x2x0!

b0F0~x2x0! D , ~31!

wherea0 ,b0 are arbitrary constants, and performing the
tegrations with the corresponding zero modes, one obt
characteristic equation forL:

L21
1

u
c1L24c2x21

d

u2
50, ~32!

where the coefficientsc1,2,d are given in the forms of inte
grals ofF with the corresponding zero modes in the interv
2`, x̄,`:

c15
1

u
~ i 5 / i 21 i 4 / i 1!, c25

i 3
2

i 1i 2
, d5

i 4i 5

u2i 1i 2

, ~33!

where
18450
e

g

p-

.

lu-

n

-
ns

l

i 15E
2`

`

F0
2exdx, i 25E

2`

`

~F08!2exdx,

i 35E
2`

`

F0F08e
xdx52 i 1/2,

i 45E
2`

`

~x2x0!F0
2exdx,

i 55E
2`

`

~x2x0!~F08!2exdx. ~34!

It should be noted that forx̄→` the asymptotic tail of the
functionF0 is incorrect. However, as already mentioned, t
crossover to this asymptotic behavior occurs whenF0 is al-
ready very small; see Fig. 5.

The constantx0 is determined from the requirement th
Eqs.~30! always have an eigenvalueL50 for x50 as was
also the case for the original Eqs.~22!. It implies that i 4
50 and fixes the value ofx0,

x05 i 1
21E

2`

`

~F08!2exdx. ~35!

Evaluation of the integrals in Eqs.~34! for g→1/4 yields

c15
2

u
, c251 ~36!

~see Appendix A for details!. Substitution of Eq.~36! into
Eq. ~32! results in

L56A1/u214x221/u. ~37!

Returning to the original definitions, we have an explicit e
pression for the largest eigenvalue of the transverse insta
ity,

l5A1/u214k2q221/u2q2. ~38!

For u→` one has from Eq.~38! l52ukqu2q2. The maxi-
mum growthrate is achieved atqmax5k and is simplyk2.
Numerical solution of Eqs.~22! demonstrates an excellen
agreement with the theoretical expression Eq.~38!; see Fig.
7.

In case of a nonzeroh, Eq. ~37! gives foru@1,

l~12 ih!52ukqu2q2.

Again, the real part of the growth rate has a maximum
qmax5k. Stability analysis thus confirms the conclusio
drawn in Sec. III from the numerical results that the N
interface becomes unstable irrespectively of the imagin
part of the relaxation constant. In our model this is equiv
lent to the conclusion that the instability is not limited to
vicinity of the critical temperature but exists for any tem
peratures.

Very close to the threshold of the instability, there is
possibility that the solution remains finite due to nonline
terms in Eqs.~19! and~20!. Nonlinearity may create a finite
1-7
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barrier that a perturbation has to overcome to initiate
instability. Nonlinear stability analysis described in Appe
dix B shows that the dynamics of the system close to
instability threshold is governed by the so-called Kuramo
Sivashinsky equation~KSE! known in the theory of pattern
formation and interface growth models.19,20 It is known that
KSE exhibits a variety of stable periodic21 as well as spa-
tiotemporal chaotic solutions. For our case, this would im
persistent spatiotemporal dynamics at the interfacewithout
nucleation of vortices. However, moving away from the in
stability threshold overrides nonlinear terms and results
blowing up solutions, see, e.g., Ref. 22. We did not succ
yet to observe KSE-type dynamics in our simulations w
Eq. ~6! because it requires very large system sizes and v
large times of integration due to the critical slowdown at t
threshold of instability. As long as the experimental situat
in 3He is concerned, the instability threshold is exceed
rapidly as the moving interface accelerates during the c
down. It would be interesting to verify KSE scenario in
specially designed experiment, e.g., with liquid crystals.

