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Single-electron transport through the vortex core levels in clean superconductors
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We develop a microscopic theory of single-electron low-energy transport in normal-metal–superconductor–
normal-metal hybrid structures in the presence of applied magnetic field introducing vortex lines in a super-
conductor layer. We show that vortex cores in a thick and clean superconducting layer are similar to mesos-
copic conducting channels where the bound core states play the role of transverse modes. The transport through
not very thick layers is governed by another mechanism, namely by tunneling via vortex core levels. We apply
our method to calculation of the thermal conductance along the magnetic field.
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I. INTRODUCTION

Electron transport through various hybrid structures is
focus of current nanoscale physics research. Of special in
est are normal-metal (N) –superconductor (S) – normal-
metal (N) trilayers where a superconducting gapD0 sup-
presses single-particle transport, making charge tran
transparency very sensitive to the external controlling par
eters. If the thicknessd of the superconducting slab is muc
larger than the coherence lengthj, the electrons with low
energiese,D0 incident on the slab are reflected as hol
and the normal current converts into the supercurre
Single-electron tunneling through an NSN structure dec
exponentially with the slab thickness, giving rise, in partic
lar, to the exponential drop off of the electronic contributi
to the thermal conductance.1,2 A single-particle transport re
covers by applying a magnetic fieldH that creates vortex
lines where the gap in the spectrum is suppressed. Sinc
single-particle contribution to electric conductivity is sho
circuited by supercurrent, we focus on the thermal cond
tivity, which is the experimentally accessible characteristic
the one-electron transport.

Taking the simplest view of a vortex core as a norm
conductor, we arrive at a single-electron Sharvin cond
tance per vortexGSh5(e2/p\)NSh, wherekF5pF /\ is the
Fermi wave vector andNSh;(kFj)2 is the number of con-
ducting channels in a normal wire with a radiusj. As we
already mentioned, the single-electron transport determ
the thermal conductivity. The Wiedemann-Franz law wou
result ink;TG/e2;(T/\)N for the thermal conductance. A
more attentive consideration shows that only those traje
ries contribute to a single-particle conductivity that do not
vortex core ‘‘walls’’: An electron withe,D0 flying into the
core boundary is Andreev reflected, which blocks the sing
electron transport along such a trajectory. The trajecto
that traverse freely the normal region are confined to a s
anglej2/d2, resulting in an ‘‘Andreev-wire’’ single-electron
conductance3 GA;(e2/p\)NA with the heat conductanc
kA}(T/\)NA where the number of channelsNA
;(kFj)2(j/d)2 is decreased againstNSh.

The low-energy transport obviously saturates for ve
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thick superconducting slabs where it is associated with
Caroli–de Gennes–Matricon~CdGM! states4 propagating
along the core. The CdGM spectrumem(kz) as a function of
the quantized angular momentumm5n11/2 varies from
2D0 to 1D0, crossing zero as the impact parameterb
52m/kr varies from2` to 1`. Herekr5AkF

22kz
2 is the

wave vector in the plane perpendicular to the vorte
(r , f, z) is a cylindrical coordinate system with thez axis
chosen along the vortex line. For smalle the spectrum is
em(kz).2mD0 /(krj). Transport carried by the quantize
transverse modes is described by the Landauer formula
the limit D0 /(kFj)!T!D0, the number of modes is
;(T/D0)kFj; thus one gets for the single-particle condu
tance of one vortex3

GL5~e2/p\! (
m

Tm;~e2/p\!~T/D0!~kFj!.

m numerates the transverse modes with transparencieTm
open in the core. From the Wiedemann-Franz law,

kL;~T/\!~T/D0!~kFj!. ~1!

This estimate can also be obtained from the Sharvin cond
tance provided the group velocity is taken asvg
5]em /\]kz;em /\kF instead of the velocityvz;vF as in a
normal tube. The number of channelsNL in Eq. ~1! is by a
factor (T/Tc)(kFj)21!1 smaller thanNSh. One thus ex-
pects that the Andreev-wire thermal conductancekA of the
vortex core transforms into Eq.~1! with increasingd.

