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Quantum Brownian motion in ratchet potentials
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We investigate the dynamics of quantum particles in a ratchet potential subject to an ac force field. We
develop a perturbative approach for weak ratchet potentials and force fields. Within this approach, we obtain an
analytical description of dc current rectification and current reversals. Transport characteristics for various
limiting cases—such as the classical limit, the limit of high or low frequencies, and the limit of high tempera-
tures – are derived explicitly. To gain insight into the intricate dependence of the rectified current on the
relevant parameters, we identify characteristic scales and obtain the response of the ratchet system in terms of
scaling functions. We pay special attention to inertial effects and show that they are often relevant, for example,
at high temperatures. We find that the high-temperature decay of the rectified current follows an algebraic law
with a nontrivial exponent,j }T217/6.
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I. INTRODUCTION

Ratchets have attracted a considerable recent interes
cause of their paradigmatic role as microscopic transport
vices ~for review articles, see, e.g., Refs. 1–3!. Applications
range from microscale electronics—including the photog
vanic effect,4 transport in quantum dots5,6 and antidot
arrays7—over Josephson junctions8–11 and vortex matter12 to
cell biology.13 At the same time, ratchets are of fundamen
theoretical interest since they represent one of the simp
nonequilibrium systems.

The analysis of ratchet systems reaches back quite s
time before Feynman drew the attention of a wide audie
to such systems in his lectures where he discussed the
sibility of employing ratchets as heat engines.14 Subse-
quently, researches in ratchets have progressed steadi
parallel in different scientific communities, until an explosi
outburst of theoretical and experimental interest occurre
the 1990s.15

In this paper, we report on the analytical progress in
study of so-called tilting ratchets, where the combination
an asymmetric static potential with an unbiased ac force
a coupling to a heat bath leads to current rectification. P
theoretical studies of this ratchet type focused on the cla
cal massless case,16,17 and revealed thecurrent reversalphe-
nomenon, i.e., the possibility that the direction of the rec
fied current reverses its direction when model parame
such as the frequency or amplitude of the ac current
changed. The inclusion of a finite mass of the partic
showed that it may give rise even tomultiple current
reversals.18 Further extensions accounted for the quant
nature of particles and of the bath. Quantum fluctuatio
were found to provide an additional source of curre
reversals.19–21

In essence, the direction and amplitude of the curr
turned out to be very sensitive to the various system par
eters. While this dependence makes ratchets valuable
applications—such as devices that can separate particle
0163-1829/2002/65~19!/195305~14!/$20.00 65 1953
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different species—it still lacks a satisfying theoretical und
standing. Analytical approaches can give insight into t
problem. However, even the single-particle problem is
ready so complex that analytical approaches can be adva
only in limiting cases, such as the adiabatic limit19 or the
deterministic limit.18,22

In our paper we develop a perturbative approach valid
weak ratchet potentials and weak driving forces, which c
ers a wide range of practical applications. Within this pert
bative approach we are able to capture all prominent p
nomena including multiple current reversals. This approa
provides a unified framework for deriving and understand
the dependence of the rectified current on the particle m
temperature, friction coefficient, and frequency of the drivi
force. We pay particular attention to the role of inertial e
fects, and show that they lead to a substantial current
hancement even in the high-temperature limit.

In Sec. II we specify the model and establish a pa
integral formulation as an analytical framework. A perturb
tive scheme is developed in Sec. III. In Sec. IV we brie
demonstrate that the linear mobility can be conveniently
tained from this approach, and that results for special ca
known in the literature are reproduced. However, ratchet
fects can be obtained only in nonlinear response. The lea
nonlinear mobility is calculated and evaluated for vario
limiting cases in Sec. V. We conclude with a discussion
our approach and results in Sec. VI. Technical details of
calculations are presented in Appendixes.

II. MODEL

We consider a quantum particle of massm in a stationary
ratchet potentialU(x). In addition, we impose an ac drivin
force F(t) which is chosen to be unbiased, i.e., to van
upon time averaging. Following Caldeira and Leggett,23 we
couple the particle linearly to a bath of harmonic oscillato
at temperatureT. This bath simultaneously provides frictio
and a fluctuating force for the particle. For simplicity, w
©2002 The American Physical Society05-1
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assume a linear spectral distribution of these oscillators,
ing rise to Ohmic dissipation. In the classical limit, the pa
ticle coordinatex(t) follows the equation of motion

mẍ~ t !52U8~x~ t !!1F~ t !2h ẋ~ t !1j~ t !, ~1!

with a friction coefficienth and a Gaussian thermal nois
j(t) obeying

^j~ t !&50, ^j~ t !j~ t8!&52hTd~ t2t8!. ~2!

To account for the quantum nature of the particle and of
bath, we follow the analysis of quantum Brownian motion
Fisher24 and Fisher and Zwerger,25 who studied the case of
sinusoidal potential and a dc driving force.

The rectified particle velocityV can be determined from
the average particle coordinateX(t) via

V[ lim
t→`

1

t
X~ t !, ~3a!

X~ t ![E dxxP~ t,x!, ~3b!

whereP(t,x) is the probability distribution for the particle
position at timet. This distribution is related to the reduce
density matrix operatorr̂(t) ~after the bath degrees of free
dom are traced out! by

P~ t,x!5^xur̂~ t !ux&. ~4!

@We use the Dirac notation, where^x1ur̂(t)ux2& is the den-
sity matrix in position representation.#

The dynamics of this density matrix is most convenien
treated in the Feynman-Vernon path integ
representation.26,27 The time evolution of the density matri
from some initial timet i , to a final timet f , is given by

^xf
1ur̂~ t f!uxf

2&5E E dxi
1dxi

2J~ t f ,xf
1 ,xf

2 ;t i ,xi
1 ,xi

2!

3^xi
1ur̂~ t i!uxi

2&, ~5a!

with the kernel

J~ t f ,xf
1 ,xf

2 ;t i ,xi
1 ,xi

2!5E DxDye2S ~5b!

being a double path integral over all trajectoriesx(t) and
y(t) with the boundary conditions28

x~ t i, f!5
1

2
~xi, f

11xi, f
2 !, y~ t i, f!5

1

\
~xi, f

12xi, f
2 !. ~6!

The path integral involves the effective action

S5S01S1 , ~7a!
19530
v-
-

e

l

S05
1

2E E dtdt8y~ t !K~ t2t8!y~ t8!

1 i E dty~ t !@mẍ~ t !1h ẋ~ t !#, ~7b!

