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Influence of thermal fluctuations on quantum phase transitions in one-dimensional disordered
systems: Charge density waves and Luttinger liquids
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The low-temperature phase diagram of one-dimensional weakly disordered quantum systems such as charge
or spin density waves and Luttinger liquids is studied by afull finite temperaturerenormalization-group~RG!
calculation. For vanishing quantum fluctuations this approach is amended by anexactsolution in the case of
strong disorder and by a mapping onto theBurgers equation with noisein the case of weak disorder, respec-
tively. At zero temperature we reproduce the quantum phase transition between a pinned~localized! and an
unpinned~delocalized! phase for weak and strong quantum fluctuations, respectively, as found previously by
Fukuyama or Giamarchi and Schulz. Atfinite temperatures the localization transition is suppressed: the random
potential is wiped out by thermal fluctuations on length scales larger than the thermal de Broglie wavelength
of the phason excitations. The existence of a zero-temperature transition is reflected in a rich crossover phase
diagram of the correlation functions. In particular we find four different scaling regions: aclassical disordered,
a quantum disordered, a quantum critical, and athermalregion. The results can be transferred directly to the
discussion of the influence of disorder in superfluids. Finally we extend the RG calculation to the treatment of
a commensurate lattice potential. Applications to related systems are discussed as well.

DOI: 10.1103/PhysRevB.69.115118 PACS number~s!: 71.10.Pm, 72.15.Rn, 73.20.Jc
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I. INTRODUCTION

The collective behavior of condensed modulated str
tures such as charge or spin density wav
~CDW’s/SDW’s!,1–3 flux-line lattices,4,5 and Wigner
crystals3 in random environments has been the subject
detailed investigations since the early 1970s. These were
tivated by the drastic influence of disorder: without pinni
CDW’s would be ideal superconductors whereas type-II
perconductors would show finite resistivity. In thre
dimensional systems the low-temperature phase of th
structures is determined by a zero-temperature disorder fi
point resulting in quasi-long-range order and glassy dyna
ics ~for recent reviews and further references see Refs. 4!.
In two dimensions this fixed point is extended to a fixed li
which terminates at the glass transition temperature.6,7 In the
low-temperature phase, correlations of the positional or
decay slightly faster than a power law and the linear re
tivity vanishes.5

In one dimension the situation is different: the glass te
perature is shifted toT50. Nevertheless, there remains
residual trace of disorder which is reflected in the lo
temperature behavior of spatial correlations and
dynamics.8,9 Clearly, at low temperatures also quantum flu
tuations have to be taken into account. Disorder and quan
fluctuations in one-dimensional~1D! CDW’s at zero tem-
perature have been considered previously~see, e.g., Refs
10,11! and an unpinning~delocalization! transition as a func-
tion of the strength of quantum fluctuations was found. Fin
temperature effects were partially incorporated by trunca
the renormalization-group~RG! flow at the de Broglie wave-
length of the phason excitations.11 However, for a complete
study of the thermal to quantum crossover, quantum
thermal fluctuations have to be considered on an eq
0163-1829/2004/69~11!/115118~18!/$22.50 69 1151
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footing,12 which is the main aim of this paper.
Experimentally, quasi-1D behavior can be seen in r

materials, e.g., in whiskers,13 hairlike single-crystal fibers
such as NbSe3, with a transverse extension smaller than t
correlation length or in chainlike crystals with weak inte
chain coupling. In the latter case there is a large crosso
length scale up to which 1D behavior can be observed.1,3

The results obtained for the CDW’s or SDW’s have
large number of further applications on disordered quant
systems: they relate, e.g., to the localization transition
Luttinger liquids,10,11 superfluids,14 tunnel junction chains,15

Josephson coupled chains of these systems, if the couplin
treated in mean-field theory,10 and CDW’s in a lattice poten-
tial. However, we will use the terminology of CDW’s in
most parts of this paper.

The remaining part of the paper is organized as follow
In Sec. II we give a detailed introduction to our model a
the notation used in this paper. We also briefly discuss
influence of Coulomb interaction on the properties of t
system. In Sec. III the influence of the disorder is studied
detail. Using an anisotropic momentum-she
renormalization-group calculation, in which the full Matsu
ara sum over frequencies is performed, we obtain flow eq
tions for the effective strength of the disorder, thermal a
quantum fluctuations~i.e., the interaction strength in the cas
of Luttinger liquids!. These are discussed first in the case
zero temperature and agreement with previous result
obtained.10,11 At finite temperatures the disorder alway
renormalizes to zero. In the classical limit two more metho
are applied:~i! at low temperatures and strong disorder t
ground state of the model is calculated exactly;~ii ! for weak
disorder and strong thermal fluctuations a second RG ca
lation, based on the mapping onto the Burgers equation w
noise, is applied. Using all these findings, the phase diag
of the density-density correlation function is studied in S
©2004 The American Physical Society18-1
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ANDREAS GLATZ AND THOMAS NATTERMANN PHYSICAL REVIEW B 69, 115118 ~2004!
IV. The main result of this section is the calculation of t
low-temperature quantum crossover diagram for o
dimensional CDW’s. In Sec. V we discuss briefly the app
cation of the results to superfluids by using the mapping
CDW’s. Some of these results were previously presente
Ref. 16.