In the vicinity of Hc2, the thermal conductivity has bee
studied theoretically in a number of papers~see, for instance
Refs. 5–7!. In dirty superconductors, the electron contrib
tion to the thermal conductance along the vortices8 is simply
proportional to the area occupied by the coresk(B)
.(B/Hc2)kN , wherekN is the electron thermal conductivit
in the normal state. Unfortunately, in clean superconduc
this simple estimate fails to describe the experimen
data:9,10 the thermal conductance along the vortices appe
to be two orders of magnitude smaller. It was noted first
Ref. 10 that this obvious conflict can be caused by a v
©2003 The American Physical Society28-1
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small group velocity of the CdGM modes as discuss
above. Analysis of quantum transport through individual v
tices is of particular importance for understanding mes
copic superconductors whose exotic vortex states are no
days the focus of a considerable attention.11–13

Hereafter we concentrate on the low-energye!D0 single-
particle transport through an isolated vortex core in cle
~both elastic and inelastic mean free path,@d) type-II su-
perconductors in the low-field limit of separated vortic
(H!Hc2) and develop a systematic approach for calculat
of the thermal conductance along vortex cores. We study
transmission of an electron wave incident on the superc
ducting slab placed between two bulk normal-metal el
trodes assuming ideally transparent boundaries and neg
ing the normal scattering. Considering two extremes
infinite and finite slab thicknesses we confirm the intuiti
picture discussed above. For a not very thick slab, the tra
mission is determined by the semiclassical resonant tun
ing through the energy gapped region. The transmissio
proportional to the large Sharvin conductance and is do
nated by the trajectories that go almost parallel to the vo
axis. However, the drop-off of the conductance is more ra
than that found in Ref. 3 for a model of a normal core: it
proportional tod26 for not very larged and tod22 but with
a much smaller temperature prefactor (T/Tc)

4 for larger d.
Finally, it goes over into a thickness-independent express
Eq. ~1!, with further increase in the slab thickness.

II. SINGLE-ELECTRON TRANSPORT: QUASICLASSICAL
APPROACH

A. Transmission and reflection probabilities

We start with the Bogoliubov–de Gennes equations

F 1

2m S 2 i\“2
e

c
AD 2

2EFGu1Dv5eu, ~2!

F 1

2m S 2 i\“1
e

c
AD 2

2EFGv2D* u52ev, ~3!

where (u,v) are the particlelike and holelike parts of th
quasiparticle wave function,A is the vector potential of the
magnetic fieldB5B(r ) ẑ, and D is the gap function for a
vortex line. The gap function can be written in the formD
5uDueif, where the absolute value of the gapuDu depends
only on the distancer from the vortex axis. Inside the core
r !j, it is uDu;D0r /j. For distancesr larger than the coher
ence lengthj the gap saturates at its value in the bulk:uDu
→D0. Choosing the gaugeAf5Af(r ), Az5Ar50 we
search for the solution with a given angular momentumm:

u5eif/21 imfU, v5e2 if/21 imfV.

The equation forÛ5(U,V) reads

\2

2m F2Ûzz9 2Ûrr9 2
1

r
Ûr81S m

r
1ŝz

m

\
VsD 2

Û2kF
2 ÛG1 i ŝyuDuÛ

5ŝzeÛ,
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where ŝy ,ŝz are the Pauli matrices, andVs5(\/2m)(1/r
12eAf /\c) is the superfluid velocity field. The characte
istic length scale for the magnetic field around the vortex
of the order of the London penetration depthlL , which is
lL@j in extreme type-II superconductors. ForlL@j the
magnetic field is almost uniform near the core and the vec
potential isAf5Br/2;(H/Hc2)r /j2. ForH!Hc2, it can be
neglected in the expression forVs as compared to the larg
gradient of the order parameter phase¹f}1/r .

Let us consider a cylindrical electronic wave incident on
superconducting slab placed between two normal metal h
spaces~see Fig. 1!. An external magnetic field is applie
along the z axis perpendicular to the normal-meta
superconductor boundaries. Restricting ourselves to the
magnetic field limit we study the scattering problem in t
presence of a single isolated vortex line. To calculate
transmission and reflection probabilities we use a quasic
sical approach and look forÛ in the form

Û5eikzzHl
(1)~krr !ŵ(1)1eikzzHl

(2)~krr !ŵ(2),

where Hl
(1,2) are the Hankel functions,l 5Am211/4, kr

2

1kz
25kF

2 , and ŵ5(w1 , w2) are slow functions ofr and z
satisfying the equation

7
i\2qr

m

]ŵ(6)