S15 i E dtF(
s

1

2s
U@x~ t !1sy~ t !#2y~ t !F~ t !G , ~7c!

with all time integrals running fromt i to t f . For notational
convenience, the usual contributionU@x1(t)#2U@x2(t)# is
written as a sum over the spinlike variables56\/2, which,
however, does not have the meaning of a physical spin.

Effective action~7! already includes the average over t
bath degrees of freedom. This average leads to an inte
kernel K(t) which reads, in a Fourier representation29 ~we
setkB51),

K~v!5h\v coth
\v

2T
. ~8!

In the classical limit,K(v)52hT reproduces the correlato
@Eq. ~2!#. For T50, K(v)5h\uvu represents a kernel tha
is highly nonlocal in the time representation.

The model has a large number of parameters: the par
massm and the friction coefficienth, then \ and T as a
measure of the strength of quantum and thermal fluctuatio
Further parameters are implicit inU(x) and F(t). The po-
tential can be represented by a Fourier series

U~x!5(
q

Uqeiqx, ~9!

with amplitudesUq for wave vectorsq. For periodic poten-
tials with a perioda, the wave vectors are

q5n
2p

a
, ~10!

with an integern.
In analogy toU, the ac drive is represented as

F~ t !5(
v

Fve2 ivt, ~11!

with F050, since the force is assumed to be unbiased
time average. For a periodic drive with periodtF , the fre-
quenciesv are integer multiples of the basic frequen
2p/tF . Although here we assume periodicities ofU andF, a
generalization to randomU andF is straightforward and will
be discussed at the end of the paper.

III. PERTURBATIVE APPROACH

Definition ~3! of the velocity has the drawback that on
has to calculateX(t) as the expectation value of the fin
position in an ensemble of forward-backward paths of a
nite lengtht f2t i . In order to avoid technical complication
related to boundary effects, we relate the average velocit
an expectation value at an intermediate timet, which can be
kept fixed while the limitt i→2` and t f→` is been taken.
5-2
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Consider the ‘‘partition sum’’

Z5E dxfE E dxi
1dxi

2J~ t f ,xf ,xf ;t i ,xi
1 ,xi

2!

3^xi
1ur̂~ t i!uxi

2& ~12!

of all forward-backward paths betweent i and t f . It is nor-
malized toZ51, since it is the trace of the density matrix
t f . We define

V~ t ![^ẋ~ t !& ~13!

as the expectation value in the ensembleZ of fluctuating
paths. In this definition, we can take the limitst i→2` and
t f→` right away. In the absence of a nonequilibrium drivin
force and due to the presence of dissipation,V(t) would
vanish after an initial relaxation for every possible initi
density matrixr̂(t i) . In the presence of the driving force an
in the limit t i→2`, V(t) will be determined uniquely by
F(t) and independently of the initial state.

Although we strictly follow the definition of Fisher an
Zwerger24,25 in the path integral formulation of the problem
we differ in the definition of the average velocity. We arg
in Appendix A that, in the long-time limit, the time averag
of the velocityV(t) coincides with the earlier definition@Eq.
~3!# in combination with Eqs.~4! and~5!. We find the expec-
tation valueV(t) to be a convenient quantity for the subs
quent perturbative evaluation.

A. Perturbative expansion

To make analytical progress, we considerF as small, and
calculate the nonlinear dynamic response of the velocity
the driving force:

V~ t !5E dt8m1~ t2t8!F~ t8!1
1

2!E E dt8dt9m2~ t2t8,t

2t9!F~ t8!F~ t9!1O~F3!. ~14!

The mobilitiesmm can be expressed conveniently as exp
tation values in the path ensemble using the partition sum
generating functional:

m1~ t2t8!5
dV~ t !

dF~ t8!
U

F50

5^ẋ~ t !iy~ t8!&uF50 , ~15a!

m2~ t2t8,t2t9!5
d2V~ t !

dF~ t8!dF~ t9!
U

F50

5^ ẋ~ t !iy~ t8!iy~ t9!&uF50 . ~15b!

The generalization to higher-order mobilities is straightf
ward. The expectation values now refer to theequilibrium
system in the absence of the driving force.

After Fourier transformation, Eq.~14! reads
19530
o

-
as

-

Vv5m1~v!Fv1
1

2! (
v8v9

m2~v8,v9!Fv8Fv9dv,v81v9

1O~F3!. ~16!

The rectified current is given by the time-average~zero fre-
quency component! of the velocity:

V05
1

2 (
v

m2~2v,v!F2vFv1O~F3!. ~17!

Since the driving force is unbiased,F050, current rectifica-
tion cannot be obtained in linear response. Rather, rat
effects require frequency mixing which is present only
nonlinear response. For weakF the leading ratchet effect wil
be determined bym2.

If the driving force has the symmetry

F~ t !52F~ t2t0! ~18!

for some timet0 ~for example, ifF is monochromatic!, the
rectified velocity will be invariant under the transformatio
F(t)→F(t2t0)52F(t). Then the contributions to the rec
tified current from all mobilitiesmm with oddm must vanish.

Although the calculation of these mobilities is alrea
much simpler than a closed calculation ofV(t), it still cannot
be performed analytically for general potentials. Therefo
we employ a second expansion inU, utilizing the weakness
of the potential.

The mobilities, which, according to Eqs.~15!, are the
equilibrium expectation valuesmm5^Om&uF50 of observ-
ablesOm[ ẋ(t) iy(t8)••• iy(t (m)), will be calculated pertur-
batively in the potential using the expansion24,25

e2S1uF505 (
n50

`
1

n! H E dt(
s,q

Uq

2is
eiq[x(t)1sy(t)]J n

. ~19!

We thus can write

mm5 (
n50

`

mm
(n) ~20!

with

mm
(n)5

1

n! (
s1 ,q1 ,•••,sn ,qn

)
j 51

n Uqj

2isj
E dt1•••E dtn

3K Om expS i (
j 51

n

qj@x~ t j !1sjy~ t j !# D L
0

, ~21!

where the averagê•••&0 is governed by the ‘‘free’’ action
S0 defined by Eq.~7b!. SinceS0 is Gaussian, the average
can be performed straightforwardly using Wick’s theorem

B. Free theory

For these averages it is important to know the correlati
of the free theory. In Fourier representation, one easily fi

^x~v8!x~v9!&05C~v8!d~v81v9!, ~22a!
5-3
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^x~v8!iy~v9!&05G~v8!d~v81v9!, ~22b!

^y~v8!y~v9!&050, ~22c!

with the response and correlation functions

G~v!52
1

ihv1mv2201
, ~23a!

C~v!5
K~v!

h2v21m2v4
. ~23b!