The influence of a commensurate lattice potential o
free density wave is considered in Sec. VI. The full fin
temperature renormalization-group flow equations for t
sine-Gordon-type model are derived and the resulting ph
diagram is discussed.

In the appendixes we present the calculation of
renormalization-group flow equations and the derivation
the correlation function in the strong and weak pinning lim
in some detail for the interested reader. In Table III we list
symbols used in this paper with corresponding reference
the paper.

II. MODEL

A. charge and spin density

In this section we derive the effective Hamiltonian whi
will be the starting point for our further treatment. The str
egy of the calculation is therefore separated into two steps
the first step the system is treated in a mean-field-~MF! type
approximation applied to a microscopic Hamiltonian. Th
leaves us with a slowly varying complex order-parame
field for which we derive an effective Hamiltonian. The se
ond step involves the consideration of the fluctuations of
order parameter, which is the topic of this paper.

We briefly summarize now the result of the mean-fie
calculation: Well below the mean-field condensation te
peratureTMF of the CDW, the underlying lattice will be
periodically distorted with a periodl which is related to the
Fermi wave vectorkF by l5p/kF . This distortion of the
lattice leads to the formation of a gap in the dispersion re
tion at k56kF which is ~in one dimension! proportional to
the amplitude of the lattice modulation. For small displac
ments ~which are typically smaller than 1% of the inte
atomic spacing17!, the increase of the elastic energy
smaller than the gain of electronic energy due to the form
tion of the gap and hence an instability is favored. The per
of the CDW depends on the band filling factor~via kF
5p/l) and is in general at arbitrary band filling incomme
surate with the undistorted lattice~with lattice constanta).

In ~quasi-!one-dimensional systems2 also SDW’s can be
found, but in contrast to CDW’s they arise due to electro
electron and not to electron-phonon interaction. A SDW c
be considered to consist of two CDW’s, one for spin-up a
another for spin-down electrons~see, e.g., Fig. 5 in Ref. 2!.
Therefore the spatial modulation of SDW’s is characteriz
by a wave vectorQ52kF , as for CDW’s.

The charge or spin densityr(x,t) can be written in the
form2,18

r~x,t !5@11Q21]xw~x,t !#$r01r1cos@pw~x,t !1pQx#%,
~1!

wherer05Q f(T)/p andr152uDu/(pgvF). g is the dimen-
sionless electron-phonon coupling constant andvF the Fermi
11511
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velocity. r1 is proportional touDu, the CDW gap or the am-
plitude of the complex~mean-field! order parameter

D~x,t !5uD~x,t !ueıw(x,t). ~2!

f is the condensate density (Y512 f is the so-calledYoshida
function! related touDu by

f ~T!5
pT

\ (
vn

~ uDu/\!2

@vn
21~ uDu/\!2#3/2

, vn52pnT/\.

~3!

The condensate density approaches 1 forT→0 and f (T)
.2(12T/Tc

MF);uDu2 for T→Tc
MF . Tc

MF denotes the mean
field transition temperature. For quasi-one-dimensional s
temsr1 has an additional factorz22 ~the area perpendicula
to the chain!.

Note that Eq.~1! is correct for arbitrary band filling and
to be more precise, is the particle density of the charge
spin carrying particles. In Eq.~1! we omitted higher harmon
ics }cos$np@w(x,t)1Qx#% with nP$2,3, . . .%, since these
more strongly oscillating terms give close to the ze
temperature transition only small contribution in the ren
malization process, compared to the leadingn51 contribu-
tion. They will therefore be neglected throughout the pap
The particle current densityj follows from Eq. ~2! as j

52r0ẇ/Q.
Because 4kF modulations of SDW’s or CDW’s are als

possible,19 we introduce the factorp in the argument of the
modulating cosine function, i.e., for CDW’s and SDW’sp is
usually 1, but can also be 2 or greater.

B. Hamiltonian

In the following we use a minimal model for the low
energy, long-wavelength excitations of the condensed ch
density wave. Since fluctuations in the amplitudeuDu are
suppressed, because these are massive, we take into ac
only fluctuations in the phasew. Clearly, such an approac
breaks down sufficiently close to the mean-field transit
temperatureTc

MF . Neglecting fluctuations inuDu, the Hamil-
tonian of the CDW is given by

Ĥ5Ĥ01Ĥu1Ĥw ~4!

with

Ĥ0[E
0

L

dx
c

2 F S v
cD 2

P̂21~]xŵ !2G , ~4a!

Ĥu[E
0

L

dx U~x!r~x!, U~x!5 (
i 51

Nimp

Uid~x2xi !,

~4b!

Ĥw[2E
0

L

dx Wcos@qŵ~x!#. ~4c!

Ĥ0 describes the phason excitations of the CDW, wherc
5(\vF/2p) f (T) denotes the elastic constant.v
5vF /A11(2uDu/\vpQ)2/(g f) is the effective velocity of
8-2
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INFLUENCE OF THERMAL FLUCTUATIONS ON . . . PHYSICAL REVIEW B69, 115118 ~2004!
the phason excitations withvpQ the phonon frequency. Fo
CDW’s (2uDu/\vpQ)2/(g f)@1 is typically fulfilled and
hence quantum fluctuations are weak.