]r
2

i\2kz

m

]ŵ(6)

]z
2ŝzS e2

m\2

2mr2D ŵ(6)

1 i ŝyuDuŵ(6)50, ~4!

where qr5Akr
22m2/r 2. We now introduce new

coordinates14 x5Ar 22b2, b52m/kr so that qr
5xkr /r , ]/]r 5(r /x)]/]x. Finally, we define the trajecto
ries z5z06xcotu for ŵ(6), respectively. One hasdx
56ds6 sinu, dz5ds6 cosu, wherekz5kF cosu andds6 is
the distance along the corresponding trajectory~see Fig. 1!.
The differential operators in Eq.~4! transform into the op-
erator i (\2kF /m)(d/ds6) along the corresponding trajec
tory. The order parameter is now a function of the distancs
on the trajectoryuDu5uD@r (s)#u, which is simply uD(x)u
sinceuDu is independent ofz. Projecting the trajectory on the
plane perpendicular to the vortex axis we replacekF(d/ds6)
with 6kr(d/dx) and arrive at the equation

FIG. 1. Quasiclassical trajectories in a superconducting s
with a single vortex line for incident,s2 , ~dashed line! and scat-
tered,s1 , waves~solid line, positive-x region! together with the
extended trajectory~solid line, entirex axis!.
8-2
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7
i\2kr

m

dŵ(6)

dx
2ŝzS e1

\2krb

2m~x21b2!
D ŵ(6)1 i ŝyuDuŵ(6)

50. ~5!

Û is a superposition of a wavew1,2
(1) radiating from the vortex

into the bulk and a wavew1,2
(2) incident on the vortex. The

regularity atr 50 requiresŵ(1)(0,z)5ŵ(2)(0,z) at the clas-
sical turning point,x50. The coordinatex has been defined
positive so far. Let us now put ŵ(1)(x,z)
5ŵ(x,z), ŵ(2)(x,z)5ŵ(2x,z). The functions w1,2(x,z)
are continuous and satisfy Eq.~5! with the upper sign along
the entirex axis ~the extended solid-line trajectory in Fig. 1!.

We introduce new functionsh and z through w1
5ez1 ih/2, w25ez2 ih/2 and arrive at the equations

dh

dx
5

2me

\2kr

1
b

~x21b2!
2

2muDu

\2kr

cosh, ~6!

dz

dx
52muDu\22kr

21 sinh. ~7!

The requirement thatw vanishes atx→6` is h56p/2
2(e/uD0)12pk. These values, however, are not stable fo
general choice of the integration constants. A general s
tion for not very largepositive xis

h5arctan
x

b
1h0e2K(x)

1
2m

\2kr
E

0

x F e2uD~x8!u
b

ux8u
Ge2K(x)22K(x8) dx8, ~8!

whereh0 is a constant and

K~x!5m\22kr
21 E

0

x

uD~x8!u dx8. ~9!

For h0!1 ande!D0, the functionh is close top/2 for b
!x&x0 wherex0;j ln(1/ugu) and

g52m\22kr
21 E

0

`

@e2~b/x!uDu#e22K(x) dx. ~10!

g measures the distance from a CdGM level:g50 whene
5em(kz). Equation~ 8! is valid for g!1, which generally
holds if e!D0. The functionh grows with uxu at distances
x*x0. Its behavior in the regionh;1 is found from Eq.~6!
neglecting smalle andb/x:

tanS h

2
2

p

4 D5Ce2K(x). ~11!

Matching with Eq.~8! at j!x!x0 givesC5(g1h0)/2. For
g1h0.0, the functionh→3p/2 while w diverges expo-
nentially asx→`. If g1h0,0, the functionh approaches
05452
a
u-

2p/2, and w diverges again. However, ifg1h050, the
value h5p/2 is stable~see Fig. 2! and the wave function
decays forx→`.

