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Possible weak temperature dependence of electron dephasing
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The first-principle theory of electron dephasing by disorder-induced two state fluctuators is developed. There
exist two mechanisms of dephasing. First, dephasing occurs due to direct transitions between the defect levels
caused by inelastic electron-defect scattering. The second mechanism is due to violation of the time reversal
symmetry caused by time-dependent fluctuations of the scattering potential. These fluctuations originate from
an interaction between the dynamic defects and conduction electrons forming a thermal bath. The first contri-
bution to the dephasing rate saturates as temperature decreases. The second contribution does not saturate,
although its temperature dependence is rather weak,}T1/3. The quantitative estimates based on the experi-
mental data show that these mechanisms considered can explain the weak temperature dependence of the
dephasing rate in some temperature interval. However, below some temperature dependent on the model of
dynamic defects the dephasing rate tends rapidly to zero. The relation to earlier studies of the dephasing caused
by the dynamical defects is discussed.
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I. INTRODUCTION

The problem of dephasing of electron states in lo
dimensional structures is the focus of interest for many
search groups. This is due to novel experiments on
Aharonov-Bohm effect in specially designed mesosco
circuits1,2 and on weak localization magnetoresistance
low-dimensional samples,3 as well as to new theoretical dis
cussions of dephasing.4–9 In particular, dephasing due to de
fects with internal degrees of freedom as a source of dep
ing were recently addressed.6,7 According to the model
discussed in Ref. 7, a temperature interval can exist in wh
the dephasing rate is almost temperature independent.

In this work we revisit the dephasing due to dynam
defects which interact with electrons and tunnel betwe
their two states due to interaction with some thermal ba
Examples of such defects are disorder-induced two-s
fluctuators10,11 present in any disordered material, impuriti
with noncompensated spin, etc. These defects produce a
dom time-dependent field and in this way they violate
time-reversal symmetry of the problem. According to a co
ventional opinion, this property is sufficient to produ
dephasing. However, this is true only under the condit
that a typical defect relaxation time is shorter that the ti
during which the electron interference pattern is formed.
deed, if the defects do not change their state during the
tern formation they act as static ones and can contribut
the interference only in a constructive way.7

The purpose of this paper is to develop a system
theory of weak localization with dephasing due to dynam
defects interacting with electrons which results in a smo
temperature dependence at relatively low temperatureT.
The dynamic defects are specified as two-level tunne
states~TLS’s! that exist in any crystalline metal.

The main message of this paper is the following. Th
exist two mechanisms of electron dephasing due to dyna
defects. The first one is due to direct inelastic transitio
between the levels of the TLS leading to the possibility
0163-1829/2002/66~16!/165326~13!/$20.00 66 1653
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determining the actual path of the electron, and conseque
to loss of interference. The second one is due to relaxa
dynamics of dynamic defects which fluctuate due to inter
tion with the thermal bath. Time dependence of the elect
scattering crossection due to the defects’ fluctuations lea
violation of the time-reversal symmetry and, as a con
quence, to decoherence. To our knowledge, the theory
evant to the second mechanism has not been develo
However, there exists a temperature interval where this
laxation mechanism is dominating.

The paper is organized as follows. Below we will giv
physical considerations to describe dephasing by dyna
defects which will be then confirmed by a diagrammatic a
proach, see Sec. II. In this section the model for electr
TLS interaction will be formulated, Sec. II A; this model wi
used to calculated the dephasing rate due toidenticalTLS’s,
Sec. II B; and, finally, an average procedure over differ
TLSs will be considered, Sec. II C. Estimates and discuss
will be given in Sec. III, while the conclusions will be give
in Sec. IV.

Qualitative considerations.Let us start with a toy mode
which illustrates the essence of the physics involved. The
Sec. II the results will be confirmed by calculation. Consid
the electron motion in a slowly varying potential fie
U(r ,t). Let us calculate the phase differenceDw between
the electron waves moving from the same pointC along
the same closed pathP clockwise and counterclockwise
see Fig. 1.

FIG. 1. A closed-loop trajectory.
©2002 The American Physical Society26-1
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We begin with evaluation of the variationDS of the elec-
tron’s actionS due to the time variation of potentialU. We
assume that an electron during its motion along the trajec
P experiences many scattering events against both static
dynamic defects, so that the trajectory can be approxima
by a smooth curve. We have

S5E pdr5E p•n ds, ~1!

wheren5p/p is a unit vector parallel to the tangent to th
curveP andds is the length element of the curve. This ca
also be written

S5E dsA2m~E2U !,

E5p2/2m being the electron kinetic energy whilem is the
electron effective mass. Expanding this equation in pow
of the potential energyU assumed small, one gets

DS52E ds

v
U~s,t !52E dt U~st ,t !.

Herest is the electron’s coordinate on the trajectory para
etrized by timet. So U depends on time both via the spa
coordinatest and explicitly.

Let now t0 be the total time of the motion of an electro
along the loopP. Accordingly, the phase variation in th
course of a clockwise motion is

~Dw!152
1

\E0

t0
dtU~st ,t !, ~2!

while for the counterclockwise motion one has

~Dw!252
1

\E0

t0
dtU~st02t ,t !. ~3!

The dephasing means a non-vanishing phase differenceDw
[(Dw)12(Dw)2 . Thus,

~Dw!25(
6

@~Dw!6
2 2~Dw!6~Dw!7# .

Using Eqs.~2! and~3! one can express the above express
through*0

t0dt*0
t0dt8U(sti

,t)U(st
k8
,t8) wherei ,k56, t1[t,

t2[t02t. We assume that there isno spatial correlation
between the scattering centersU(st ,t)U(st8 ,t8)
}d(st2st8), which implies

U~st6
,t !U~st

68
,t8!}U2~s,t !d~ t2t8!,

U~st6
,t !U~st

78
,t8!}U~s,t !U~s,t02t !d~ t1t82t0!.

Using these expressions and introducing the time correla
function of the time-dependent random potential as

U~s,t !U~s,t8![U2f ~ t2t8!,U2[U2~s,t !, f ~0!51,

one obtains
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~Dw!2}U2E
0

t0
dt@12 f ~2t2t0!#.

If there are several mechanisms responsible for depha
characterized by different coupling strengths and differ
correlation functions the resulting phase variance can be
pressed as

~Dw!2}(
s
E

0

t0dt

ts
@12 f s~2t2t0!#. ~4!

Here we have absorbed the random scattering potential
the partial relaxation ratests

21 . They, as well as the corre
lation functions, depend on the properties of dynamic
fects. We wish to emphasize that Eq.~4! demonstrates the
following point indicated above. If the defect has not relax
during the time 2t2t0 between two acts of scattering then
spite of noninvariance of the Hamiltonian respective to
time reversal there is no phase relaxation.