P̂ is the momentum operator, corresponding to the ph
ŵ, with the standard commutation relation@ P̂(x),ŵ(x8)#
5(\/ i )d(x2x8).

Ĥu results from the effects of impurities with random p
tential strengthUi and positionsxi . The potential strength is
characterized byUi50 andUiU j[Uimp

2 d i , j , and includes a
forward- and a backward-scattering term proportional tor0
and r1, respectively. The disorder average of the impur
potentialU(x) follows then to be given byU(x)50 and

U~x!U~y!5
Uimp

2

l imp
d~x2y!. ~5!

We will further assume that the mean impurity distan
l imp5L/Nimp is large compared with the wavelength of th
CDW and, in most parts of the paper, that the disorde
weak, i.e.,

1! l impQ!cQ/~Uimpr1!. ~6!

In this case the Fukuyama-Lee length

LFL5S cAl imp

Uimpr1p2D 2/3

~7!

is large compared to the impurity distancel imp .
The third term in Eq.~4!, Hw , includes the influence of a

harmonic lattice potential. This term will be discussed
Sec. VI in greater detail.

Our model~4! includes the four dimensionless paramet

t5T/pLc, ~8a!

K5\v/pc, ~8b!

u25
~Uimpr1!2

L3pc2l imp

, ~8c!

w5W/pcL2, ~8d!

which measure the strength of the thermal (t), quantum (K),
and disorder fluctuations~u! and the periodic potential (w),
respectively.L5p/a is a momentum cutoff. Note that fo
noninteracting electrons, i.e.,v5vF , K takes the value 2
~and not 1 as in the usual Luttinger Liquid notation!. The
classical region of the model is given byK!t which can be
rewritten as the condition that the thermal de Broglie wa
length

lT5\bv5K/~ tL! ~9!

of the phason excitations is small compared toa.
At T50, K values of the order 1022–1021 and 1, have

been discussed for CDW’s and SDW’s, respectively.1,20 It
has to be noted, however, that the expressions relatingc and
11511
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v to the microscopic~mean-field-like! theory lead to the con-
clusion thatK and t diverge by approachingTc

MF , whereas
the ratioK/t remains finite.

C. Coulomb interaction

We could also add aCoulomb interactionterm to our
model ~4! which can be written as

Ĥc5
1

2E dxE dx8r̂~x!Vc~x2x8!r̂~x8!, ~10!

where Vc is the Coulomb potential. In all dimensions th
unscreened potential has the forme2/r . If we assume that the
quasi-one-dimensional system has the finite widthz, Vc can
be written as21,22

Vc
0~x!5

e2

Ax21z2
5

1

L (
k

eıkxVc
0~k! ~11!

with

Vc
0~k!52e2K0~ uzku!, ~12!

whereK0 is a modified Bessel function of second kind wi
K0(x)'2 ln(x) for x!1.

In general the Coulomb potential is screened and can
written as23

Vc~k,v!5
Vc

0~k!

11Vc
0~k!P~k,v!

, ~13!

with the momentum- and frequency-dependent polariza
operatorP(k,v)5^r(0,0)r(k,v)&.

If we only consider the static casev50 we can distin-
guish two limiting cases: First, if the typical rangele f f of the
screened Coulomb potentialVc is much smaller than the
mean electron distance, the potential can be assumed to
d distribution andHc can be approximated by

Ĥc'
\x

2 E dxS f ~T!

p
]xw~x! D 2

1•••, ~14!

with x5(1/\)* dxVc(x). The cos terms (•••) from the den-
sity can be neglected due to strong fluctuations. There
the Coulomb interaction gives only an additional contrib
tion to the elastic constant of the initial model:c
5(\vF/2p) f 1\x/p2. For x.0 the Coulomb interaction is
repulsive, which leads to an increase ofc and therefore a
decrease of the dimensionless parameterK, i.e., the quantum
fluctuations will be reduced by the Coulomb interaction.
the casex,0 ~attraction!, K will be increased. Keeping this
consideration in mind, we will not further includeĤc in the
model explicitly.

In the other case—with weak screening—Vc(k)'Vc
0(k)

shows the dispersion given in Eq.~12! and in general, the
details of thek dependence depend not only on the transve
extensionz of the quasi-one-dimensional system under co
sideration but also on the screening length.14,21
8-3
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ANDREAS GLATZ AND THOMAS NATTERMANN PHYSICAL REVIEW B 69, 115118 ~2004!
However, the logarithmick dependence will only weakly
affect our RG analysis, but may suppress phase transiti
as discussed later in Sec. III B.

Coulomb interaction is also important if one conside
multichannel systems24 or the effect of the noncondensate
normal electrons.