The solution atuxu!x0 for negative xis obtained from Eq.
~8! by replacingK(x) with 2K(x). The functionh is close
to 2p/2 for b!uxu!x0. Its behavior foruxu*x0 is deter-
mined by Eq. ~11! where C52/(g2h0). This yields
23p/2,h(2`),2p/2 if g2h0.0. The functionh ex-
hibits a solitonlike behavior shown by the solid line in Fig.
It slips down from 2p/2, crosses2p and finally ap-
proachesh(2`)'23p/2. The wave functionw diverges.
Similarly, 2p/2,h(2`),p/2 if g2h0,0 so thatw also
diverges ~dashed line in Fig. 2!. The valueh52p/2 is
stable if onlyg2h050. The wave function thus decays
both ends ifg5h050, which corresponds to a standa
CdGM state.

The solution for a slab is a superpositionŵ5A.ŵ.

1A,ŵ, whereA.,, are constants. The functionsw1,2
. have

h052g; they decay forx@j with h.(1uxu)5p/2, while
h.(2uxu) for negativex obeys

tanF1

2
h.~2uxu!2

p

4 G5g21e22K(uxu) ~12!

according to Eq.~11!. For gÞ0 the phaseh.523p/2
12pn at x52uxu→2`. Equations~7! and ~11! yield

z.~2uxu!5K~ uxu!1
1

2
lnS g21e24K(uxu)

11g2 D .

For x5uxu it is simply z.(1uxu)52K(uxu). The other func-
tion w1,2

, (x)5w1,2
.* (2x) grows atx→1`.

The particle transmissionDe and hole~Andreev! reflec-
tion Rh probabilities, 15Rh1De , are determined in such
way thatDe5uw1(z5d)/w1(z50)u2 provided there are no
transmitted holes,w250 at z5d. We denotex2 andx1 the
x coordinates of the end points of the trajectory atz50 and
z5d, respectively, such thatd tanu5x12x2 ~see Fig. 1!.
For trajectories crossing the vortex axis, 0,x1

,d tanu, x252ux2u, we find

De5~g21a2!21 cosh22 @K~ ux1u!1K~ ux2u!#. ~13!

FIG. 2. The coordinate dependence ofh for g1h050. The full
line is for g.0 while the dashed line is forg,0.
8-3
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The half-width of the energy levelg50

a5 cosh@K~ ux1u!2K~ ux2u!#/ cosh@K~ ux1u!1K~ ux2u!#

is proportional to the escape rate of excitations through
gapped region. Forg→0, the transmission becomes

De5 cosh22 @K~ ux1u!2K~ ux2u!#.

It is De51 for resonant trajectories that go through t
middle of the vortex,ux2u5ux1u5(d/2) tanu. For trajecto-
ries that do not cross the vortex axis,x2 ,x1,0 or x2

.0,x1.d tanu, we find

De5 cosh22 @K~x1!2K~x2!#.

The largest transmission takes place for a resonance
neling when the energy coincides with one of the CdG
levels in Eq.~13!. De is then unity if the trajectory crosse
the vortex at the half of its length. However, the number
transmitted particles is small since the width of the resona
a is exponentially narrow. The exponent though correspo
to only a half of the slab thicknessd/2, not to the entired as
it would be without vortices.

The transmission is not exponential for trajectories that
close to the vortex axis almost parallel to it, i.e., at smallu.
It is this contribution that determines the transport replac
the exponential dependence ond with a power-law behavior.
Consider these trajectories in more detail. Their wave fu
tions are localized inx within l5\@kF /pmD8(0)#1/2u1/2

;ju1/2 @see Eq.~9!#. If a trajectory crosses the vortex axis

K~ ux1u!2K~ ux2u!5x0 ~md/\2kF!D8~0!;x0d/j2,

K~ ux1u!1K~ ux2u!;u ~md2/\2kF!D8~0!;d2u/j2,

wherex05(ux2u2ux1u)/2 is the middle point of the trajec
tory. Therefore, the transmission coefficientDe;1 only for
trajectories that deflect from the vortex axis by not more th
x0;j2/d and have very small incident anglesu;(j/d)2.
This behavior holds as long asg!1. The estimate show
that g;(e/D)u21/2, which becomesg;1 for d/j*(D/e).
Therefore, for largerd, the behavior of the transmission co
efficient changes.

The new dependence can be easily found for the li
d/j@(D/e). In this case Eq.~5! can be solved in a WKB
approximation:ŵ5A1ŵ11A2ŵ2 where

ŵ65S b6

b7
D expS 6 i E

0

x

L dxD ,

b65@16Ae22uDu2/e#1/2, L5mAe22uDu2/\2kr .