We distinguish two mechanisms of dephasing. The fi
which we call the resonant mechanism, is connected to in
actions which cause real transitions between different st
of the environment. This can be illustrated by the famo
double slit experiment. If we send electrons at the dou
slit, it will pass through both slits and interfere with itse
creating an interference pattern on the screen. Putting de
tors to determine which slit the electron really pass
through will destroy the interference pattern. If the intera
tion with the environment in any way allows us to determi
the path of the electron, interference is lost. The sec
mechanism of dephasing is related to a change in the sta
the environment due to its own internal dynamics. A d
namic environment leads to a difference in a scattering
tential ‘‘felt’’ by an electron state during clockwise and cou
terclockwise motion. As a result, time-reversal symmetry
broken and the interference pattern decays. We call
mechanism the relaxational mechanism, because it is ca
by the relaxation of the environmental states which res
when the environment is considered to be in contact wit
thermal bath.

At this point we would like to compare our description
the one given in Ref. 12, where it is proved that the deph
ing can be described in two equivalent ways. Either y
consider the change in the electron phase of you conside
change of state of the environment, where complete dep
ing corresponds to the environment being in orthogo
states. The last point of view would imply the existence
only the first mechanism of dephasing that we consider, re
nant transitions of environment states. We want to empha
that our second, relaxational mechanism is not in confl
with this, but is a result of ourdescriptionof the process. In
Ref. 12 the environment is considered as a mechanical
tem evolving according to its own Hamiltonian, whereas
consider the environment to be a statistical system at s
temperature. That is, we calculate the action of the envir
ment on the electrons, but do not consider the action of
electrons on the environment. In principle, if one were
follow all the complex dynamics of the environment on
would find that it does indeed evolve into orthogonal sta
6-2
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as the electron dephases according to the relaxational me
nism, and it would be seen that this is only the reson
mechanism in disguise. However, as the environment c
sists of a macroscopic number of degrees of freedom
more natural to treat it statistically as a thermal bath. In ot
words, the phase of an electron state forming a Coope
trajectory decays due toreal transitionsin the thermal bath
formed by other electrons assisted byvirtual processes in-
volving dynamic defects. In a perturbative approach th
processes occur in the fourth order in the electron-de
coupling constant. In particular, they do not enter the seco
order calculation of defect-enhanced electron-elect
interaction.13 However, it will be shown that they play a
important role in dephasing.

A different classification can be made by discriminati
between the two different regimes of phase dynamic
phasejumpsand phasewandering~or phase diffusion!. To
understand this, let us consider the resonant mechan
Consider the case of interest for weak localization, that
one electron traveling around a closed loop both in the clo
wise and counterclockwise direction, and interferes with
self after completing a full circuit. If we can determine whic
direction the electron went, we will not get interference.
we are unable to do so, it will appear. As a detector we us
two level system that is placed at a point on the right ha
side of the loop, the distance from the starting~and ending!
point being a fractiona, 1

2 of the total circumference~see
Fig. 2!.

The energy splitting of the two level system isE, and it
starts out in the lower state. When the electron passe
excites the two level system. We determine the direction
the electron by measuring the time at which this happe
The accuracy with which we can make this measuremen
limited by the uncertainty principleDtDE.\. If E is large
there is no problem, and the interference is destroyed b
single detection event. This case we call a phase jump. In
opposite case whereE is small we can not determine wit
certainty which direction the electron went, and the interf
ence pattern will be smeared out, but not lost entirely. In t
case we need the interaction with a number of two le
systems along the path, and the combined result of all
detection times can be put together to determine the di
tion. In this case we speak about phase wandering or p
diffusion, since the random contributions of the differen
two level systems makes the electron phase change in a
fusive way.

FIG. 2. Closed loop with TLS detector.
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Let us estimate the dephasing rates in the different ca
Consider first the resonant mechanism where we have ine
tic electron scattering due todirect transitions between the
two TLS states. We emphasize that the inelasticity is
essential to this channel of dephasing. The important poin
that there is a real transition between orthogonal states o
TLS. Since we are not considering degenerate states this
mean inelastic scattering in our case. If the energy transfeE
is large enough, the phase relaxation timetw is equal to the
typical inelastic relaxation timet1, which is a function of the
defect parameters. The criterion of ‘‘large’’E in this case is
given asEt1 /\@1. For smallerE one deals with a phas
diffusion or wandering. To estimate the dephasing time fo
this case let us recall that the phase coherence for any
level system is conserved during the timet,\/E. While
traversing the trajectory during the timet an electron appear
to be coupled withN̄;t/t1 dynamic defects. The evolution
of the electron wave function due to coupling with any
these defects is described by a phase factor exp(6iEt/\)
where6 corresponds to the sign of the energy transfer
T*E the probabilities of the both defect states are alm
equal, and the correlation function of the time-depend
random potential isf (t)5cos(Et/\), see the calculation later
The resulting electron phase shift turns out to beN̄1/2Et/\.
Consequently, the phase relaxation time can be estimate
tw;\2/3t1

1/3/E2/3. A similar expression for the dephasin
time has been introduced in Refs. 14 in connection with
coherence due to quasielastic electron-electron scattering
in Refs. 15,16 in connection with decoherence by lo
frequency phonons. In the following we will call this regim
thephase wandering. Summarizing, we can express the co
tribution of inelastic processes as

tw
(1)5max$t1 ,t1

1/3~\/E!2/3%. ~5!

Moving to the relaxational mechanism, we find that t
simplest way to evaluate this contribution is to note thatts
has a sense of the time at whichDw(t)'1 providedall the
involved defects would suffer a transition. It is clear that
the phase shiftdw due to transition of a single defect is*1
then a single TLS is enough to produce the dephasing.
dw!1 the significant phase evolution is possible only w
the help of many defects. The actual dephasing timetw is
also sensitive to the defect transition rateg. Indeed, the cor-
relation functionf (t) for statistically independent defects
expected to have a formf (t)5e22gutu ~this form will be sup-
ported by the calculations in Sec. II B!. If gt3*1, then with
a help of Eq.~4! one obtains(Dw)25t0 /t3 ~for the reasons
which will be clear later we ascribe the subscript 3 for t
relaxation mechanism!. If gt3!1, one has(Dw)2;gt0

2/t3.
We observe that there is a phase wandering regime also
this relaxation mechanism. Again, definingtw as a time at
which (Dw)2;1 one has

tw
(3)5max$t3 ,~t3 /g!1/2%. ~6!