III. RENORMALIZATION-GROUP TREATMENT
OF DISORDER

A. Flow equations

In order to determine the phase diagram we adopt a s
dard Wilson-type renormalization-group calculation, whi
starts from a path-integral formulation of the partition fun
tion corresponding to the Hamiltonian~4!. We begin with the
renormalization of the disorder term and putw50 in the
following. The system is transformed into a translational
variant problem using the replica method, in which the d
order averaged free energy is calculated, using

F52T ln Tre2S/\[2T lim
n→0

1

n
~Tre2S (n)/\21!, ~15!

which defines the replicated actionS (n). S (n) is given by

S (n)5(
a,n

E
t
HL0,adan1

1

2\Et8
Hu@wa~t!#Hu@wn~t8!#J ,

~16!

where L0 is the Lagrangian corresponding toĤ0 , *t

[*0
\bdt anda,n are replica indices. Using Eq.~8! and con-

sequently neglecting higher harmonics (2pQ modes! one
finds

Hu@wa~t!#Hu@wn~t8!#

5
Uimp

2 r1
2

2l imp
E

0

L

dxH cosp@wa~x,t!2wn~x,t8!#

1
2r0

2

Q2r1
2
]xwa~x,t!]xwn~x,t8!J . ~17!

Together with Eq.~16! one obtains the following form:

S (n)

\
5

1

2pK (
a,n

E
0

LL

dxE
0

K/t

dtH @~]xwa!21~]twa!2#dan

2
1

2KE0

K/t

dt8$u2cosp@wa~x,t!2wn~x,t8!#

1s]xwa~x,t!]xwn~x,t8!%J , ~18!

with s52u2(r0L/r1Q)2.
Note that we introduced dimensionless spatial and ima

nary time variables,

Lx→x, Lvt→t,
11511
s,

n-

-
-

i-

which will be used throughout the paper—beginning he
Furthermore all lengths~e.g., correlation lengthslT , LFL ,
l imp , andL), wave vectors~e.g.k, kF , andQ), and Matsub-
ara frequencies are dimensionless accordingly, from now
Additionally we rescale the elastic constant

Lc→c,

for convenience to avoid the appearance ofL.
Integrating over the high-momentum modes ofw(x,t) in

a momentum shell of infinitesimal width 1/b<uqu<1 but
arbitrary frequencies and rescalingx→x85x/b, t→t8
5t/b, we obtain the following renormalization-group flow
equations~up to one loop!:

dt

dl
5t, ~19a!

dK

dl
52

1

2
p4u2KB0S p2K,

K

2t D coth
K

2t
, ~19b!

du2

dl
5F32

p2K

2
coth

K

2t Gu2, ~19c!

ds

dl
5s, ~19d!

wherel 5 ln b. For details on the RG calculation we relega
to Appendix A where we have written the RG flow also f
dimensions 0,ud21u!1. Note that the renormalization
group equation for terms in the replica Hamiltonian whi
follow from higher-order harmonics in the charge dens
look similar to those presented in Eq.~19c! with p replaced
by np, n.1, integer. These terms are therefore negligi
close to the quantum phase transition considered below.

For legibility we have introduced the following functions

Bi~n,y!5E
0

y

dt E
0

`

dx
gi~t,x!

Y~t,x!

cosh~y2t!

coshy
, ~20!

Y~t,x!5F11S y

p D 2S cosh
px

y
2cos

pt

y D Gn/4

, ~21!

with

g0~t,x!5d~x!t2.

Note thatB0(p2K,K/2t)→0 for K→0 ~see Fig. 5 in Appen-
dix A!.

The strength of the thermal fluctuationst is only rescaled,
since there is no nontrivial renormalization oft ~i.e., of the
elastic constantc) because of a statistical tilt symmetry.25

Note that Eq.~18! is written in rescaled dimensionless p
rameters and the different renormalization of the kinetic a
elastic term is reflected in the different renormalization ofv
andc, i.e., K and t, respectively.

From the flow equation foru2 @Eq. ~19c!# one sees di-
rectly that, depending on the sign of the prefactor, the beh
ior changes from increase for smallt andK to decrease for
high K or t.
8-4
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There is no first-order RG correction tos and the change
of s with length scale is simply given by rescaling, see E
~19d!. The two-loop contribution tos is much more in-
volved than the one-loop contributions for the other flo
equations and gives no qualitatively different result for t
flow of s. As seen from Eq.~19d!, the forward-scattering
amplitude always increases ass0el on larger length scale
and is therefore not well controlled in the RG sense. B
since the flow ofs does not feed back into the other flo
equations it has only minor relevance for our consideratio
and indeed, we can get rid of the forward-scattering te
f /pU(x)(]w/]x) by introducing the fieldŵb(x) by25

ŵ~x!5ŵb~x!2w f~x!, w f~x!5E
0

x

dy c~y!, ~22!

where c(x)[U(x) f /pcL, with c(x)50 and c(x)c(x8)
5(p/2)sd(x2x8). This can be easily verified by insertin
this decomposition ofŵ(x) into the initial Hamiltonian~4!
written in dimensionless units, and using Eq.~5! and the
definition ofs for deriving the averages ofc(x). Note thatx
is dimensionless.

B. Zero-temperature—a review

The special caset50 was previously considered, e.g.,
Ref. 11~for a better comparison see ournotation guidegiven
in Table I!.

The flow equations forK andu at zero temperature read

dK

dl
52

1

2
p4u2KB0~p2K,`!, ~23a!

du2

dl
5F32

p2K

2 Gu2, ~23b!

with

B0~n,`!5E
0

`

dt t2e2t@11t2/2#2n/4. ~24!

The corresponding flow equation forK obtained in Ref.
11 deviates slightly from Eq.~23a!, which can be traced bac
to the different RG procedures. In Ref. 11 the authors p
formed the RG at strictly zero temperature and used a s

TABLE I. Notation guide.