To calculate the nonlinear mobilities, one has to use there-
tarded response function, which is, in a time representati

G~ t !5^x~ t !iy~0!&05
1

h
@12e2gt#Q~ t !, ~24!

with a relaxation rate defined by

g[
h

m
. ~25!

The causality of the response,

G~ t !50 for t<0 ~26!

is reflected by the Heaviside step functionQ(t) in Eq. ~24!.
Note that̂ x2(t)&5`, since the free system is translationa
invariant and the particle spreads diffusively~subdiffusively
for T50) over the entire space. Therefore,C(t) is not a
well-defined quantity. Instead, the displacement function

W~ t ![
1

2
^@x~ t !2x~0!#2&0 ~27a!

5E dv

2p
@12cos~vt !#C~v!

~27b!

captures all information about the particle~sub!diffusion.
This quantity will play a central role in perturbation theor
Unfortunately, it can be calculated explicitly only in limitin
cases:

W~ t !5
T

hg
@gutu1e2gutu21# for \50, ~27c!

W~ t !;
\

ph
ln gutu for T50. ~27d!

For semiquantitative purposes,

W~ t !'
T

hg
@gutu1e2gutu21#1

\

2ph
ln@11~gt !2#

~27e!

is a good interpolation over the whole parameter range.
We conclude this subsection by pointing out some k

features of the response and displacement function. Fo\
50, G andW are related through the fluctuation-dissipati
relation
19530
,

y

TG~ t !5Ẇ~ t !Q~ t !. ~28!

In the quantum case withT50, W(t) diverges for allt in the
limit m→0.

C. Characteristic scales

Before we move on to a further evaluation of the pa
integral, we pause for a moment to fix the relevant tim
length, and energy scales of our problem. From the respo
function of our problem we can identify the typical rela
ation time

t rel5
1

g
5

m

h
. ~29!

Rewriting the displacement correlation functionW(t)
5 l 2Ŵ(t/t rel) in terms of the dimensionless functionŴ of the
dimensionless argumentt/t rel , from Eqs.~27! we identify the
diffusion lengthsl for the thermal and the quantum case:

l th
2 5

Tm

h2
, l qu

2 5
\

h
. ~30!

The de Broglie wavelength

l25
2p\2

mT
52p

l qu
4

l th
2

~31!

is a related further characteristic scale for the particle in
absence of dissipation.

Alternatively to Eqs.~30!, we can associate with therma
and quantum fluctuations characteristic energiesE5h2l 2/m,

Eth5T, Equ5\g. ~32!

The potential and driving force—which act as probes to
free particle—define the space perioda, time periodtF , and
amplitudes

U52uUqu, F52uFvu, ~33!

defined by the lowest harmonic modesq andv. In the case
of randomU or F, the periods would be replaced by a co
relation length or time and the amplitudes by variances.

In terms of these scales, a necessary requirement for
validity of the perturbative approach is that external prob
must be weak in comparison to the internal fluctuations, i

U,aF!max~Eth ,Equ!. ~34!

These scales will also determine the location of the phen
ena under consideration, as we will discuss later. Howe
as we recall by calculating the linear response mobility, c
dition ~34! is not sufficient for the validity of perturbative
results.

In the subsequent calculations it is convenient to use
mensionless quantities. It is natural to chooset rel as the time
scale, org as the frequency scale. The generic length scal
the potential perioda. The ratios ofl th

2 and l qu
2 to a2 provide

a natural measure of the strength of thermal and quan
fluctuations. Hence we define
5-4
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t̂[gt, v̂[
v

g
, q̂ j[aqj , \̂[

\

ha2
, T̂[

Tm

h2a2
.

~35!

as dimensionless quantities.

D. Mobilities

In Eq. ~21!, the mobilitiesmm
(n) are determined by expec

tation values which can be calculated conveniently from
generating functional. We define

Z[ K expS i E dt@r~t!x~t!1s~t!y~t!# D L
0

~36!

as a functional of auxiliary fieldsr(t) and s(t). t is a
real-time variable, and we will be distinguishing it fromt
only for bookkeeping purposes. The averages determin
the mobilitiesmm

(n) can be then represented as functional
rivatives,

K Om expS i (
j 51

n

qj@x~ t j !1sjy~ t j !# D L
0

52 i
d

dt

d (m11)

dr~ t !ds~ t8!•••ds~ t (m)!
Z, ~37!

where one has to identify

r~t!5(
j 51

n

qjd~t2t j !, ~38a!

s~t!5(
j 51

n

qjsjd~t2t j ! ~38b!

after performing the functional derivatives. Using the resu
of Sec. III B, the generating functional can be expressed

Z5expS E E dt1dt2F2
1

2
r~t1!C~t12t2!r~t2!

1 ir~t1!G~t12t2!s~t2!G D . ~39!

As mentioned previously,C(t) is divergent. This implies tha
Z50 if *dtr(t)5( jqjÞ0. Therefore,Z can be nonvanish
ing only if the ‘‘momentum conservation’’( jqj50 is satis-
fied. In this case one may rewrite

Z5expS E E dt1dt2F1

2
r~t1!W~t12t2!r~t2!

1 ir~t1!G~t12t2!s~t2!G D d$q% . ~40!

Hereby, we introduce the abbreviationd$q%[d(qj ,0
. The sub-

sequent calculations of the mobilities are based on this g
erating functional. For later convenience, we combine E
~21!, ~37!, and~40! to our master formula
19530
a

g
-

s
s

n-
s.

mm
(n)~ t2t8,t2t9,•••,t2t (n)!

52 i
d

dt

1

n! (
s1 ,q1 ,•••,sn ,qn

d$q%

3)
j 51

n Uqj

2isj
E dt1•••E dtn

d (m11)

dr~ t !ds~ t8!•••ds~ t (m)!

3expS E E dt1dt2F1

2
r~t1!W~t12t2!r~t2!

1 ir~t1!G~t12t2!s~t2!G D . ~41!

Thereby, substitution~38! has to be made after all functiona
derivatives are taken. Momentum conservation implies t
all mobilities vanish for non51. For n52 and evenm the
mobilities vanish since the contributions to the sum in t
right-hand side of Eq.~41! are odd in$q%. We already noted
above that no contribution to the rectified current can ar
from mm with odd m and arbitraryn if the driving force
obeys symmetry~18!. In this case, up to fifth order inF and
U, the only contribution comes fromm2

(3) . Having deter-
mined the generating functionalZ for the mobilities, we now
turn to the evaluation of the lowest order mobilities of inte
est.

IV. LINEAR MOBILITY µ1

Although we do not expect ratchet effects from line
response, it is instructive to calculatem1 in order U2 to
verify that the present calculation of the mobility reproduc
that results of Fisher24 and Fisher and Zwerger25 for staticF
and sinusoidalU ~i.e., for this purpose we include the ampl
tudeF0 in our consideration!.