One notes that in course of the above considerations
exploit the additions to the electron phase acquired by
electron in course of traversing of the potential induced
6-3
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AFONIN, BERGLI, GALPERIN, GUREVICH, AND KOZUB PHYSICAL REVIEW B66, 165326 ~2002!
the TLS’s. For each TLS the corresponding contribution c
be estimated asŨdr /vF , where Ũ is the potential magni-
tude,dr is the potential spatial scale, whilevF is the Fermi
velocity. An important note should be made in this conce
Since the trajectory in Eq.~1! and in the following ones is
considered to be given and the positions of the scatterers
expected to be along the electron trajectory, the phase a
tion mentioned above is, strictly speaking, beyond the B
approximation for the electron scattering. Indeed, in the B
approximation the scattering amplitude is real at least
symmetric scattering potentials. However it is possible
describe the phase relaxation even within the framework
the Born approximation if one takes into account that
‘‘centers of gravity’’ of the two TLS states are spatially sep
rated by some vectora ~which is an inherent feature of th
model suggested in Ref. 17!. In this case the phase variatio
due to a transition within thei th defect is simply given as
dw;(p•a)/\. Correspondingly, the estimate for the prop
rates in Eq.~4! is t1,3

21'te,d
21(pFa/\)2 wherete,d

21 is a typical
elastic relaxation rate due to dynamic defects.11,18

The previous estimates are relevant to a set of def
having identical parameters. However, in real systems t
defect parameters are scattered, and one has to perfo
proper average. As we will demonstrate, for a realistic mo
the phase wandering regime turns out to be important. To
knowledge, this fact has not been appreciated in the prev
papers dealing with defect-induced decoherence.

In the following sections we will give a more formal der
vation of the dephasing rate using the Green funct
method. It will permit us to consider not only the limitin
cases but any relations between various times of relaxa
In the Appendix B we will map the results for the relaxatio
dynamics contribution to a simple model of short-range
fects hopping between two states separated some distan
real space. This model is often used to interpret results on
so-called random telegraph noise observed in nanostruct

II. THEORY

A. The model

The dephasing mechanism is based on the assumption
in any crystalline metal there exist dynamic defects of a s
cial type. These defects are tunneling states which are
scribed by the Hamiltonian

H̃d5~Ds32Ls1!/2 ~7!

whereD is the diagonal level splitting,L is the tunneling
amplitude, whiles i are the Pauli matrices. The tunnelin
amplitudeL describes the tunneling between the intersti
positions while the spread ofD is determined by~mesos-
copic! disorder around the mobile defect. Consequently,
will assume that the distribution ofL is narrow and it is
centered around some valueL0. As we will see, one can
expect smooth temperature dependence of dephasingT
*L0. The above model has been proposed and success
exploited in Ref. 17 to interpret zero-bias anomalies o
served in metallic point contacts. Note that it differs from t
well-known TLS model in amorphous metals11 where the
16532
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distribution of lnL is assumed to be uniform, however r
sembles the TLS model for crystalline materials sugges
by Phillips19 to describe acoustic experiments in cryst
line Si.

Consider now spinless electrons which scatter against
neling defects with the Hamiltonian~7!. The total Hamil-
tonian then can be expressed in the form

H̃5H̃d1(
p

epcp
1cp1Hint , ~8!

where

Hint5
1

2 (
pp8n

~ 1̂Vpp8
1

1s3Vpp8
2

!cp
1cp8e

i (p2p8)•rn /\. ~9!

Here 1̂ is the unit matrix,V6 represent the components of
short-range defect potential, whilern is the coordinate of the
nth defect. The Hamiltonian~9! is equivalent to the assump
tion that the electron scattering amplitudes areV16V2 in
the ‘‘left’’ and the ‘‘right’’ defect positions, respectively. Es
timates forV1 and V2 are given in Refs. 11,18. After the
transform which makesH̃d diagonal we arrive at the Hamil
tonian

H5
1

2 (
n

Ens31(
p

epcp
1cp

1
1

2 (
pp8n

H 1̂Vpp8
1

1S Ln

En
s11

Dn

En
s3DVpp8

2 J
3cp

1cp8e
i (p2p8)•rn /\, ~10!

whereEn5ADn
21Ln

2. One observes that there are two pr
cesses of electron-defect interaction described by the it
proportional tos1 ands3, respectively. They correspond t
the two mechanisms discussed above and described by
~5! and ~6!. Now we proceed to more formal calculations
which the relaxation timet1 andt3 will be specified.

B. Quantum contribution to conductance

The object which we will consider is the weak localiz
tion correction to the conductivityds, which for the case of
a short-range scattering potential can be expressed thro
the electron Green’s functionsGR/A in the form15

ds5
e2

m2d
E ~dp!~dq!p2E S 2

dn

d« D d«

2pE dv

2p

3GR~«,p!GA~«,p!F~«,v,p,q2p!

3GR~«1v,q2p!GA~«1v,q2p!. ~11!

Here d is the dimension of the problem (dp)
[ddp/(2p\)d, n(«) is the Fermi function, while
F(«,v,p,p1) is a two-particle Green’s function specific fo
the problem under consideration. The above expression
scribes the main contribution to the conductivity whic
arises from the regionvt,ql!1, wheret and l are the total
6-4
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FIG. 3. The equation for the Cooperon.
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relaxation time and length, respectively. The functi
F(«,v,q,p) can be represented as a sum of the maxim
crossed diagrams~the so-called Cooperon! which is a sum of
a ladder in the particle-particle channel. This is the sa
approximation as was used in Ref. 14, and is valid if
inequalitiespFl /\@ ln(tw /t)@1 are met. The Cooperon sa
isfies the Dyson equation shown in Fig. 3.

In this figure, the Cooperon is drawn as a filled squa
thick lines with arrows correspond to the Green’s functio
averaged over the defect position, as well as over the st
of the thermal bath, while dotted lines represent propaga
for electron scattering against dynamic defects. Since the
teraction Hamiltonian~10! contains items of three types, th
propagator consists of a sum of three terms. Each propag
can be expressed as a loop graph where dotted lines repr
Green’s functions for a dynamic defect~see Fig. 4!.

To express the propagators in an analytical form we w
employ the technique developed by Abrikosov.20 According
to this technique, a two-level system describing the dyna
defect is interpreted as a pseudo-Fermion particle with
Green’s function

g6~e!5~e7E/22l1 id!21, ~12!

FIG. 4. Schematic representation of the defect propagator.
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where l is an auxiliary ‘‘chemical potential’’ which after-
wards will be tended to infinity. This trick allows one t
remove extra unphysical states which appear since the F
operators have more extended phase space that the
ones.20,21As a result, the Matsubara technique can be eff
tively used, and after a proper analytical continuation and
limiting transitionl→` the quantityl drops out of all the
expressions. As a result, the retarded propagator descri
the interlevel transitions in the defect can be expressed

D 1
R~v!52tanh

E

2T S 1

v2E1 id
2

1

v1E1 id D . ~13!

Here d is the adiabatic parameterd→10. The propagator
describing electron-assisted transitions has the form

D 3
R~v!5

1

T cosh2~E/2T!

2ig

v12ig
. ~14!

Here

g~L,E!5S L

E D 2

g0~E!, g0~E!5xE coth
E

2T
, ~15!

wherex50.0120.3 is dimensionless constant dependent
the matrix elementW(1) defined below, and whereg0(E) has
the meaning ofmaximumhopping rate for the systems with
given interlevel spacing.11

For the elastic component}1̂ we shall use a trick which
will allow us to consider the elastic channel in a unified w
with the inelastic ones. Namely, to keep proper analyti
properties of the retarded Green’s function we define
elastic propagator as

D 0
R~v!5

n

2T S 1

v1n1 id
2

1

v2n1 id D . ~16!