V. NUMBER OF CREATED VORTEX LOOPS

Now we apply the above results to estimate the numbe
vortex loops nucleated due to the interface instability. Thi
determined by the wave number of the most unstable mo
In the case of thermal quench, the velocity of the NS int
face u→` as time approachestmax, therefore the limit of
large u applies. The growth of perturbations near the int
face is described by the Fourier integral

w;E dqS~q!exp@l~q!t1 iqz#, ~39!

wherew(x,z,t) is the perturbation to the interface solutio
S(q) is the spectrum of initial perturbation. In the context
original problem described by Eq.~1! the velocity of the
interface and therefore parameteru,k are certain functions o
time, see Eqs.~4!. Therefore instead of expressionl(q)t in
Eq. ~39! one has to use an integral*0

t l„q(t8)…dt8, valid in

FIG. 7. L vs x for u5512 andu51728, solid lines show result
of numerical solution of Eq.~22!, dashed lines represent analytic
solution Eq.~37!.
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the WKB approximation. However, in the largeu limit this
time dependence is canceled out trivially and one obta
again Eq.~39!.

Taking into account that it is the thermal noise whi
provides initial perturbations for the interface instabilityw,
and using saddle-point approximation for the integral in E
~39! for t@1, one deriveŝ uwu&;ATfRe exp@k2t1ikz#. The
number of vortices is estimated asN5r 0k, wherer 0 is the
radius of the front where the perturbations^uwu& become of
the order of unity. The time intervalt0 corresponding to
^uwu&51 is t0;k22ln(Tf

21). Vortices have no time to grow if
t0→tmax. In this limit one findsr 0

2;s(tmax2t0). The number
of vortices is given by

N;kr0;AskAtmax2t0. ~40!

Taking into account that in our original notationk;vs /vc ,
wherevs andvc are the imposed and critical GL superflo
velocity, respectively, andtmax5E0

2/3, we arrive at

N;AsE0
1/3A~vs /vc!

22b2ln~Tf
21!/E0

2/3, ~41!

whereb5const. Equation~41! exhibits a slow logarithmic
dependence of the number of vortices at the interface on
level of fluctuations.

VI. DYNAMICS OF VORTEX-ANTIVORTEX
ANNIHILATION

In this section we concentrate on the evolution of vortic
created by both the instability and fluctuations. We will a
gue that the outcome of the interface instability determin
the distribution of supercurrent around and inside the vort
This distribution, in turn, determines the dynamics of p
mary vortex loops and the collapse of the secondary vortic

Figure 8 shows the number of vorticesN1 and antivorti-
cesN2 vs time with and without fluctuations. Fluctuation
initially create a very large number;104 of vortices and
antivortices in the bulk which then annihilate. The resulti

FIG. 8. Number of vorticesN1 ~filled symbols! and antivortices
N2 ~open symbols! vs time for s55000,E0550, and k50.5.
Circles correspond toTf50 and squares toTf50.002. Inset:N
5N12N2 for Tf50 ~solid line! andTf50.002~dashed line!.
1-8
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DYNAMICS OF VORTEX NUCLEATION BY RAPID . . . PHYSICAL REVIEW B63 184501
amount of surviving vorticesN5N12N2 is only weakly
dependent on fluctuations.

Shown in Fig. 9 is the number of vortex loopsN vs
quench parameters and applied currentk. At small k the
numberN shows threshold behavior while becoming almo
linear for largerk values. The deviations from a linear la
appear close to the critical valuekc51/A3 for the flow in-
stability in a homogeneous system, when vortices star
nucleate spontaneously everywhere in the bulk.

The estimate Eq.~41! is in agreement with the results o
simulations,23 see Fig. 9. For the experimental values of t
parameters, our analysis results in about ten surviving vo
ces per heating event. It is consistent with Ref. 6 where
many as 6–20 vortices per neutron were detected.

Our simulations identify two distinct regimes of annihil
tion of vortices and antivortices vs time; see Fig. 8. First
large number of vortices is created at early stages of
quench (t,50 in Fig. 8!. Then, this number decreases ra
idly down to much smaller values. At a later stage (t.50), it
relaxes slowly towards the equilibrium value. We perform
detailed numerical simulations in order to elaborate the
tistics of the vortex annihilation at the later stages of
quench. The results are shown in Figs. 10 and 11. The si
lations are performed for the quasi-three-dimensional ge
etry ~assuming axial symmetry of the vortex-loop configu
tion! and also for a pure two-dimensional geometry~straight
vortex lines!.