Here uDu[uD(x)u. This solution applies foruxu,xe where
uD(xe)u5e. Therefore,xe;(D8)21e. The angles for the tra
versing trajectories areu;xe /d;(j/d)(e/D). One can eas-
ily check that the centrifugal energy and the term with t
order-parameter derivative in Eq.~5! are of the order of
vFu/xe!e and can be neglected. Requiringw250 at the exit
point x5x1 we find the transmission coefficient
05452
e
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De5
@b1

2 ~x1!2b2
2 ~x1!#2

ub1~x2!b1~x1!2b2~x2!b2~x1!eiFu2
,

F52 E
x2

x1

L dx.

De oscillates as a function ofF whose magnitude isF
;(e/uDu)(d/j)@1. Oscillations thus average out after sum
ming up various trajectories yielding an averageDe;1. For
x.xe , particles experience Andreev reflection from vort
core boundaries, andDe50.

B. The heat current

The energy current alongz is

I E5 E d2r (
m

E dkz

2pm Fem umkz
* S \kz2

e

c
AzDumkz

n~em!

2em vmkz
* S \kz1

e

c
AzD vmkz

@12n~2em!#G . ~14!

Particlesu* u with the distributionn(e) carry the energy1e
while the holesv* v with the distribution 12n(2e) carry
the energy2e. If the electrodes are in equilibrium, 12n
(2e)5n(e) in each electrode. For a finite slab thickness,I E
can be expressed through the transmission and reflection
efficients,

I E5 ( E deuvzu@en1~e!2eRh@12n1~2e!#2eDen2~e!#

5nF E
vz.0

dV

2p
uvzu E d2r E De e~n12n2!de, ~15!

where the sum is over all the trajectories;nF is the single-
spin density of states at the Fermi level, andn15@ee/T1

11#21 and n25@ee/T211#21 are the distribution functions
in the electrodes 1 and 2. The first two terms in the upper
are due to incoming particles and Andreev reflected holes
one side of the slab. The third term is due to transmit
particles from the other side.

Only those trajectories contribute that go almost para
and close to the vortex axis. We distinguish two limits:~i!
very low temperatures or relatively thin slabs,T/Tc!j/d
!1 and~ii ! thick slabs or moderate temperatures, 1@T/Tc
@j/d. In the limit ~i! of not very thick slabs, the trajector
deflection from the vortex axis isx0;j2/d with u
;(j/d)2. AssumingT@Tc /(kFj), the heat current through
one vortex is

I E;nF\4vF
5d26@D8~0!#24~T1

22T2
2!. ~16!

The thermal conductance of an isolated vortex is

k;~T/\!~kFj!2~j/d!6.

This is equivalent to the number of channelsN
;(kFj)2(j/d)6 open in the vortex core.

The d26 power law changes for largerd. In the limit ~ii !
whenT/Tc@j/d, Eq. ~15! can be evaluated by counting th
8-4
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freely traversing trajectories withDe;1. Consider a point a
the vortex-core cross section of an areaxe

2 near the entrance
z50. The exit area is visible from that point at a solid ang
dV;xe

2/d2. Therefore,

I E;pnFvFd22~D8!24 E
0

`

e5~n12n2!de. ~17!

This yields the single-vortex conductance

k;~T/\!~kFj!2~j/d!2~T/Tc!
4

with the number of channelsN;(kFj)2(j/d)2(T/Tc)
4.

Our semiclassical approach requires eitherkrl@1 or
krxe@1, which restricts the number of channels to beN
@1. This puts an upper bound on the slab thickness: Fod
*d* the conducting channels corresponding to freely t
versing trajectories disappear and the single-particle tra
port is entirely due to the nonquasiclassical drift along
vortex core states described by the Landauer-type form
Eq. ~1!. Let us define a temperatureT* 5Tc(kFj)21/3. For
T*T* , the critical thickness isd* ;j(kFj)(T/Tc)

2, while it
is d* ;j(kFj)1/3 for T&T* . In fact, relative contribution of
freely traversing trajectories becomes small compared to
of the Landauer expression already ford essentially shorter
thand* , i.e., much before the semiclassical approach bre
down because the number of conducting channels co
sponding to Eq.~1! is NL@1.