At the final stage, the limiting cased→0,n→0 should be
calculated. Note that the factorT21 will be canceled by the
Planck functionN0(v) which will appear in course of deri
vation of the equation shown in Fig. 3. The physical reas
6-5
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of this cancellation is that the elastic impurity scattering
temperature independent. Note that the propagators do
include the electron-defect coupling constant, hence e
propagator should be multiplied byuW( i )u2 where W(0)

5V1, W(1)5(L/2E)V2, W(3)5(D/2E)V2 . If there are ad-
ditional static short-range defects their contribution modifi
zeroth propagator by the replacementuW(0)u2→uWsu2

1uW(0)u2 whereWs is the contribution of static defects.
The equation shown in Fig. 3 has been analyzed follow

the procedure of analytical continuation of Matsuba
Green’s function15 with making use of analytical propertie
of two-particle Green’s functions.22 The resulting equation
for F(«,v,p,q2p1) has the form

F~«,v,p,q2p!5D~v!2E ~dp8!dv8

2p i
F~«,v8,p8,q2p!

3D~v2v8!GR~«1v2v8,p8!GA

3~«1v8,q2p8!@N0~v8!2N0~v82v!#.

~17!

Here (dp)[2d2p/(2p\)2[rd«pdu/2p, u is the angle with
the x axis and we write all formulas for the most interesti
case of a two-dimensional system

D~v![uWsu2ns@D 0
R~v!2D 0

A~v!#

1(
i

uW( i )u2nd@D i
R~v!2D i

A~v!#. ~18!

Equation~17! describes the dominant contribution provid
the sum of the incoming momentaq is small:

ql!1. ~19!

Here l 5vFt is the electron mean free path, whilet is the
electron lifetime

t215te
211t1

211t3
21 . ~20!

Here we introduce the elastic relaxation rate as a sum of
contributions of static and dynamic defectste

215te,s
211te,d

21

with

te,s
2152prnsuVsu2/\, te,d

2152prnduVd
1u2)/\,

and a typical inelastic relaxation rate as

t i
2152prnduVd

2u2/\, te,d /t i'~pFa/\!2&1. ~21!

Herens is the concentration of static defects whilend is the
concentration of dynamic ones, andr is the electron density
of states. In principle we now have two sets of relaxat
rates. From the interaction vertices we get

t1
215t i

21~L/2E!2, t3
215t i

21~D/2E!2,

while the rates appearing in Eq.~20! arises in the evaluation
of the self-energy diagrams as shown in Appendix A, and
given by

t1
215t i

21~L/2E!2G1~«!, t3
215t i

21~D/2E!2G3~«!.
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The functionsG1,3 are discussed in Appendix A. We sho
that they decay exponentially atE@T, and only the regions
with «<T are important. Since we only are interested in th
region, we will neglect the energy dependence of these fu
tions, and put them to 1 in the following. The two sets
relaxation rates will then be the same.

To analyze Eq.~17! it appears convenient to transform
to the form similar to the Boltzmann equation for an electr
diffusion. For this let us take into account that at smallq and
v the product of the Green functions in the integrand is
sharp function centered at«5«p85eF whereeF is the Fermi
level. Thus it is natural to assume thatF(«,v,p8,q2p1)
depends only onq, v and the productq•v8. Having that in
mind we first integrate over«p8 and make use of the in
equalitiespFl /\@1,\v!T which we assume to be met.

The result can be expressed in terms of a new functio

F~«,q,v![
F~«,v,p,q2p!

v~12 i tq•v!
, ~22!

wherev is the electron velocity. Here we assume that«<T
and omit the variable«.

Following the procedure described in Ref. 15 we expr
the equation forF in the form:

~11Dq2t!F~«,q,v!

5
D~v!

4prv
2TE dv8

~2p i !~v22v81 i /2t!

3F~«,q,v8!
D~v2v8!

v2v8
. ~23!

Here D5vFl /d is the diffusion constant. Transforming Eq
~23! to the time representation with respect tov we obtain

~11Dq2t!F~«,q,t !

5
F~«,t !

2tTr
1E

2`

t dt8

t
e(t82t)/t

3F~«,q,t8!F~«,2t2t8!. ~24!

Here we denote

F~«,t ![
t

te
1

t

t1
cos

Et

\
1

t

t3
e22gt/\. ~25!

Here the limiting transitionn→0 has been already done
Note that the functionF(«,t) depends on the energy var
able « through the relaxation timeste , t1, and t3. In the
following we omit the variable« in all the functions keeping
in mind that the relaxation rates are energy dependent,
Appendix A. Also in writing the expression forF(«,t) we
have assumed thatE!T. For E.T it decays to 1 which
means that defects withE.T do not contribute to the
dephasing, see the discussion below Eq.~33!

Equation~24! can be solved exactly. The solution is bas
on the relation between the kernel of the integral equatio

K~ t,t8!5~Dq2t21!e(t82t)/t@12l~2t2t8!#,
6-6
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l~ t ![
t

t1
S 12cos

Et

\ D1
t

t3
~12e22gt/\!

and its resolventR defined by the integral equation

E
t1

t dt8

t
K~ t1 ,t8!R~ t8,t !5K~ t1 ,t !1R~ t1 ,t !. ~26!

The relationship has the form23

F~ t,q!5F~ t !1E
2`

t dt8

t
R~ t,t8!F~ t8!. ~27!

If one can construct a differential operator of the formL̂t1

[( jaj (t1)(dj /dt1
j ) such that

L̂t1
K~ t1 ,t !50 ~28!

for any t, then the integral equation~27! is reduced to the
differential equation~28! for a fixed t. That can be directly
checked applying the operatorL̂t1

to relation ~26!. The

boundary conditions corresponding fort1→t can be ex-
tracted from the integral relation~26! and its derivatives with
respect tot1 at t1→t.

The results have the simplest form atte!t1 ,t3 ,\/g.
Then one can choose

L̂t1
5S t

d

dt1
11D 3

.

From Eq. ~26!, the differential equation for the resolven
R(t1 ,t) acquires the form

@t3~d3/dt3!1t2~21l1!~d2/dt2!

1t~112l1!~d/dt!1l1#R~ t,u!50. ~29!

Here l15l1Dq2t. Since the phase relaxation is a slo
process with respect to the scalet the equation~29! has
small coefficients at senior derivatives which makes use
the WKB approximation. Consequently, the physical solut
can be sought in the formR(t,u)}exp@w(t)/t# wherew(t)
satisfies the equation, (ẇ11)2@ẇ1l1(t)#50. Since l(t)
!1, the WKB solution corresponds to the equation

ẇ1l1~ t !50. ~30!

The boundary condition to Eq.~30! can be extracted from th
relationR(t,t)50. In this way, we obtain the quasiclassic
solution in the form

R~ t,t1!5expS 2E
t1

t dt8

t
l1~ t8! D . ~31!