Symbol here Giamarchi and Schulz,a Ref. 11 Haldane, Ref. 32

w, ĵ A2f, A2/p]tf u2pr0x, p21u̇

P̂ \P/A2 2 (\/p) “w

K 2Kr Av j /vN

v ur Av jvN

c \ur/2pKr \vN /p

p 1 2

aCharge operators.
11511
.

t,

s,

r-
-

metric, circular shape of the ‘‘momentum shell,’’ i.e., treat
the model as effectively isotropic in the~111!-dimensional
space time.

This procedure may be a good approximation at zero te
perature, but if one considers finite temperatures this d
not hold anymore, since the extension int direction is now
finite. As a result, there is a regionp/L,uku,p/lT where
fluctuations are mainly one dimensional and purely therm
This region was disregarded in previous treatments. As
will see, fluctuations from this region have an important
fluence on the overall phase diagram.

The critical behavior is, however, the same: there is
Kosterlitz-Thouless~KT! transition at the phase boundaryKu
between a disorder dominated, pinned and a free, unpin
phase which terminates in the fixed pointKu* 56/p2. One can
derive an implicit equation forKu by combining Eqs.~23a!
and ~23b! to a differential equation

du2

dK
5

1

p2hK
~K2Ku* !, ~25!

which has the solution

u2~K !2u0
25

Ku*

p2h
S K2K0

Ku*
2 ln

K

K0
D , ~26!

whereu0 andK0 denote the bare values of the disorder a
quantum fluctuation, respectively, andh[B0(p2Ku* ,`).
Then,Ku is implicitly given by

u2~Ku!5
Ku*

p2h
S Ku2Ku*

Ku*
2 ln

Ku

Ku*
D , ~27!

where the initial conditionu2(K05Ku* )5u0
250 is used. The

KT-flow equations atKu* can be recovered by defining

2g[
p2K

2
23, 2x2[

3

2
p4hu2

with ugu!1. This yields

dg

dl
52x2, ~28a!

dx2

dl
522gx2, ~28b!

which are exactly the flow equations obtained by Koster
and Thouless.26

Under the assumption that a small deviation from the
mensiond51 changes only the naive scaling dimensions
the fields, our results can be extended also tod511e di-
mensions~for details see Appendix B!. The zero-temperature
phase diagram is modified and illustrated in Fig. 1. Fore
,0 the fixed point at (K5Ku* , u50) is shifted to positiveu
values~see left inset of Fig. 1!, whereas fore.0, K andu
always flow to the strong pinning fixed point~at K50 and
u→`; right inset!, i.e., quantum fluctuations are too weak
renormalize the random potential to zero. The ze
8-5
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ANDREAS GLATZ AND THOMAS NATTERMANN PHYSICAL REVIEW B 69, 115118 ~2004!
temperature transition disappears therefore ford.1, since
the fixed point lies in the unphysicalu,0 region of theK-u
parameter space. This can easily be verified by using
rescaling ofK given in Eq. ~A12c! of Appendix A which
results in the flow equation~A16!. In general this discussion
applies to the localization transition as well as to the M
transition~see discussion of the lattice potential!. Note that
the flow for dÞ1 is qualitatively different from that dis
cussed in Ref. 27, because the model for superfluids in
paper@Eq. ~7! therein# is dual to our model. Since this map
ping can only be done in strictly one dimension, one has
go back to the initial Hamiltonian for superfluids32 to obtain
the rescaling ind511e.

If one includes the effect ofCoulomb interactionin d
51 dimension, phase fluctuations of the free phase field
crease only as (T50)

^@w~x,0!2w~0,0!#2&;K ln1/2uxu. ~29!

As a result, phase fluctuations are too weak to suppress
disorder even for large values ofK and the system is alway
in the pinned phase. The phase diagram is therefore sim
to that ind.1 dimensions.

In the pinned phase the parametersK andu flow into the
classical, strong disorder region:K→0, u→`.

Integration of the flow equations gives for small initi
disorder andK!Ku* an effective correlation length or loca
ization length

ju'L
FL

(12K/Ku* )21

, ~30!

at whichu becomes of the order unity. This can be extrac
from Eq. ~23b! neglecting the flow ofK.

A better approximation ofju which takes also the flow o
K into account can be obtained by replacingu2 in the flow
equation forK ~23a! by the expression given in Eq.~26!. We
still use the approximation thatK deviates not much from the
bare valueK0 which is the case, as long asu0

2l !1. Then, the
solution forK( l ) is given by

K~ l !'K0S 12
p4

2
u0

2h l D , ~31!

FIG. 1. Schematic zero-temperature phase diagram ind51 and
close tod51 dimensions~see text!. u andK denote the strength o
the disorder and quantum fluctuations, respectively.
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which yields a solution of Eq.~23b!:

ln
u2~ l !

u0
2

'S 32
p2

2
K0D l 1

p6

8
hK0u0

2l 2. ~32!

With u2@ ln(ju)#'1, the correlation lengthju is defined by

~33!

which yields

ln~ju!5
Aa224b ln u0

22a

2b

'2
ln u0

2

32
p2K0

2

2
p6

8
hK0u0

2
~ ln u0

2!2

S 32
p2K0

2 D 3 , ~34!

where the first term of the right-hand side~rhs! gives the
result ~30!.