Let us discuss first the results of simulations for zero
plied currentj s . As one sees from Fig. 10, the behavior f
both 2D and 3D situations is similar: a fast initial relaxati
and then a slow decay consistent with the dependencN
;1/t ~in agreement with Ref. 24 for the homogeneo
quench!. This result complies with the mean-field theory
annihilation based on the assumption that the annihila
rate of vortices is proportional to the local density of an
vortices:

dN1/dt;2N1N2

FIG. 9. ~a! Number of survived vortex ringsN as function ofk
for E0550 ands55000 and~b! N vs s for k50.4 andE0550.
Dashed lines show fitting to prediction Eq.~41!.
18450
t

to

ti-
s

a
e

-

d
a-
e
u-
-

-

-

s

n

~Vinen’s equation25!. AssumingN15N2 one readily obtains
N6;1/t. This behavior is in disagreement with Refs. 26 a
27 which claim that a long-range interaction between
vortices results in substantial deviation from the mean-fi
theory. A 1/t relaxation is well-established in experimen
where the decay of vorticity was measured28 after an abrupt
stop of the rotating container with superfluid3He.

If the flow is applied (kÞ0), one has in generalN1

ÞN2. From the mean-field theory one immediately obta
an exponential relaxationN1;exp(2at)1B, whereB is a
final number of vortices anda is a relaxation ratea;N1

2N2. However, this results is in clear disagreement with
numerical simulations shown in Fig. 11. As it follows from
the figure, the relaxation law is the same as in the previ
casek50, the only difference being thatN1 approaches an
equilibrium value,N15A/t1B.

FIG. 10. Number of vorticesN vs time fork50 ~zero supercur-
rent!. Parameters of simulations:E0550,s510 000, domain size
100031000 for quasi-three-dimensional sample~line 3D!, andE0

550,s56000, domain size 8003800 for the two-dimensiona
sample. Each line is averaged over five independent realizatio
thermal noise.

FIG. 11. Number of vorticesN vs time k50.4 for the three-
dimensional sample andk50.3 for the two-dimensional one. Othe
parameters the same as in Fig. 10. The limiting number of vort
is B'33.5 in 3D andB'21.6 in 2D.
1-9
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Figure 11 gives a very strong evidence in favor of t
conclusion that the supercurrent is expelled from the vor
region to the periphery, being screened out by vortices g
erated by the NS interface instability as seen from Figs
and 3. The absence of supercurrent inside the vortex re
recovers the mean-field behaviorN1;1/t for the bulk vor-
tices. Such an effective screening of the supercurrent ca
understood in the following way. The number of created v
tex loops is determined by the wave numberqmax that corre-
sponds to the maximum growth rate. Sinceqmax5k the num-
ber of vortices is such that it exactly compensates the ph
difference produced by the supercurrent along the interfa
As a result, no net current remains inside the region s
rounded by primary vortex loops.

Equation~41! N;kr0 can also be written asvs;Nk/r 0
which is the condition that a flowk5mvs supports an array
of N vortex loops with a radiusr 0 and a circulationk
5p/m. Therefore the vortices created at the interface
almost in equilibrium under the action of the superflow a
of the linear tension. Their evolution is thus very slow~as
can be seen also from Figs. 1–3!. As a result, the loops
created by fluctuations inside the supercooled bubble h
enough time to shrink away and disappear before the prim
loops grow and go far from the bubble, reducing the scre
ing of superflow. This explains why the 1/t decay of vorticity
persists for as long as 1000 time units in our simulations

Both the analytical estimates Eq.~41! and the numerica
results shown in Fig. 9~a! together with the long-term vortic
ity relaxation depicted in Fig. 11 strongly suggest that
overall number of nucleated vortices is determined prima
by the interface instability and is a linear function of th
applied superflow, at least for superfluid velocities far fro
the bulk instability limit. This is the exact result of th
TDGL model under the condition that cooling is accom
plished by thermal diffusion. In the experiment,6 however, a
dependence close toN}vs