Now we substitute Eq.~31! in the expression~27! to obtain
the final expression for the CooperonF. The first item in Eq.
~27! is the contribution of lowest order scattering and
should be neglected in the diffusion approximation. Here
analyze the quantum contribution to the static conductan
so onlyF(0) is important. As a result, we obtain
16532
l
n

e
e,

F~0,q!5E
2`

0 dt8

t
F~ t8!eq(t8), ~32!

q~ t !5Dq2t1F t

t1
2

sin~Et/\!

Et1 /\ G
1F t

t3
2

\

2gt3
~e2gt/\21!G , t,0. ~33!

An important feature of Eq.~33! is that if one neglects the
processes in which the defect changes its state then
dephasing is absent. Indeed, puttingt15t35` we get
F(t)51 and F(q)5(Dq2)21. This results in logarithmic
divergence of the conductance in the 2D case. Another
portant feature is that at small timet, which has a physica
meaning of the time difference for the collision act for cloc
wise and counterclockwise partial waves, no linear int term
is originated by inelastic processes. Physically it means
no dephasing takes place if the scattering defect had
enough time to change its state. Therefore, the depha
appears proportional to the probability for the defect to
cape the state in which it has been registered by one pa
wave.

With substitution of Eq.~32! into Eq. ~22! and then into
Eq. ~11! we obtain for 2D case the expression for the qua
tum contribution to the conductance. Since onlyu«u&T
!eF are important one can neglect« dependence of the
relaxation rates and put«50 in the expressions for the thes
quantities. As a result, one arrives at the well-known expr
sion

ds52
e2

2p2\
ln

tw

t
,

wheretw is defined according to the equation

ln
tw

t
[E

1

`dh

h
e2G1(h,E,L)2G3(h,E,L), ~34!

G1~h,E,L!5
t

t1
Fh2

sin~hEt/\!

Et/\ G ,
G3~h,E,L!5

t

t3
Fh2

\

2gt
~12e22hgt/\!G ,

whereh5t/t. This equation is obtained by the integratio
over q.

We can now recover our estimates~5! and ~6! by the
approximate value of the integral

I 5E
1

`dh

h
e2ahn

in the case wherea!1. We split the integral at the pointh* :

I 5E
1

h* dh

h
e2ahn

1E
h*

` dh

h
e2ahn

.

6-7
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Defining h* such thatah* n51, we haveh* @1. The inte-
grand will be very small in the last integral, and we negle
this. In the first integral we put the exponent equal to 0, a
get

I' ln h* 5 ln a21/n. ~35!

Expression~34! depends upon two dimensionless quan
ties. The first one isEt/\. As follows from Eq. ~35!, the
typical value oft is tw . This parameter determines the ef
ciency of the resonant mechanism of dephasing, that of
rect transitions of the TLS states. IfEtw /\!1 we are in the
regime of phase wandering, and we can expandG1 in Eq.
~34! in powers of this parameter up to the lowest order. Ho
ever, if Etw /\*1 we have the case of phase jumps, and
can neglect the sine term inG1. These expansions are give
in Eqs. ~38! and ~39! below. In both cases we can use t
formula ~35! to arrive at the estimate~5!.

The second dimensionless parameter isgt3 /\. It de-
scribes the effect of the relaxational mechanism of depha
arising from thes3 vertex. The physical explanation is th
the dephasing occurs only if the partial waves meet the s
terer in different states. Expanding in small@phase wander-
ing, Eq.~45!# and large@phase jumps, Eq.~46!# values of this
parameter we arrive at the estimates~6!.

In addition there is also the dimensionless parame
gt1 /\ which will control the effect of the relaxationa
mechanism acting through thes1 vertex. This has been ne
glected in the above calculations since the inequalityg
!E/\ is met.

If the estimates~5! and ~6! have different orders of mag
nitude then the shortest one is effective. However,

1/twÞ1/tw
(1)11/tw

(3)

sinceG1 andG3 depend on time in different ways. The mo
clear manifestation of this fact is seen in the magnetic fi
dependence of the quantum contribution.

C. Average over different dynamic defects

To calculate the quantum contribution to conductance
has to sum over different dynamic defects. In the previo
considerations we have assumed that all dynamic defect
the same interlevel distanceE and the same tunneling ampl
tudeL. Consequently, the summation over different defe
has been allowed for by the factornd in the expressions fo
the relaxation timest i . However, in realistic systems bothE
andL can be distributed over a significant range. Since
number of dynamic defects at a typical electron trajectory
assumed to be large the summation over different defects
be replaced by a proper average. To calculate the latter
necessary to specify the distribution functionP(E,L) which
we assume to be normalized to 1. To specify this function,
us come back to the effective Hamiltonian~7!. SinceD is
determined by the defect’s neighborhood whileL is deter-
mined by the distance between two metastable states
natural to assumeD and L to be uncorrelated, P(D,L)
5PD(D)PL(L).
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Below we will discriminate between two model distribu
tions. The first one will be referred to as the ‘‘glass mode
~GM!.10,24 According to this model the distribution ofD is
assumed to be smooth,PD5P0. Since the tunneling integra
L is an exponential function of the distance between
potential minima and the latter is smoothly distributed, it
assumed thatPL}L21. Within this model it is natural to
choose the interlevel splittingE and the quantity p
[(L/E)2 as independent parameters. Sinceg}p, Eq. ~15!
can be rewritten asg5pg0(E). Consequently, the GM re
sults in theexponentially broaddistribution of relaxation
rates. Furthermore, to keep the distribution normalized,
introduce cutoff pmin(E)5gmin(E)/g0(E)!1 and assumeL
[ ln(1/pmin)5ln(g0 /gmin) to be energy independent. A cuto
energy in the smooth distribution ofE at someE* is also
assumed. As a result, we get the distribution

PGM~E,p!5
Q~E* 2E!

E* L
1

pA12p
. ~36!

Another model which we will call the ‘‘tunneling-state
model’’ ~TM! is more appropriate for crystalline material
There the tunneling integralsL is determined by the crystal
line structure and are almost the same for all dynamical
fects. On the other hand, the parameterD is determined by
long-range interactions, and it is assumed distribu
smoothly within some band, cf. Ref. 17. Then

PTM~E,L!5
Q~E* 2E!

E*

E

AE22L0
2
d~L2L0!. ~37!

In the following we will assume that the dynamical defec
are characterized byL0!T. To calculate the total contribu
tion of the dynamical defects in the case when their para
eters are random one has to replaceG i in Eq. ~34! by the
averagesḠ i(h)5*dEdLG i(h,E,L). Below we will discuss
in detail only the tunneling-states model which seems to
more appropriate for crystalline materials. Let us discuss
contribution of direct transitions and relaxation separately

~a! Contribution of direct (resonant) transitions.The item
G1, responsible for the direct transitions, is proportional
uW1u25(L/E)2uV(1)u2. SincePTM(E,L)}d (L2L0) the in-
tegral overL yields the factorL0

2/EAE22L0
2. Using Eq.