A. Leading orders

To zeroth order inU, it is obvious that

m1
(0)~ t2t8!5Ġ~ t2t8!. ~42!

To first order,

m1
(1)~ t2t8!50 ~43!

since the momentum conservation mentioned above ca
be satisfied~strictly speaking, it is satisfied for the modeq
50 which, however, does not enter the dynamics!.

To second order, a straightforward calculation~see Ap-
pendix B! leads to

m1
(2)~v!5 ivG2~v!(

q
q2uUqu2DB2q,q

(2) ~v!, ~44!

with

DB2q,q
(2) ~v![B2q,q

(2) ~v50!2B2q,q
(2) ~v!, ~45a!
5-5
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Bq1 ,q2

(2) ~ t !5
2

\
sinF\2 q1

2G~ t !Ge2q1
2W(t)dq11q2,0 . ~45b!

In the last expression, the sine has a nonunique sign for

p,
\

2
q2G~`!5

\q2

2h
~46!

reflecting quantum interferences of particle trajectories.
briefly discuss interesting limiting cases ofm1

(2) , for which
we will also examine the ratchet effect later on.

B. Classical limit

In a classical limit,\→0, both the overdamped and un
derdamped cases are understood fairly well.30–33 In the
present perturbative approach, the fluctuation-dissipa
theorem@Eq. ~28!# allows for the simplification

Bq1 ,q2

(2) ~ t !52
1

T

d

dt
e2q1

2W(t)Q~ t !dq11q2,0 . ~47!

In this case, the Fourier transformation can be perform
analytically,

DB2q,q
(2) ~v!52

iv

T E
0

`

dteivte2q2W(t) ~48a!

52
i v̂

T
en̂qn̂q

2( n̂q2 i v̂)g~n̂q2 i v̂,n̂q!,

~48b!

with g(•,•) the incomplete gamma function~to be distin-
guished from the parameterg). We introduced the dimen
sionless frequency

n̂q[ l th
2 q25

Tmq2

h2
~49!

related to the thermal diffusion time over a distance 1/q via
W(t rel / n̂q)5q22. The insertion of expression~48b! into Eq.
~44! yields an explicit analytical expression for the classi
linear response mobility at finite frequencies,

m1
(2)~v!52

1

h

1

~12 i v̂ !2 (q

uUqu2

T2
en̂qn̂q

12( n̂q2 i v̂)

3g~n̂q2 i v̂,n̂q!, ~50!

which reproduces Eq.~4.11! of Ref. 24 for the special case o
sinusoidalU andv50.

In the massless~overdamped! limit m→0, whereB can be
easily Fourier transformed, this simplifies to

m1
(2)~v!52

1

h

U 2

T2
m̂1

(2)S ha2v

T D , ~51!

with a dimensionless scaling function
19530
e

n

d

l

m̂1
(2)~z!5(

q

uUqu2

U 2

q̂2

q̂22 iz
. ~52!

Thus, for m50, the corrections to mobility decay propo
tional to T22 at high temperatures.

C. Adiabatic limit

The adiabatic limitv→0 simplifies the calculation of
DB2q,q

(2) (v), resulting in

m1
(2)~v50!52

2

h2\
(

q
uUqu2q2

3E
0

`

dtte2q2W(t)sinF\2 q2G~ t !G , ~53!

which agrees with the linear response limiting case@Eq.
~4.18!# of Ref. 24.

At T50, the particle shows a remarkable localizati
transition due to the dissipative coupling.34,24For strong cou-
pling, the particle is localized in an arbitrarily weak pote
tial, whereas it remains mobile for weak damping. This tra
sition is reflected by the divergence of the mobili
correctionm1

(2)(v50) due to a divergence of the time inte
gral at larget. From the logarithmic asymptotics@Eq. ~27d!#
of W(t), one can identify the location of the transition ata
51 with

a[
ha2

2p\
5

1

2p\̂
. ~54!

Note that fora,1 inequality ~46! is fulfilled for all wave
vectorsq, i.e., quantum interference effects suppress the c
tribution to m1

(2) .
In the strong damping regime, the divergence ofm1

(2)(v
50) signals a breakdown of perturbation theory. Thus,
T50, the conditiona!1 should be added to condition~34!.
This condition may be regarded also as a condition for
period of the potential~with localization fora2<2p l qu

2 ).
In the perturbatively accessible regime ofa,1, Fisher

and Zwerger24 pointed out the interesting fact that the m
bility is a nonmonotoneousfunction of temperature. At zero
temperature, the particle has its free mobility. Weak therm
fluctuations (T,T* ) first reduce mobility~thermally resisted
quantum tunneling!, whereas strong thermal fluctuations i
crease the mobility back to its free value~thermally assisted
hopping!. The crossover occurs fora!1 at the temperature

T* .
p2\2

3ma2
~55!

at which the de Broglie wave length is comparable to
potential period,l.a. Before we continue to enter new te
ritory, we wish to conclude this subsection by stressing t
our approach successfully reproduces previous linear
sponse results forv50, and already provides additional in
sight into the frequency dependence.
5-6
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V. NONLINEAR MOBILITY µ2

The generating functional formalism presented above a
provides an efficient tool to calculate higher-order mobilitie
Here we focus on the lowest order ofm2 in U contributing to
current rectification.

A. Leading orders

To zeroth order,

m2
(0)~ t2t8,t2t9!5^ẋ~ t !iy~ t8!iy~ t9!&050 ~56!

vanishes, sinceS0 is invariant under the reflection$x,y%
→$2x,2y%. To first order,

m2
(1)~ t2t8,t2t9!50 ~57!

vanishes again because momentum conservation cann
satisfied. To second order,

m2
(2)~ t2t8,t2t9!50, ~58!

according to the general statements following Eq.~41!.
The general third-order contributionm2

(3)(t2t8,t2t9) is
given by expression~C6! calculated in Appendix C. Since
this expression is somewhat clumsy and since we are in
ested only in ratchet effects, we can restrict our consid
ations to

m2
(3)~2v,v!52

i

h

1

h2v21m2v4 (
q1q2q3

Uq1
Uq2

Uq3
q1

3$q1q2@2B$q%
(3)~0,0!2B$q%

(3)~2v,0!

2B$q%
(3)~v,0!#1q1q3@2B$q%

(3)~0,0!2B$q%
(3)~2v,

2v!2B$q%
(3)~v,v!1q2q3@2B$q%

(3)~0,0!