Close to the transition lineju shows KT behavior. For
K>Ku , ju diverges andC(x,t);K( l 5 lnuzu)lnuzu where uzu
5Ax21t2 ~cf. Sec. IV!.

C. Strong pinning limit: Exact ground state

For large values ofu our flow equations break down
Qualitatively the flow is towards largeu and smallK. We
can, however, find theasymptoticbehavior in this phase by
solving the initial model in thestrong pinning limit exactly.
To find this solution we will assume strong pinning cente
and weak thermal fluctuations~see Table II!:

Uimp→` and c/ l imp@T. ~35!

To treat this case we go back to the initial Hamiltonian~4!
~with W[0 and the kinetic term also vanishes because
K→0). For strong disorder it is convenient to integrate o
the phase fieldw(x) at all points which are not affected b
the impurities. Then the effective Hamiltonian takes t
form8

TABLE II. Overview of the dimensionless correlatio
lengths.

Length Description Eq.

jB Weak pinning/high-temperature length ~68!

j f Forward-scattering length ~59!

jsp Strong pinning length ~67!

jT High-temperature/disorder-free length ~57!

ju Disorder localization length ~30!

jw Lattice potential correlation length Sec. VI
8-6
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He f f5(
i 51

N H c

2

~w i 112w i !
2

xi 112xi
1Uir~xi !J , w i[w~xi !.

~36!

Under condition~35!, w i only takes values obeying

p~w i1Qxi !52pni1p with niPZ integer ~37!

which minimizes the backward-scattering term. Defininghi
ande i by

ni 112ni[hi1FpQlimp

2p G , xi 112xi[ l imp1e i ~38!

with 0<x1<x2<•••<xN11<L, the effective Hamiltonian
can be rewritten as

He f f5
c

2p2 (
i

~2p!2S hi2
pQe i

2p
2g D 2

l imp1e i
. ~39!

Here@x# denotes the closest integer tox ~Gaussian brackets!:

@x#5m for xPFm2
1

2
,m1

1

2G , mPZ ~40!

and

g[
pQlimp

2p
2FpQlimp

2p G , ~41!

such thatugu< 1
2 .

Because thermal fluctuations are small compared to
elastic energy, see Eq.~35!, (hi2pQe i /2p2g) takes on its
minimal value, which is given by

hi
05FpQe i

2p
1gG , ~42!

which defines the exact ground state of the classical mo
If we use Eq.~38! one finds for the optimal value of theni ’s

ni 11
0 5ni

01FpQ

2p
~e i1 l imp!G

which leads, using Eq.~37!, to the exact classical groun
state

w i
05

1

p S 2pH n1
01(

j , i
FpQ

2p
~e j1 l imp!G J 1p D 2Qxi ,

~43!

wheren1
0 has an arbitrary integer value.

D. Finite temperature and crossover diagram

At finite temperaturesthermal fluctuations wipe out th
random potential which lead to the pinning of the CDW
t50 andK,Ku . Thus there is no phase transition anymo
in agreement with the Landau theorem. The system is alw
in its delocalized phase even if the disorder may still pla
significant role on intermediate length scales.
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In the special caseK→0 the flow equation~19c! reduces
to du2/dl5@32p2t#u2 with solution

u2~ l !5u0
2e3l 2p2t0(el21). ~44!

If we write t5t0el we may expressl by t and hence we may
write u2 as t-dependent function:

u2~ t !5u0
2~ t/t0!3e2p2(t2t0), ~45!

which is plotted in Fig. 2 in thet-u plane.
One sees that the flow of the disorder has a maximum

t53/p2 or l 5 ln@3/(p2t0)#, if t0,3/p2. For finiteK, the RG
flow of u in the regionK,Ku first increases and then de
creases. The region of increase in theK-t plane is implicitly
defined byMu[$(K,t)uKu* >K cothK/2t>0%, i.e., the posi-
tions of the maxima ofu2@K,t# are located on the boundar
of Mu defined byKu* 5K cothK/2t.

The correlation lengthj can be found approximately b
integrating the flow equations until the maximum ofu( l ) and
t( l )/@11K( l )# is of the order 1~see discussion in Sec. IV!.
This can be done in full generality only numerically~see
Fig. 3!.

It is however possible to discuss several special cases
lytically. The zero-temperature correlation length can still
observed as long as this is smaller than the thermal de B
glie wavelengthlT which can be rewritten forK not too

close toKu ast&tK'Ktu
(12K/Ku)21

with tu'LFL
21 , where we

defined tK via ju[K/tK , analogously to the definition o
lT , and used Eq.~30!. We call this domain thequantum
disordered region.