~35!, the quantity tw
(1) is estimated from the expressio

Ḡ1(tw
(1)/t)51. The following calculation depends on the r

lationship betweenE andtw . At Etw /\!1 one can expand
the expression forG1 as

G1~h,E,L!;~L/\!2~ht!3/t i , ~38!

while at Etw /\@1

G1~h,E,L!;~L/E!2ht/t i . ~39!

To estimateḠ1(h) let us introduce the energy splittingTL at
which Etw /\51. The meaning of this is that a TLS with a
energy splitting less thanTL will not by itself cause com-
6-8
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plete phase loss, i.e., we are in the regime of phase wan
ing. A TLS with E.TL causes a phase jump. Let us fir
assume that

L0!TL!T. ~40!

Using the distribution~37! and returning to dimensional tim
one obtains

Ḡ1~ t !'
t

t i

L0
2

TLE*
1

t

t i
S L0t

\ D 2TL

E*
. ~41!

Now, let us definetw
(1) andTL to make both contributions to

Ḡ1(tw
(1)) equal to 1. This definition ofTL is consistent with

that given above within the accuracy of the approximat
because the two terms are the expansions in large and s
values ofEtw /\. The point where both terms becomes
the order 1 should then correspond to the crossover p
Etw /\51. This is easily checked from the formulas belo
In this way we get

tw
(1)5tL~TL /L0!, ~42!

where

TL5~\L0 /tL!1/2, tL5t i~E* /L0!. ~43!

The timetL is due to the dynamic defects with symmetr
potentials and energy splitting equal toL0. At T<TL for all
energies the inequalityEtw /\!1 is met, and only the sec
ond item in Eq.~41! is important. One should replaceTL by
T in this expression to obtaintw

(1)5tL(TL /L0)(TL /T)1/3. In
contrast, ifTL<L0 then only the first item in Eq.~41! is
important. In this casetw

(1)5tL .
The result can be summarized as

1

tw
(1)

'
1

tL

L0

TL
H min$~T/TL!1/3,1%, TL@L0 ,

TL /L0 , TL!L0 .
~44!

~b! Contribution of relaxation processes.Since only E
&T are important, for estimates one can assu
EcothE/2T'2T. Thus, g0'2xT becomesE-independent.
For the same reasont3

21 can be approximated ast i
21(D/E).

The following calculation depends on the relationship b
tweeng andtw . At gtw!1 one can expand the expressi
for G3 as

G3~h,E,L!'h2gt2/t35g0~ht!2t i
21D2L2/E4, ~45!

while at gtw@1 one has

G35h~t/t3!}~D/E!2. ~46!

To estimateḠ3(h) let us introduce the energy splittingEx at
which gtw51. The meaning of this is that a TLS withE
,Ex will probably jump during the trajectory traversal tim
tw ~it is ‘‘fast moving’’ !, whereas a TLS withE.Ex will
have a low probability to jump in the same time~it is ‘‘slow
moving’’!. First we assume that

L0!Ex!T. ~47!
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Using the distribution~37! and returning to dimensional tim
one obtains

Ḡ3~ t !'
t

t i

Ex

E*
1

xTt2

\t i

L0
2

ExE*
. ~48!

Now, let us definetw andEx to make both contributions to
Ḡ3 equal to 1. This procedure indicates that the defects w
E5Ex are those which experience a hop during the typi
Cooperon trajectory traversal time. One obtains

1/tw
(3)5t i

21~Ex /E* !, Ex5L0~xTtL /\!1/3. ~49!

Introducing the characteristic temperatureTa5\/xtL at
which Ex5L0 one can express the dephasing rate as

1/tw
(3)5tL

21~T/Ta!1/3. ~50!

Another important characteristic energy is the temperat
Tb at which Ex5T, Tb5L0

3/2/Ta
1/2. The ratio Ta /Tb

5(xL0tL /\)3/2 can be arbitrary.
The meaning ofTa andTb can be understood as follows

Imagine starting at some large temperature whereT@Ex

@L0. As we lower the temperatureEx is also decreasing
but it decreases at a slower rate thanT (Ex;T1/3). At the
temperatureTa , Ex5L0. SinceL0 is the lower cutoff forE,
if T,Ta all defects are slow moving because no defe
exist with sufficiently low splitting. Alternatively, sinceT is
decreasing faster thanEx , T will overtakeEx at the tempera-
ture Tb . For T,Tb all defects are fast, because the slo
ones are frozen out. Which temperature is reached first
pends on the specific values of the parameters~since the ratio
Ta /Tb is arbitrary!. Also, if Ta.Tb thenEx,L0 for all T
,Ta , so in particularTb,L0 and is thus unimportant
Similarly, if Ta,Tb thenTa,L0.

The result~49! is valid if T@Ex@L0, or at T@Ta ,Tb .
At Ex@T@L0, or Tb@T@L0, only the first item in Eq.
~48! exists and the quantityEx should be replaced byT. As a
result,

1/tw
(3)'tL

21~T/L0!. ~51!

Since L05Tb
2/3Ta

1/3 the results~50! and ~51! match at T
5Tb This temperature region exists only ifTb.Ta . At T
&L0 the dephasing rate strongly decreases with the temp
ture decrease.

If Ta@T@Tb the relaxation is slow for all the dynami
defects and the second item in Eq.~48! is important. How-
ever, in this case one has to replaceEx→L0 in its estimate.
As a result,

1/tw
(3)5tL

21~T/Ta!1/2. ~52!

The temperature dependence oftw is sketched in Fig. 5 for
Ta,Tb and in Fig. 6 forTa.Tb .

~c! Comparison.Now we are in a position to compare th
contributions to the dephasing rate. Both contributions
1/tw are parametrized by the quantity 1/tL , the relative con-
tributions being dependent on the temperature. The rela
resonant contribution crosses over from (L0 /TL)(T/TL)1/3

to L0 /TL at T5TL . The relative relaxation contribution
6-9



e

n
th

s
e

hi
rtu
el

ra
ov

,
er
v

er
nd

g
e

n-
nt,
an
e
the
e-

ut-
mp-

by
our

ic

r
nts.

st,
s
ith

ro-
eve
able

-
than

d

the
bly

efect

AFONIN, BERGLI, GALPERIN, GUREVICH, AND KOZUB PHYSICAL REVIEW B66, 165326 ~2002!
crosses over fromT/L0 to (T/Ta)1/3 at T5Tb if Tb*Ta . In
the opposite case is crosses over to (T/Ta)1/2 at T5L0 and
then to (T/Ta)1/3 at T5Ta .

We conclude that atT>Ta ,Tb the relaxation contribution
dominates, and the dephasing rate is

tw
215tL

21@~T/Ta!1/31z#, ~53!

where z is a constant of the order 1 originating from th
resonant contribution.

At low temperatures both contributions can be importa
their interplay depending on the relationship between
temperatureT and the characteristic energiesL0 , TL , Ta ,
andTb . For both mechanisms the dephasing rate vanishe
T→0 and there is is a region in which the dephasing rat
proportional toT1/3 .