2B$q%
(3)~0,2v!2B$q%

(3)~0,v!#%, ~59!

with

B$q%
(3)~ t12t2 ,t22t3!5

2

\
sinF\2 q1G12q2G2

\

3sinF\2 ~q1G13q31q2G23q3!G
3exp~q1W12q21q2W23q3

1q1W13q3!dq11q21q3,0Q23. ~60!

Note thatB$q%
(3) is an implicit function of $q% and invariant

under$q%→2$q%. Consequently,m2
(3)(2v,v) changes sign

under a reflectionUq→U2q which implies that the rectified
velocity @Eq. ~17!# vanishes for even potentials, as it shou
Examining the contribution from a set of wave vectors$q%
and its reflected set2$q%, one can recognize tha
m2

(3)(2v,v) is real, and that it depends only on

Û $q%
(3)[Im

Uq1
Uq2

Uq3

U 3
. ~61!
19530
o
.

be

r-
r-

.

~In order to obtain simple analytic expressions below,
find it most convenient to use momentum conservation
eliminate the sum overq2.! In Eq. ~59!, the sum over the
momenta can be restricted toqjÞ0 ~in addition to momen-
tum conservation!, sinceB$q%

(3) vanishes otherwise~later on,
these restrictions are referred to by(8). Physically, it is clear
that a constant shift of the potential cannot enter the dyn
ics of the particle.

Equation~59! is our main result in general form. Furthe
analytical progress is hampered by the absence of an ana
cal expression forW(t). Nevertheless, further analytica
progress is possible in various limiting cases.

Using the dimensionless quantities defined in Eqs.~35!
we may reexpress Eq.~59! as

m2
(3)~2v,v!5

U 3

h3a3\2g4
m̂2

(3)~ \̂,T̂,v̂ !, ~62!

with m̂ being a dimensionless function of dimensionless
guments. For a monochromatic driving force, the rectifi
velocity is

V05
U 3F 2

4h3a3\2g4
m̂2

(3)~ \̂,T̂,v̂ ! ~63!

to leading order according to Eq.~16!.

B. Limit \\0 and m\0

We start with the examination of the classical limit. T
further simplify the analysis and to perform a comparison
our perturbative results with previous approaches, we c
sider the overdamped limit withm50. In this case, the
memory kernelB$q%

(3) simplifies considerably to

B$q%
(3)~v1 ,v2!52d$q%

q1q2q3
2

h2

1

nq1
2 iv1

1

nq3
2 iv2

,

~64!

with the characteristic frequencies

nq[Tq2/h. ~65!

This frequency corresponds to the timenq
21 a classical

particle needs to diffuse over a distanceq21. Insertion of Eq.
~64! into Eq. ~59! leads to

m̂2
(3)~ \̂,T̂,v̂ !→\̂2T̂24m̂2,cl

(3)~v̂/T̂!, ~66!

i.e.,

m2
(3)~2v,v!5

aU 3

hT4
m̂2,cl

(3)S ha2v

T D ~67!

with a reduced scaling function
5-7



en
t
of
n

hi

-

p

e-

h

es
th

o
ha
rtu
an

ct

on
e

c-
in

the

a

ery

STEFAN SCHEIDL AND VALERII M. VINOKUR PHYSICAL REVIEW B 65 195305
m̂2,cl
(3)~z![22 (

q1q2q3

8
Û $q%

(3)~ q̂11q̂3!

3H 2q̂1
2

q̂1
41z2

2
q̂1q̂3~ q̂1

2q̂3
22z2!

~ q̂1
41z2!~ q̂3

41z2!
J . ~68!

The primed sum is restricted to momenta satisfying mom
tum conservation andqjÞ0. It is interesting to realize tha
the functionm̂2,cl

(3)(z) is uniquely determined by the shape
the potential. If current reversals exist in the limit under co
sideration, they correspond to oscillatory behavior of t
function.

The scaling functionm̂2,cl
(3)(z) becomes simple in addi

tional limiting cases. In deriving these limits from Eq.~68!,
one has to make use of momentum conservation and of
mutations of momentum labels. Forz→`,

m̂2,cl
(3)~z!→ 4

z4 (
q1q2q3

8

Û $q%
(3)q̂1

3q̂2
3q̂3

5
4a6

z4U 3E0

a

dx@U-~x!#2U8~x!. ~69a!

Terms of orderz22 cancel each other. Thus we easily r
trieve the result obtained previously in Ref. 35.

In the opposite limitz→0,

m̂2,cl
(3)~z!→2 (

q1q2q3

8

Û $q%
(3) 1

q̂1

5
2

a2U 3E0

a

dxU2~x!dY~x!,

~69b!

with potential integrals

Y~x![E
0

x

dyU~y!, ~70a!

dY~x![Y~x!2
1

aE0

a

dyY~y!. ~70b!

In deriving Eq. ~69b! we have assumedU050; otherwise
additional subtraction terms should be added.

This scaling behavior@Eq. ~69!# implies the asymptotic
behaviors of the rectified velocity@Eq. ~17!#:

V0}T0v24 for v→`, ~71a!

V0}v0T24 for T→`. ~71b!

The apparent divergence ofV0 for T→0 is an artifact of
leaving the range of validity of our perturbative approac
Analogously, the apparent divergence ofV0 for h→0 is due
to the assumption of overdamped dynamics. Neverthel
these divergences may be interpreted as indications
ratchet effects are particularly strong at lowT and in the
underdamped case. This situation will be examined later

Before we move on to other limiting cases, we show t
the current reversal phenomenon is captured by our pe
bative approach. We also find it instructive to perform
19530
-

-
s

er-

.

s,
at

n.
t
r-

explicit quantitative comparison of our results with the exa
results in Ref. 17. For this comparison, we evaluate Eq.~17!
with Eq. ~67! for

U~x!52UFsinS 2p
x

aD1
1

4
sinS 4p

x

aD G ; ~72!

cf. the inset of Fig. 1. The corresponding scaling functi
@Eq. ~68!# is shown in Fig. 1. Since it has one zero, w
expect one current reversal.

We explicitly compare our perturbative result for the re
tified velocity as a function of temperature—displayed
Fig. 2—with the exact solution displayed in Fig. 1~a! of Ref.
17. Thereby, length, energy and time scales are fixed by
choicesa51, U51/2p, andh51. The monochromatic driv-
ing force isF(t)5F sin(vt), with amplitudeF50.5. From
the shape of the scaling function it is clear that we find
current reversal with varying temperature for everyv.0
and also a current reversal with varying frequency for ev
finite T. Thequantitativeagreement is good forT*U, where
the perturbation theory inU is justified.