For K>Ku the correlation lengthj is given bylT which
is larger than given by purely thermal fluctuations. For sca
smaller thanlT , the phase correlation function still increas
as ; lnuzu with a continuously varying coefficientKe f f(u0),
as will be discussed in detail in the following section. In th
sense one observesquantum critical behaviorin that region,
despite the fact that the correlation length is now finite for
values ofK.12

In the classical disordered region tK,t,tu the correla-
tion length is roughly given byLFL as follows from previous

FIG. 2. Typical flow diagram forw50 in the three-dimensiona
parameter space ofK, u, andt, proportional to the strength of quan
tum, disorder, and thermal fluctuations, respectively.
8-7
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studies7,8 or by solvingu2@ ln(j)#.1 using Eq.~44! for small
t0 yielding j'u0

22/3e2p2t0'u0
22/35LFL(pp4)1/3. Note that

tK'K for small K.
In the remaining regiont*tu , the thermal region, we

apply the mapping onto the Burgers equation~see Sec. IV!.
In this case the RG procedure applied to this equation
comes trivial since there is only a contribution from a sing
momentum shell and one finds for the correlation len
j21'(p/2) f (T)t$111/2@ tu /(pp2t)#3%L.

The phase diagram depicted in Fig. 3 is the result of
numerical integration of our flow equations and shows
deed the various crossovers discussed before.

In thehigh-temperatureregion (t@K) the flow equations
can be solved explicitly. Foru2( l ) we get the same result a
given in Eq.~44! and the flow equation forK reduces to

dK

dl
52

p4

2
u2

K4

~2t !3
, ~46!

where we usedB0(p2K,K/2t→0)5(K/2t)4. The solution of
this equation is given by

K~ l !5FK0
231

3p4u0
2

16t0
3

ep2t0Ei~p2t0 ,p2t0el !G21/3

, ~47!

with the incomplete exponential integral function Ei(a,b)
defined by

Ei~a,b![E
a

b

dt e2t/t.

One observes thatK( l ) saturates very quickly to the valu
K(`),K0.

IV. CORRELATION FUNCTIONS

In this section we discuss the density-density and
phase correlation functions in more detail and summarize
correlation lengths in the various regimes—partly alrea
used in the last two sections.

FIG. 3. The low-temperature crossover diagram of a o
dimensional CDW.t andK are proportional to the temperature an
the strength of quantum fluctuations, respectively. The amoun
disorder corresponds to a reduced temperaturetu'0.1. In the clas-
sical and quantum disordered region, respectively, essentially tt
50 behavior is seen. The straight dashed line separating them
responds tolT'1, i.e., K't, wherelT is the de Broglie wave-
length. In the quantum critical region the correlation length is giv
by lT . Pinning~localization! occurs only fort50,K,Ku* .
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The ~full ! density-density correlation function is define
as

S~x,t![^r~x,t!r~0,0!&, ~48!

wherer(x,t) is given in Eq.~1!. In the following we restrict
our considerations to the(charge) density wave orderpart of
S, which is the term proportional tor1

2, i.e.,

S1~x,t!5r1
2^cosp@w~x,t!1Qx#cospw~0,0!&, ~49!

which defines the type of order of the density wave: If
decays algebraically we have quasi-long-range or
~QLRO!, an exponential decay over a correlation lengthj
corresponds to short-range order~SRO!. The omitted parts of
S decay faster thanS1.28

S1 can be rewritten as

S1~x,t!5
r1

2

4
~eıpQx^eıp[w(x,t)2w(0,0)]&

1e2ıpQx^e2ıp[w(x,t)2w(0,0)]&!, ~50!

and using a Gaussian approximation for the averages, w
can be indeedexactin lowest-order perturbation theory,29 we
obtain

S1~x,t!.r1
2cos~pQx!e2(p2/2)^[w(x,t)2w(0,0)]2&. ~51!

From now on we focus on thephase correlation function

C~x,t![^@w~x,t!2w~0,0!#2&, ~52!

and discuss it in various limits. Combining Eqs.~51! and
~52! we can extract a correlation length from the relation

j215 lim
x→`

p2

2x
C~x,0!. ~53!

A. Disorder-free case

We start with the most simple caseu50. Then, the cor-
relation function in dimensionless units follows directly fro
the actionS0 written in momentum space:

C0~x,t!5
2pt

L (
k,n

12eı(kx1vnt)

vn
21k2

, ~54!

with Matsubara frequenciesvn52pn/lT and momentak
5km52pm/L.

The sums overn and k ~i.e., m) can be performed ap
proximately for sufficiently largex andt and one obtains30

C0~x,t!.
K

2
lnH 11S lT

2p D 2FcoshS 2px

lT
D2cosS 2pt

lT
D G J .

~55!

The behavior of this function is considered in the follow
ing cases.

~i! At zero temperature(lT→`) Eq. ~55! reduces to

-

of

or-

n

8-8
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C0~x,t!.
K

2
lnS 1

2
@x21t2#11D , ~56!

i.e., the correlation function has a logarithmic dependency
x andt and leads to an algebraic decay ofS1, i.e., the system
shows QLRO.

~ii ! At finite temperatureswe can distinguish betwee
length scales smaller and larger thanlT .

In the first casex!lT andt!lT the cosh and cos term
can be expanded to second order in the arguments and
gets the same logarithmic function as in the zero-tempera
case. In the opposite casex@lT , which is the usual case a
high temperatures, the cosh term can be approximated by
exponential function and one finds a linear dependency ox:

C0~x!'ptx5Tx/c,

i.e.,

j5
2

p2pt
[jT , ~57!

i.e., S1 decays exponentially~SRO! over a characteristic
length j;t21. The same result is obtained for the limitK
→0 at a fixed, finite temperature.