As it is seen, can the suggested mechanism indeed ex
saturationlike behavior in some temperature region. Unfo
nately the existing experimental data are obtained in a r
tively narrow temperature interval~typically no more than 2
decades! which does not allow one to determine the tempe
ture dependence with an accuracy that is sufficient to pr
or disprove Eq.~53!.

~d! Averaging over the tunneling matrix element.In our
considerations we have assumed thatPTM}d(L2L0), i.e.,
that the tunneling matrix elementL is given. Note, however
that due to disorder the barrier parameters are also scatt
To discuss role of such a scatter let us assume that the o
lap integralL is given by the expressionL5(\v0 /p)e2l

where v0 is some attempt frequency while the barri
strengthl is distributed according to Gaussian law arou
some central valuel05 ln\v0 /pL0@1,

FIG. 5. Schematic picture of lntw
21 as function of temperature

for Ta,Tb .

FIG. 6. Schematic picture of lntw
21 as function of temperature

for Ta.Tb .
16532
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Pl5Ne2(l2l0)2/2l̄2
. ~54!

Here N is a proper normalization factor which atl̄!l0 is
equal to (2pl̄2)21/2. As we have seen, for most interestin
regimes it is the quantityL2 that has to be averaged. Th
results then can be expressed as

L2

L0
2

5NE
2l0

`

dje22j2j2/2l̄2
'e2l̄2

at l0@l̄.

As it is seen, the only effect of the scatter inl corresponds to
renormalization of the tunneling matrix element by a co
stant factorel̄2

. Since this factor is temperature independe
it does not affect qualitatively the picture obtained with
assumption of a fixed value ofL. One also notes that th
averaging procedure practically cuts out a contribution of
region l.l0 since at this region the tunneling matrix el
ment exponentially decays withl. Thus the picture is not
sensitive to this region, and any distribution ofl with a
lower cutoff ~even allowing a Gaussian smearing of this c
off! does not change the considerations made in an assu
tion of a fixed value ofL5L0.

III. ESTIMATES AND DISCUSSION

To make estimates we rewrite the expression~21! for t i in
the form

t i
215s invFnd , s in[se

duV2/V1u2, ~55!

wherese
d is the cross section of elastic electron scattering

a dynamic defect. Correspondingly, the key parameter of
theorytL is given as

tL
215L0Pds invF , ~56!

where Pd5nd /E* is the density of states of the dynam
defects.

The density of statesPd can be, in principle, estimated fo
a given material on the basis of point contact measureme
Namely, metallic point contacts are known to exhibit, fir
telegraph resistance noise25 and, second, zero-bia
anomalies;26 both effects are expected to be associated w
the dynamic defects.17,25,26

Although we appreciate that the material preparation p
cedure can significantly affect the defect system, we beli
that such experiments can provide more or less reason
estimates forPd . The telegraph noise studies25 for a Co
nanoconstriction with a size of;10 nm revealed the pres
ence of about several dynamic defects at energies less
10 mV. This would give us the valuePd;(325)
31032 erg21 cm23. However, the telegraph noise is relate
to TLS with rather slow relaxation rates (&103 s21) while
we are interested in the defects with switching times of
order of 1029 s. Consequently, these estimates most proba
significantlyunderestimate Pd . What is more instructive, the
magnitude of the resistance noise revealed rather large d
asymmetry corresponding to the estimates in;se

d

;10215 cm2.
6-10
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We believe that the zero bias anomalies can give m
reliable information concerningPd . The magnitude of these
anomalies for Co nanoconstrictions26 of the same type as
mentioned above corresponds to a presence of several te
TLS at the energy region about 1 meV.17,26Correspondingly,
one obtainsPd;(325)31034 erg21 cm23.

Based on these estimates and takingPd
'1034 erg21 cm23, s in'10215 cm2, vF'108 cm/s, and
L0'10 mK we obtaintL'1029 s. Equations~55! and~56!
yield TL.L0. Thus at temperatures larger thanTL'L0
'10 mK one expects, according to Eq.~44!, temperature-
independent contribution of resonant processes.

For the relaxation channel, one obtainsTa'Tb
'10 mK. Consequently, atT*Ta'TL'10 mK one ex-
pects that dephasing rate obeys Eq.~53! with tL'1029 s.
Now let us check if our assumptionL0'10 mK is realistic.
We will exploit a crude estimate

L0.
\v0

p
expS 2

2

\E0

a

drA2MU~r ! D , ~57!

whereU(r ) is a potential relief between the two stable defe
positions separated by a distancea andM is the defect mass
Taking as an exampleU(r )5(U0/2)@12cos(2pr/a)# one ob-
tains for the exponent (2a/p\)A2U0M . Taking for a light
defect v0'1014 s21 and assuming a'1028 cm, U0
'0.2 eV one estimates that the valueL510 mK is achiev-
able for M'2310223 g which corresponds to atomi
weight '10.

Summarizing our estimates, we can conclude that for
alistic parameters of the dynamic defects one can indeed
pect a slow temperature dependence of the dephasing
given by Eq.~53! crossing over to a rapid decrease at lo
temperatures. The crossover temperature, as well as the
havior below that temperature, depends on the distributio
L. For a deltalike distribution~37! the TLS spectrum has
gap of L0. Thus the TLS contribution to dephasing rate
exponentially frozen out at forT,L0, and we are left with
the ‘‘standard’’ mechanisms such as electron-electron sca
ing. However for the Gaussian distribution~54! with l̄@1
the situation is different. In this case the cutoff temperatur
given by the renormalized tunneling couplingL0el̄2

while
for lower temperatures one deals with rather flat distribut
of l within the regionl<l01l̄. Correspondingly, at thes
temperatures one deals with a glasslike TLS distribution
which tw}T21.

Although some papers, e.g., Refs. 9,27, stated that to
plain the dephasing saturation by a TLS contribution o
would need an unreasonably large concentration of the T
this conclusion was mainly based on the ‘‘glassy’’ model
the TLS while we exploited the tunneling state model
Refs. 17,19. In general, to obtain independent informat
concerning the TLS concentration based on ‘‘bulk’’ measu
ments such as acoustic measurements or heat capacity
surements in conductors is rather difficult due to a prese
of electronic contributions. In particular, the valuePd
;1034 erg21 cm23 exploited above is still less than the ele
tron density of states (;1035 erg21 cm23 for Co! and so the
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TLS are not expected to affect significantly the properties
the material, such as heat capacity.

Now we would like to compare our results with the ca
culations given in Refs. 7–9 where a similar problem w
considered. The authors of Ref. 7 gave a semiphenom
logical treatment of the problem. They exploited the TL
distribution typical for the standard glassy TLS model, b
with the upper cutoffL0,max for the tunneling matrix ele-
ment. For the resulting dephasing time they reported a p
portionality of tw

21 to L0,max/E* ~in our notations! in the
limit twL0,max.\. One notes that such a proportionality is
agreement with the second line of our Eq.~44! although the
total expression fortw was some different from ours. Fur
thermore, the estimate for the opposite limiting case w
completely different from our Eq.~44!. Since Eq.~44! cor-
responds to the ‘‘resonant’’ or ‘‘inelastic’’ channel we con
clude that the authors of Ref. 7 accounted for only the
inelastic processes of electron dephasing. The ‘‘elastic,’
s3, channel~which, as we have seen, can dominate w
respect to the ‘‘inelastic’’ one! seems to stay beyond th
quantitative results of Ref. 7.