FIG. 1. Scaling functionm̂2,cl
(3)(z) for potential~72! shown in the

inset.

FIG. 2. V0(T) for v50.01 ~bold line!, v51 ~long dashes!, v
54 ~short dashes!, v55.5 ~dotted line!, and v57 ~dash-dotted
line! for comparison with Fig. 1~a! in Ref. 17. The vertical line
represents the vicinity of the current reversal forv51.
5-8
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QUANTUM BROWNIAN MOTION IN RATCHET POTENTIALS PHYSICAL REVIEW B65 195305
The classical limit is not restricted to single current rev
sals. It is likely that an arbitrary number of current revers
can be obtained by suitably tailored potential. We ha
found, for example, that it is sufficient to add one more h
monic to obtain a second current reversal. Specifically,
potential

U~x!52UFsinS 2p
x

aD1
1

4
sinS 4p

x

aD1
1

4
sinS 6p

x

aD G
~73!

leads to the scaling function shown in Fig. 3 with two zer
i.e., two current reversals.

C. Limit T\` for mÌ0

It is interesting to examine the high-temperature lim
since there are significant differences between the casem
50 andm.0. ForT→`, the exponential factor in Eq.~60!
strongly suppressesB$q%

(3) and thusm2
(3) . In this limit, we find

the asymptotic behavior of the mobility~see appendix D!,

m̂2
(3)~ \̂,T̂,v̂ !→ \̂2T̂217/6

11v̂2
m̂2,hT

(3) , ~74a!

or

m2
(3)~2v,v!5

1

h

aU 3

~ha2g!4 S ha2g

T D 17/6 m̂2,hT
(3)

11v2/g2
,

~74b!

with

m̂2,hT
(3) [2A2pGS 1

3D (
q1.0,q3.0

Û $q%
(3)q̂1

2

3S ~ q̂11q̂3!2q̂3

q̂1
5 D 1/3S 31/3q̂1

2

q̂1
21q̂3

2
2

1

6D . ~74c!

The constantm̂2,hT
(3) is uniquely determined by the shape

the potential. In the high-temperature limit, the rectified c

FIG. 3. Scaling functionm̂2,cl
(3)(z) for potential~73! shown in the

inset.
19530
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rent is much stronger for massive particles than for mass
cases, sincem2

(3);T217/6 for m.0 whereasm2
(3);T24 for

m50 @cf. Eq. ~71b!#. This observation is consistent with th
mass dependence in Eq.~74!, m2

(3);m7/6T217/6 for m→0,
which signals that in the limitm→0, m2

(3) should decay with
a higher power of temperature. Thusinertial terms are cru-
cial at high temperatures even for large friction where t
relaxation of the particle in the minima of the potential
overdamped.

D. Limit v\`

For large frequencies, Eq.~59! simplifies to

m̂2
(3)~ \̂,T̂,v̂ !→ 1

v̂2~11v̂2!
m̂2,hf

(3) ~ \̂,T̂! ~75a!

or

m2
(3)~2v,v!5

aU 3

h~ha2v!2\2~g21v2!
m̂2,hf

(3) ~ \̂,T̂!,

~75b!

with

m̂2,hf
(3) ~ \̂,T̂![2 (

q1q2q3

Û $q%
(3)a3q1$q1

21q1q31q3
2%

3\2g2B$q%
(3)~0,0!. ~75c!

@For the discussion of this limit,B$q%
(3)(0,0)[B$q%

(3)(v50,v

50).# m̂2,hf
(3) is a function of the potential shape and of p

rameters measuring the strength of quantum and ther
fluctuations. In the special case\5m50 in Sec. V B we
found a momentum dependenceB$q%

(3)(0,0)}q2 /q1 which led
to a cancellation in the sum over momenta in express
~75c!. Using the fluctuation-dissipation relation@Eq. ~28!#,
one can easily show thatB$q%

(3)(0,0) is independent ofm for
\50. Thus this cancellation persists as long as\50, i.e.,
m̂2,hf

(3) (0,z)50. For m.0 this implies a decaym2
(3)(2v,v)

}v26. However, such a cancellation can no longer be
pected for\.0. In this case, one again findsm2

(3)(2v,v)
}v24 at large frequencies.

E. Limit v\0

A further limit of interest is the adiabatic limit for the
quantum particle. This limit was also studied in the past,19–21

and revealed that additional current reversals may arise f
the competition of quantum and thermal fluctuations.

For v→0, Eq. ~59! reduces to

m̂2
(3)~ \̂,T̂,0![2 (

q1q2q3

Û $q%
(3)E E

0

`

d t̂8d t̂9

3q̂1~ q̂1 t̂82q̂3 t̂9!2B̂$q%
(3)~ t̂8, t̂9!, ~76a!

with

B̂$q%
(3)~ t̂8, t̂9![\2B$q%

(3)~ t̂8/g, t̂9/g!. ~76b!
5-9
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STEFAN SCHEIDL AND VALERII M. VINOKUR PHYSICAL REVIEW B 65 195305
We have calculatedm̂2,ad
(3) numerically for\̂5(1/p) @i.e., a

5ha2/(2p\)5 1
2 corresponding to the delocalized case,

Eq. ~54!# as a function of temperature~cf. Fig. 4! for poten-
tial ~72!. The two poles of the double-logarithmic plot in Fi
4 represent current reversals. At high temperatures, the
tion m̂2

(3)}T217/6 is recovered~dashed line!. At zero tempera-
ture, a finite current is generated by quantum fluctuation

VI. CONCLUSIONS

We have developed a perturbative approach for quan
ratchets, which captures current rectification and reversa
the current direction. Our main results are the analytical
pression@Eq. ~59!# for the leading nonlinear mobility and it
evaluation for various limiting cases. In particular, the hig
temperature limit for massive particles revealed the
evance of inertial terms even for strong damping. Since
rectified current decays likeV0}T24 for massless particle
whereas it decays likeV0}T217/6 for massive particles, in-
ertial effect can lead to a substantialenhancementof ratchet
effects. On the other hand, in the high-frequency limit, t
quantum nature of the particle is important. WhileV0}v26

for massive classical particles, quantum fluctuations alsoen-
hancethe rectified currant, leading toV0}v24.

While our perturbative approach is limited to weak pote
tials and driving forces, it has the advantage that it can
easily generalized to higher dimensions. Therefore appl
tions, for example to asymmetric antidot arrays,7 become
possible. Furthermore, a generalization to random ratchet
tentials is obvious. Thereby one could describe the cas
asymmetric potential wells with random positions. This ge
eralization can be achieved if one allows for continuo
wave vectors q of the potential and simply replace
Uq1

Uq2
Uq3

by its average in the nonlinear mobility@Eq.
~59!#. An extension of this perturbative approach from sing
quantum particles to electron gases is under current inv
gation by the authors.