3 has been observed. The origin
the disagreement between the theoretical predictions and
experimental observations can be searched for both in
quality of the TDGL-model description and in the possib
complications in interpreting the experimental results. Fr
the theoretical side, the assumption of thermal diffusion
the mechanism of removal of the neutron-deposited energ
most vulnerable. In reality, formation of vortices could st
before the excitations produced by the neutron absorp
thermalize; the temperature thus would no longer be a g
quantity at this stage of the vortex dynamics. Variations
pressure in course of the absorption of a neutron can als
an important factor initiating the phase transition. From
experimental side, one can think of effects of the contai
walls on the vortex nucleation. Indeed, the neutron abso
tion happens close to the wall so that the boundary of the
bubble can approach the wall and initiate the vortex form
tion at nucleation sites at the wall. One more factor can be
effect of the bulk superflow instability. Indeed, Fig. 9~a!
shows an upturn of the number of nucleated vortices as
superflow approaches the instability limitk51/A3. Super-
flow velocities in the experiment6 are not far from the critical
value; this proximity can superimpose on the linear dep
dence and modify the behavior of the created vorticity.
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definite conclusion from this discussion is that more stud
both theoretical and experimental, are needed to clarify
nature of vortex formation at rapid second-order phase tr
sitions.

VII. CONCLUSION

We have found that the rapid normal-superfluid transit
in the presence of superflow is dominated by a transve
instability of the NS interface propagating from the bulk in
the normal region. This instability produces primary vort
loops which then separate from the interface. Simu
neously, a large number of vortex-antivortex pairs are c
ated by fluctuations in the bulk of the supercooled reg
formed after the collapse of the interface. Our numerical
sults indicates that the dynamics of vortex-antivortex ann
lation in the bulk obeys a simple power lowN;1/t irrespec-
tively of the dimensionality of the space. Our numeric
simulations show that the primary vortex loops screen
the superflow and cause annihilation of the vortex-antivor
pairs in the bulk. The number of surviving vortices is dete
mined by superflow-dependent optimum wave vector of
interface instability.

We were able to derive analytically exact expressions
the instability threshold and for the growth rate of transve
perturbations in the limit of fast quench. We verified that th
scenario remains valid also far away from the critical te
perature where the dynamics of vortex nucleation is
scribed by a modified TDGL model with a complex rela
ation rate. We show that in the very vicinity of the thresho
the dynamics of transverse undulations is described by
Kuramoto-Sivashinsky equation. Though our results are
tended for interpretation of experiments6 with 3He, they can
also be useful for nonlinear optical systems29 and may stimu-
late new experiments, e.g., in liquid crystals.
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APPENDIX A: EVALUATION OF CONSTANTS
IN EQ. „32…

To find the constantsc1,2 defined by Eq.~33! we need to
express all integrals in Eqs.~34! in terms ofi 1. This is pos-
sible to achieve in the limit ofg→1/4. In this case the main
contribution to the integrals~34! comes from the region
where the functionF0 is already small, and we can dro
nonlinearity in Eq.~10! in order to evaluate the functionF0.
For the constantc2 one has from Eq.~34!

c25 i 1 /~4i 2!. ~A1!

The integrali 2 can be transformed by partial integration
the form
1-10
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i 25E
2`

` S 1

2
~F0

2!92F0F09Dexdx. ~A2!

Using Eq. ~10! we substituteF0952F082gF01F0
3, and

performing partial integration in Eq.~A2!, we derive

i 25g i 11E
2`

`

F0
4exdx. ~A3!

However, the last integral in Eq.~A3! is very small compar-
ing to i 1 for g→1/4; see inset to Fig. 5. It follows from th
fact that functionF0

2ex has a maximum where the functio
F0 is already very small; see Fig. 5. Indeed, the maximum
F0

2ex is determined by the conditionF08/F0521/2, which
implies thatF0;ex/2. Consequently, Eq.~10! providesF0

;epx, p521/26 iAg21/4 near the equilibriumF050.
Thus one sees that wheng→1/4 the maximum condition for
F0

2ex is fulfilled at F0→0. Therefore forg→1/4 we can
neglect the last integral in Eq.~A3!, leading toi 25g i 1. Sub-
stituting it into Eq.~A1! givesc251.

To calculate the constantc1 we use thati 450 and ex-
cludex0 from i 5 with the help of Eq.~35!. We have

c15 i 5 / i 25
1

g i 1
E

2`

`

x~F08!2exdx2
1

i 1
E

2`

`

xF0
2exdx.

~A4!

Integrating by parts we find

E
2`

`

x~F08!2exdx5E
2`

` S 1

2
~F0

2!92F0F09D xexdx

5E
2`

` 1

2
F0

2~x12!exdx

1E
2`

`

~gF0
21F08F0!xexdx

5gE
2`

`

xF0
2exdx1 i 1/2. ~A5!