III. LANDAUER FORMULA:
BEYOND THE QUASICLASSICAL THEORY

In this section we show that for a very thick slab t
single electron transport is exactly described by the Landa
formula ~1!. We establish first a simple identity for the loca
ized states. Equations~2! and ~3! have eigenvaluesem(kz)
for the CdGM bound statesumkz

, vmkz
that belong to a given

momentumkz along thez axis. Calculating the derivative
with respect tokz from the both sides of Eqs.~2! and~3! and
using the normalization of the wave functions, we find f
the localized states

E Fumkz
* S \kz2

e

c
AzDumkz

2vmkz
* S \kz1

e

c
AzD vmkzGd2r

5
m

\

]em

]kz
. ~18!

This identity demonstrates a huge cancellation in the l
hand side: each term there is by a factorkFj larger than the
right-hand side. Within the quasiclassical approximation
left-hand side vanishes for an infinite vortex line as a dir
consequence of an approximate electron-hole symm
Note that the cancellation does not take place for a fin
thickness slab where the CdGM states are not truly localiz

Equation~18! shows that in contrast to the electrical cu
rent the energy flow is determined by the group velocity
excitations and this is why the conductance in Eq.~1! is
much smaller thankSh. Now we can use Eq.~18! to derive
the thermal conductance for a thick slab beyond the qu
05452
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classical approximation. The energy current Eq.~14! be-
tween the two electrodes becomes

I E5 (
m

E emn~em!
]em

]kz

dkz

2p\
.

Excitations with positive group velocityvg5]em /\]kz have
a distributionn1 as in the electrode 1. For those with neg
tive group velocity the distribution isn2 as in the electrode 2
Therefore

I E5 (
m

E
kz.0

em@n1~em!2n2~em!#U]em

]kz
U dkz

2p\
. ~19!

By the order of magnitude, the heat current through a sin
vortex is I E;(T/\)(kFj)(T/Tc)(T12T2) with the thermal
conductance given by Eq.~1!.

The electron transport in Eq.~19! is determined by inci-
dent anglesu;1: Particles that penetrate into the core
large angles get trapped by Andreev reflections and d
slowly along the vortex. This process yields a small b
thickness-independent transport which dominates for v
thick slabs. Comparing Eqs.~17! and ~19! one notices that
D;vg /vF is the effective transmission coefficients for th
Andreev trajectories in the vortex core.

As we mentioned already, the single-particle conducta
saturates at the Landauer expression with increasingd. It is
also required that the inelastic relaxation length is larger t
d. For electron-electron interactions,, inel;vF\EF /T2

;j(kFj)(Tc /T)2, which well exceedsd* . The electron-
phonon relaxation length is proportional to (Tc /T)3 and can
also exceedd* for low temperatures. However, both inela
tic and elastic scattering may affect the drift along vorte
core states when,&deff where the effective lengthdeff can
be considerably longer thand since the drifting particles
traverse much longer distance on their way from one end
the channel to another due to Andreev reflections. The eff
of scattering on the particle drift along the core states will
studied elsewhere.

IV. CONCLUSIONS

In conclusion, we show that the low-energy singl
electron transport along the vortex core in a clean superc
ductor is similar to that in a mesoscopic channel wh
the conductance is given by the Landauer form
with CdGM states playing the role of transverse mod
For a finite slab thicknessd, the vortex core behaves lik
an Andreev wire: the thermal conductivity drops off
d26 for not very thick slabs and asd22 for largerd. These
results allow us to conclude that single-electron transp
parallel to vortices in clean systems is strongly suppresse
compared to the dirty limit, which is in a good agreeme
with the experimentally observed suppression of the ther
conductance in clean superconductors.9,10

Equations ~16! and ~17! apply to ideally rectilinear
8-5
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vortices. The Andreev-type thermal conductance is v
sensitive to a vortex curvature: It is blocked if vortices a
bent by an angle exceedinguc;(j/d)2 or uc;(j/d)(T/Tc)
for the limits T/Tc!j/d or T/Tc@j/d, respectively. This is
distinct from the Landauer expression, Eq.~19!, which is
expected to hold for curved vortices, as well. If vortices a
pinned in the slab, one can bend them, for example, by
plying a transport current, which thus provides an efficie
mechanism for control of the heat transport through theNSN
hybrid structure.
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