In Ref. 8 the dephasing due to dynamical defects w
treated within the framework of the two-channel Kond
model. We believe that this model is not relevant to the m
tallic samples we are interested in, see Ref. 28.

Then, the dephasing by TLS was also considered in
recent paper Ref. 9 where the saturation behavior oftw in
quantum dots for the TLS distribution with fixedL0 was
claimed. As follows from the derivation,9 only the transitions
between TLS states due to interaction with the electron fo
ing the interference loop are taken into account. At the sa
time, the transitions due to other electrons forming a therm
bath ~second mechanism of dephasing! are ignored. Hence
only the s1 channel is taken into account,and the result
similar to the second item in our Eq.~49!. However, the main
contribution arising from thes3 channel is omitted.

It is worthwhile to mention that similar ideas were used
explain the magnetoresistance of polymers.29 Polymer sys-
tems exhibiting rather large fraction of free volume are e
pected to form readily mobile and metastable defects of
ferent types.

IV. CONCLUSIONS

To conclude, we have shown that the dynamic defects
be responsible for the slowing down of the temperature
pendence of the dephasing rate at low temperatures. T
are two mechanisms of dephasing. The first one correspo
to direct inelastic scattering of electrons by the defects, wh
the second one is due to violation of the time reversal sy
metry caused by fluctuations of the scattering potential. T
first mechanism can indeed lead to the saturation, while
second one still contains a temperature dependence alth
a weak one. However, whenT&L0 the dephasing rate rap
idly tends to 0.
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APPENDIX A:
CALCULATION OF THE RELAXATION RATES

The relaxation rate is determined as an imaginary par
the analytically continued Matsubara self-energy. In gene
we have three contribution to the self-energy due to th
different types of the electron-TLS interaction. Since for
short-range scattering potential the interaction vertexes
not have an internal structure, for each bosonic propag
Di one obtains

S i
M~«k!5rgi

2E djpFi
M~«k ,jp!,

Fi
M~«k ,jp!5T(

s
D i

M~vs!G~«k2vs ,jp!. ~A1!

Here r is the electron density of states,vs52psT, «k
52p(k11)T, jp5p2/2m2m andgi is the proper coupling
constant determined by the Hamiltonian~10!. The analytical
continuation is performed in a usual way. Since there are
cuts in the complexv plane, at Imv50 andrmIm(«2v)
50 for eachi we getFR(«k ,jp)5F11F2 where

F15E
2`1«k

`1«k N~v!D R~v!dv

2p i
@GA~«k2v!2GR~«k2v!#,

F25E
2`

` N~v!GR~v!dv

2p i
@D R~v!2D A~v!#. ~A2!

For brevity we omit the argumentsjp of the electron Green’s
functions. Now we replace the integration variable in t
expression forS1 asv→v2«k and then combine two inte
grals. Taking in account thatN(v1 ipT)52n(v) where
n(v)5(ev/T11)21, Im GR(«,jp)5pd(«2jp) and making
a straightforward algebra we obtain

Im FR~«,jp!52E
2`

`

dvFcothS v

2TD1tanhS «2v

2T D G
3Im@D R~v!#d~«2v2jp!.

Performing trivial integration overjp and taking into ac-
count the 1/2t52ImSR we finally obtain

t i
21~«!52prgi

2Gi~«!, ~A3!

Gi~«!5E
2`

`

dvN~v!n~«2v!n21~«!Im@D i
R~v!#.

~A4!

Using Eq.~13! we obtain

G15n~«1E!n~«2E!n22~«!. ~A5!

At E@T it is proportional toe2E/T at any finite«.
While calculatingG3 one can expandN(v)'T/v, n(«

2v)/n(«)'1. After that
16532
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G35cosh22~E/2T!. ~A6!

It can be easily shown thatG051.

APPENDIX B:
MAPPING TO A RANDOM-TELEGRAPH-NOISE MODEL

Consider an electron trajectory with the total traver
time t0 which containsN dynamic defects able to hop be
tween two sites. They are rather rare, so a typical neighbo
any active dynamic defect is astaticone . The total length of
the trajectory is

L05t0 /vF5(
s51

M

uRs11
(0) 2Rs

(0)u,

whereM is the total number of defectsM@N.
Let us parameterize the electron motion along the tra

tory by timet and allow some of the defects~labeled byj ) to
make transitions between their states. For those defects

Rj~ t !5Rj
(0)1uj~ t !.

The length of distorted trajectoryL 1 traversed in theposi-
tive direction is

L 15(
s51

M

uRs11
(0) 1us11~ ts11!2Rs

(0)2us~ ts!u

5L (0)1v21(
j 51

N

ṽj•uj~ t j !.

Here ṽj[(vj 212vj ) is the change in the electron velocit
due to scattering byj th EF.

Now we can specify the displacement ofj th EF as

uj~ t ![ajj j~ t !,

wherej j (t) is a random telegraph process~RTP!, i.e., a func-
tion switching between the values61 at random times and
having the correlation function

^j j~ t !jk~ t8!&5d jke22g j ut2t8u.

Then the time-dependent contribution to the length is

~dL! j~ t !5 l jj j~ t !, l j[~vj•aj !/v.

For a given defectj, the phase difference is just

~dF! j~ t0!5~pFl j /\!@j~ t j !2j~ t02t j !#.

Let us split the calculation of the average^ei dF& in two
steps. First let us calculate the average over different rea
tions of a given RTP

k~ t0!5^eiJ[ j(t)2j(t02t)]&RTP, J[pFl /\.

This sum can be calculated using the generation function~for
tb.ta)

K~x,y!5^e2 ixj(ta)2 iyj(tb)&5e2g(tb2ta)@cos~x1y!coshg

3~ tb2ta!1cos~x2y!sinhg~ tb2ta!#.
6-12
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Substitutingx52y5J and considering arbitrary times w
obtain

k~ t,t0!52 cos2J12 sin2Je22gut022tu.

We observe that the function depends explicitly on the po
tion of the scatterer along the trajectory, that is natural
does not contain complete destruction of the interference
appears only after averaging over different dynamic defe

The average over different dynamic defects will be p
formed using the Holtsmark procedure~see, e.g., Ref. 30 fo
a review! according to which

^ei (DF)&d5e2W(t0), W~ t0![neffVck~ t0!.

Hereneff is the concentration of ‘‘active’’ defects,Vc is the
‘‘contact volume,’’ while

W~ t0!5^12k~ t,t0!&d5^2 sin2Jh~ t022t !&d ,

whereh(t)[12e22gutu. The contact volume is estimated a
Vc5svFt0, wheres is the scattering cross section.

Let us for simplicity assume that the hopping distancesaj
of the defects are the same. We have also to assume tha
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