Substituting Eq.~A5! into Eq. ~A4! one obtainsc152.

APPENDIX B: WEAKLY NONLINEAR ANALYSIS

In this section we consider effect of nonlinearity on t
interface instability. The analysis is convenient to perform
the limit of u@1. We generalize the stability analysis b
including the lowest order quadratic nonlinearity in Eqs.~19!
and ~20!. For this purpose we modify the ansatz~31! by
allowing the constantsa0 ,b0 to be slowly varying functions
of time and transverse coordinatez:

S A
BD5S a0~z,t !F08~x2x0!

b0~z,t !F0~x2x0! D . ~B1!

We replacel→] t and iq→]z in Eqs.~30! and add the cor-
responding quadratic nonlinearity. Following the lines
Sec. IV D, we employ the solvability conditions in Eqs.~19!
18450
f

f

and ~20! using the ansatz~B1!. The solvability conditions
give rise to the following equations:

] ta05]z
2a014k]zb022a0 /u2d1a0

21d2b0
2 , ~B2!

] tb05]z
2b02k]za02d3a0b0 . ~B3!

The constantd1,2,3 are given by the integrals

d15
3

i 2
E

2`

`

F0~F08!3exdx,

d25
1

i 2
E

2`

`

F0
3F08e

xdx, ~B4!

d35
2

i 1
E

2`

`

F0
3F08e

xdx.

Here we use Eqs.~34!.
In general, we do not expect that Eqs.~B2! and~B3! have

finite steady-state solutions in general case, because num
cal simulations with Eq.~6! indicates that vortices tear off o
the interface. The tearing off the vortices corresponds t
finite-time blow up of the solution of Eqs.~B2! and ~B3!.

However, there is a possibility that the solution rema
finite very close to the threshold of the instability. In th
case Eqs.~B2! and~B3! can be reduced to a single equatio
In order to see that we perform the following transformati
of variables:

t̃ 5m4t, z̃5mz, ~B5!

A5a0 /m4, B5b0 /m3. ~B6!

wherem252uk221 is the supercriticality parameter chara
terizing the distance from the instability threshold. This p
ticular scaling of the parameters will be clear later. After t
transformation Eqs.~B2! and ~B3! assume the form

m4] t̃A5m2] z̃
2
A14k] z̃B22A/u2d1m4A21m2B2,

~B7!

m2] t̃B5] z̃
2
B2k] z̃A2m2d3AB. ~B8!

We expand A5A(0)1m2A(1)1••• and B5B(0)

1m2B(1)1•••. In the lowest order in Eq.~B7! one obtains

A(0)52uk]zB
(0). ~B9!

In the next order one obtains

A(1)52uk] z̃B
(1)1

u

2
] z̃

2
A(0)1

ud2

2
~B(0)!2

52uk] z̃B
(1)1u2k] z̃

3
B(0)1

ud2

2
~B(0)!2. ~B10!

Thus combining Eqs.~B9! and~B10! one obtains the follow-
ing relation betweenA andB:
1-11
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A52uk] z̃B1m2S u2k] z̃
3
B1

ud2

2
B2D1O~m4!.

~B11!

Now, substitutingA from Eq. ~B11! into Eq. ~B8! we obtain
after simple algebra

] t̃B52] z̃
2
B2k2u2] z̃

4
B2uksB] z̃B, ~B12!

where s5(2d31d2). This expansion is valid ifm252uk2

21→0, otherwise the reduction to a single equation is i
possible. The coefficients can be simplified by integration
by parts:
v
.

5,

.

tt.

s.

18450
-

s52d21d25S 2

i 2
1

2

i 1
D E

2`

`

F0
3F08e

xdx

52
5

2i 1
E

2`

`

F0
4exdxÞ0. ~B13!

Equation ~B12! is the celebrated Kuramoto-Sivashinsk
equation~KSE! known in the theory of pattern formation an
interface growth models.19,20 In our situation KSE is valid
only very close to the threshold of the instability. Simp
comparison of omitted largest higher order nonlinear te
;d1m2u3k3] z̃(] z̃B)2 with the term;sukB] z̃B in Eq. ~B12!
gives the estimatem2!1/(u2k2)'1/u.
d-
ay

ce

sult
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ce.
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Phys. Rev. Lett.83, 5210~1999!.
1-12