FIG. 4. Double logarithmic plot of the rectified velocity@the

dimensionless quantitym̂2,ad
(3) given in Eq.~76!# vs temperature in

the adiabatic limit for potential~72! in the underdamped casea
5

1
2 ~bold line!. The dashed line is a guide to the eye, represen

the behavior}T217/6 of the high-temperature limit.
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APPENDIX A: VELOCITY

In this appendix we show that the average velocity can
calculated from definition~13!. It is this definition in which
we deviate from the approach of Fisher and Zwerger.24,25

The original definition~3a!, in a more explicit form, is
based on the average distance the particle travels in a l
time interval,

V[
X~ t f!2X~ t i!

t f2t i
, ~A1!

in the limits t f→` and t i→2`. Thereby we obtain the po
sition expectation value@Eq. ~3b!# and the time evolution
@Eq. ~5a!# of the density matrix. On the other hand, the tim
average ofV(t) @Eq. ~13!# can be written as

V~ t ![
X̃~ t f!2X̃~ t i!

t f2t i
, ~A2!

with

X̃~ t ![E dxxP̃~ t,x!, ~A3a!

P̃~ t,x![^d@x2x~ t !#&. ~A3b!

A priori, P̃(t,x), which is an expectation value in an en
semble of paths of lengtht f2t i , is different from P(x,t)
@Eq. ~4!#, which is an expectation value in an ensemble
paths of lengtht2t i . However, the definitions coincide fo
t5t f and also fort5t i . In the first case the definitions coin
cide. In the second case, because one can integrate ou
paths„the integral corresponds toZ @Eq. ~12!# the integral is
most easily performed for a diagonal initial density matrix….
Thus

X̃~ t f!2X̃~ t i!5X~ t f!2X~ t i! ~A4!

and V5V(t). If there is a well-defined expectation valu
V(t)[^ ẋ(t)&5(d/dt)X̃(t) for t i→2` and t f→`, it must
coincide withV(t), since boundary effects from times neart i
and t f should become negligible in this limit.

APPENDIX B: CALCULATION OF µ1
„2…

Here we present intermediate steps of the calcula
leading to Eq.~44!. In a first step, we need to evaluate

g

5-10
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d2

dr~ t !ds~ t8!
Z5 H iG~ t2t8!1E E dt1dt2@W~ t2t1!r~t1!

1 iG~ t2t1!s~t1!#r~t2!iG~t22t8!JZ,

~B1!

where Eqs.~38! have to be inserted forn52. Thereby,

Z5eq1W12q21q1iG12s2q21q2iG21s1q1dq11q2,0 , ~B2!

where we abbreviateWkl[W(tk2t l), etc., and we use
W(0)5G(0)50. Note that in the last exponentialG12 or
G21 vanishes for allt1 and t2 because of causality. Insertin
Eq. ~B1! into Eqs.~36! and ~21!, only the last of the three
terms coming from Eq.~B1! survives summation oversj in
Eq. ~21!. One obtains

m1
(2)~ t2t8!52 i (

q1q2s1s2

Uq1
Uq2

4s1s2
E E dt1dt2Ġ~ t2t1!

3s1q1@q1G~ t12t8!1q2G~ t22t8!#Z.

~B3!
19530
In these remaining terms, the summation oversj yields

m1
(2)~ t2t8!52 (

q1q2

Uq1
Uq2

E E dt1dt2Ġ~ t2t1!q1

3@q1G~ t12t8!1q2G~ t22t8!#Bq1q2

(2) ~ t12t2!,

~B4a!

Bq1q2

(2) ~ t12t2![(
s1s2

i

4s1s2
s1Z

5
2

\
sinS \

2
q1

2G12D
3exp~2q1

2W12!dq11q2,0 . ~B4b!

Fourier transforming this expression leads to Eq.~44!.
ear
APPENDIX C: CALCULATION OF µ2
„3…

Following the same route as form1
(2) , we first calculate

d3

dr~ t !ds~ t8!ds~ t9!
Z5E dtr~t!@ iG~ t2t8!iG~t2t9!1 iG~ t2t9!iG~t2t8!#Z1E dt@W~ t2t!r~t!

1 iG~ t2t!s~t!#E dt8r~t8!iG~t82t8!E dt9r~t8!iG~t92t9!Z. ~C1!

Equation~38! leads to

Z5eq1W12q21q1W13q31q2W23q31[q2iG211q3iG31]q1s11[q1iG121q3iG32]q2s21[q1iG131q2iG23]q3s3d$q% , ~C2!

with d$q%[dq11q21q3,0 . Considering the right-hand side of Eq.~C1! as a sum of four contributions, the first three disapp

after a summation oversj . For example, ift1,t2,t3 , Z is independent ofs3 and the summation overs3 leads to a
cancellation. The remaining fourth contribution to Eq.~C1! reads, explicitly@Q23[Q(t22t3)#,

m2
(3)~ t2t8,t2t9!52 (

q1 ,q2 ,q3 ,s1 ,s2 ,s3

Uq1

2is1

Uq2

2is2

Uq3

2is3
E E E dt1dt2dt3Q23Ġ~ t2t1!s1q1$q1G~ t12t8!q1G~ t12t9!

1q2G~ t22t8!q2G~ t22t9!1q3G~ t32t8!q3G~ t32t9!1q1q2@G~ t12t8!G~ t22t9!

1G~ t12t9!G~ t22t8!#1q1q3@G~ t12t8!G~ t32t9!1G~ t12t9!G~ t32t8!#

1q2q3@G~ t22t8!G~ t32t9!1G~ t22t9!G~ t32t8!#%Z, ~C3!

where we used permutation symmetries among indicesj which allow us to restrict the time integrals tot2.t3. Then,
summation over$s% leads to

Bq1q2q3

(3) ~ t12t2 ,t22t3![Q23 (
s1s2s3

1

2s1

1

2s2

1

2s3
s1i 2Z ~C4!

5Q23

4

\2
sinF\2 q1G12q2GsinF\2 ~q1G13q31q2G23q3!Geq1W12q21q2W23q31q1W13q3d$q% . ~C5!
5-11
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Note thatB$q%
(3)Þ0 only for t1.t2.t3. In terms ofB$q%

(3)[Bq1q2q3

(3) we obtain

m2
(3)~ t2t8,t2t9!5 i (

q1 ,q2 ,q3

Uq1
Uq2

Uq3
E E E dt1dt2dt3Ġ~ t2t1!q1$q1G~ t12t8!q1G~ t12t9!1q2G~ t22t8!q2G~ t22t9!

1q3G~ t32t8!q3G~ t32t9!1q1q2@G~ t12t8!G~ t22t9!1G~ t12t9!G~ t22t8!#1q1q3@G~ t12t8!G~ t3

2t9!1G~ t12t9!G~ t32t8!#1q2q3@G~ t22t8!G~ t32t9!1G~ t22t9!G~ t32t8!#%B$q%
(3)~ t12t2 ,t22t3!,

~C6a!

or, after Fourier transformation,

m2
(3)~v8,v9!5~v81v9!G~v81v9!G~v8!G~v9! (

q1q2q3

Uq1
Uq2

Uq3
q1$q1

2B$q%
(3)~0,0!1q2

2B$q%
(3)~v81v9,0!1q3

2B$q%
(3)~v8

1v9,v81v9!1q1q2@B$q%
(3)~v8,0!1B$q%

(3)~v9,0!#1q1q3@B$q%
(3)~v8,v8!1B$q%

(3)~v9,v9!#1q2q3@B$q%
(3)~v8

1v9,v8!1B$q%
(3)~v81v9,v9!#%. ~C6b!

Ratchet effects are related tov952v85v, for which Eq.~59! follows after usage of momentum conservation.
h-
,

o

an-

ith
-

APPENDIX D: DETAILS FOR T\`

Although straightforward, the calculation for the hig
temperature limit requires some care. For this calculation
is convenient to rewrite Eq.~59! as

m2
(3)~2v,v!52

i

h

1

h2v21m2v4 (
q1q2q3

8
Uq1

Uq2
Uq3

q1

3E E
0

`

dt12dt23F $q%
(3)~v,t12,t23!

3exp@2E$q%
(3)~ t12,t23!#, ~D1!

with t jk[t j2tk , t135t121t23,

F $q%
(3)~v,t12,t23![2$q1q2@12cos~vt12!#

1q1q3@12cos~vt13!#

1q2q3@12cos~vt23!#%

3
2

\
sinF\2 q1G~ t12!q2G2

\
sinF\2 ~q1G~ t13!q3

1q2G~ t23!q3!G ~D2a!

and

E$q%
(3)~ t12,t23![2@q1W~ t12!q21q2W~ t23!q31q1W~ t13!q3#

~D2b!

5
1

2
^@q1x~ t1!1q2x~ t2!1q3x~ t3!#2&0>0.

~D2c!

With increasingT, the rectified current shrinks, sinceE$q%
(3)

increases proportionally to temperature. The dominant c
tributions come from smallt12 and smallt23. We proceed
with an expansion ofE$q%

(3) and F $q%
(3) to extract the leading

orders for largeT.
19530
it

n-

In the high-temperature limit, one can neglect the qu
tum contribution toW, and expand for small times~using
q252q12q3 because of momentum conservation!

E$q%
(3)5

Tm

h2 H ~q1
21q3

2!2

2q3
2

t̂2
2 1

1

3
q1

2 q11q3

q3
t̂1
3

1O~ t̂2
3 , t̂2

2 t̂1 , t̂2 t̂1
2 , t̂1

4 !J . ~D3!

We introduced dimensionless timest̂1 and t̂2 via

gt12[ t̂12
q1

q3
t̂2 , ~D4a!

gt23[ t̂21
q1

q3
t̂1 . ~D4b!

To extract the asymptotics forT→`, one has to distin-
guish the contributions forq1 /q3.0 andq1 /q3,0 ~remem-
ber that one needs to consider onlyq1Þ0Þq3). Because of
causality, the time integrals cover only the quadrant w
t12.0 and t23.0 in the (t12,t23) plane. This quadrant cor
responds to ranges

t̂1.0 and 2
q1

q3
t̂1, t̂2,

q3

q1
t̂1 for

q1

q3
.0,

~D5a!

t̂2.0 and
q1

q3
t̂2, t̂1,2

q3

q1
t̂2 for

q1

q3
,0.

~D5b!

The integrals are transformed via
5-12
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dt12dt235
q1

21q3
2

g2q3
2

d t̂1d t̂2 . ~D6!

For q1 /q3,0, it is sufficient to retain the quadratic term

in Eq. ~D3!, since it implies thatt̂2;T21/2. Then alsot̂1

;T21/2 according to Eq.~D5!, i.e., t12;t23;T21/2. Since
F $q%

(3) is quartic in small times,

F $q%
(3)5

v2

h2g2
~q1

21q3
2!3

q1~q11q3!

q3
2

t̂2
3 S q1

q3
t̂22 t̂1D

1O~T25/2!, ~D7!

the resulting contributions tom2
(3) will be of order T23.

These terms can be neglected in comparison to terms o
der T217/6 which come fromq1 /q3.0.

For q1 /q3.0 it is not sufficient to retain the quadrat

term in Eq.~D3! since the integral overt̂1 would diverge.
Thus one has to include cubic orders inE$q%

(3) , which imply

that t̂1;T21/3. Consequently, the higher-order terms not e
plicitly written in Eq. ~D3! can be neglected. SinceF $q%

(3)

; t̂2
4 ;T22, we now expectm2

(3);T217/6. The proper expan-
sion of F $q%

(3) up to orderT22 now yields
.

.

e

et

-

ri

19530
r-

-

F $q%
(3)5

v2

h2g2
~q11q3!~q1

21q3
2!2H ~q1

21q3
2!

q1

q3
2
t̂2
3 S q1

q3
t̂22 t̂1D

2
q1

2

2q3
2 ~q11q3! t̂2

2 t̂1
3 J 1O~T213/6!. ~D8!

Thereby it is sufficient to retain even orders int̂2 because
the integral overt̂2 can be extended to all real values@ig-
noring condition~D5!# since the quadratic term in Eq.~D3!
provides a cutoff that dominates over condition~D5! ~the
errors decay exponentially inT). Therefore, the leading or
der F $q%

(3); t̂2
3 t̂1;T211/6 will not result in a contribution to

m2
(3) of orderT28/3 since it is odd int̂2 . Performing the time

integrals for the remaining terms,

m2
(3)~2v,v!52

i

h5g2

1

g21v2 (
q1 ,q3 ;q1 /q3.0

Uq1

3U2q12q3
Uq3

q1
3

q3
4 ~q11q3!~q1

2

1q3
2!3E

0

`

d t̂1E
2`

`

d t̂2S q1
21q3

2

q3
t̂2
4

2
q11q3

2
t̂2
2 t̂1

3 De2E$q%
(3)

, ~D9!

yields Eq.~74!.
ys.
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