Note that with this result we have neglected the algeb
decay for smallx,lT . Therefore a better interpolation fo
mula for the correlation length isj'(2/p2)(jT1lT), which
takes the slow decay for smallx into account. In terms of the
length-scale-dependentt( l ) this rewrites to

t~ l 5 ln„j!…5K11, ~58!

i.e., the correlation length is reached, ift( l )/(11K) is of
order 1.

The change from QLRO on small length scalesx,j to
SRO on large length scales becomes clear if one consi
the cylindric topology of the system in space time at fin
temperatures: As soon as one reaches length scales o
order of the perimeter of the cylinder, which islT , starting
from small scales, the system changes from two-dimensio
to effectively one-dimensional behavior.

B. Finite disorder

If u is finite the action of the system has a forward- an
backward-scattering part. With the decomposition~22!, the
phase correlation function divides into two parts:

C~x,t!5Cb~x,t!1Cf~x! ~59!

and has therefore always a contributionCf(x);uxu/j f with
j f

21;s( l 5 lnuxu), i.e., the density wave order has always
exponentially decaying contribution and we can define

S1~x,t![ f r~x!e2p2/2Cb(x,t), ~60!

with f r(x)5r1
2cos(pQx)e2(p2p/4)uxu/j f . However, sinceCf(x)

is not t dependent, it will not influence the dynamical pro
erties of the system. Therefore all further remarks ab
phase correlations refer toCb(x,t) and consequently we wil
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drop the subscriptb in the following. Again we examine the
T50 and finite temperature cases.

~i! At zero temperature we have to distinguish betwe
threeK regimes: ForK.Ku the disorder becomes irrelevan
under the RG flow and we can use the zero-temperat
disorder-free result for the correlation function with the pre
actorK replaced by an effective quantityKe f f( l 5 ln z) on a
length scalez5Ax21t2, defined by the flow equation forK.
This effectiveK saturates on large scales at a valueKe f f(u0),
which may be seen in Fig. 2. Therefore we have QLRO
this K region.

For 0,K,Ku we integrate the flow ofu until it reaches
a value of order 1, starting at smallu0, which defines the
localization lengthju ~see Sec. III B!, i.e., the correlation
function behaves likeC(x,t);uxu/ju , i.e., we have an ad
ditional ~to Cf) exponentially decaying contribution toS1.

~ii ! At finite temperatures the parameterK saturates at an
effective valueKe f f(u0) on large length scale. Therefore th
correlation function for small disorder is given by Eq.~55!
with K replaced byK( l 5 ln z).

In the regionMu of the K-t plane~see Sec. III D!, u still
increases and we can find an effective correlation length
comparing the length scales on whichu( l ) or t( l )/@1
1K( l )# become of order 1. Then, the correlation length
the smaller length of these two.

C. Strong disorder

In the last regionK50 we come back to thestrong pin-
ning case, discussed in Sec. III C before and calculate t
pair-correlation functionexactly. Taking into account that the
hi ’s are independent on different lattice sites, i.e.,hihj
}d i j , the ~discrete! phase correlation function is given by

^~wn112w1!2&5
4p2

p2 K S hi2
pQe i

2p
2g D 2L n

5
4p2

p2 S pQe i

2p
1g2FpQe i

2p
1gG D 2

n,

where we used Eq.~42! for the second equality. For evalu
ating the disorder average in this expression, one has to
into account the order statistics of the impurity distancese i .
In the thermodynamic limit the probability density functio
for the e i ’s can be rewritten as

p~e i !'
l imp

21

e
e2 l imp

21 e i, 2 l imp<e i,`. ~61!

Then, the correlation function can be explicitly written as

^~wn112w1!2&5
4p2

p2 E
0

`

dx e2xS x

2a
2F x

2aG D 2

n, ~62!

where we introduced the parametera[p/pQlimp and sub-
stitutedx5 l imp

21 e i11. This integral can be evaluated exact
which leads to the following exact expression for the pa
correlation function at zero temperature, written in a co
tinuum version:
8-9
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C~x,t!5
2p

pa S 12
a

sinha D uQxu[
2x

p2j
, a5

p

pQlimp
.

~63!

A more detailed derivation of this result is given in Append
B.

Finally we want to give an interpolating expression f
C(x,t) from T50 to high temperaturesT@c/( l impp

2) start-
ing with the result~63!. In the latter case we may neglect th
discreteness ofhi and hence

^~wn112w1!2&

'
4p2

p2l imp
H 2

]

]l1
lnF E dh expS 2(

i
l ih

2D G J uxu

5
T

c
uxu5ptuxu, ~64!

with l i52p2c/Tp2( l imp1e i).
A plausible interpolation formula is then given by

^@w~x!2w~0!#2&'F2Q2l impS 12
a

sinh~a! D1
T

cG uxu,

~65!

and for l imp@Q21, i.e., a!1,

^@w~x!2w~0!#2&'S p2

3p2
l imp

21 2
7p4

180p4

l imp
23

Q2
1

T

c D uxu

~66!

and hence the correlation length acquires the form

jsp
21'p2Q2l impS 12

a

sinh~a! D1jT
21 . ~67!

Note thatl impQ>1, i.e.,a<p/p andjT@ l imp . An approxi-
mate crossover to the weak pinning limit follows by choo
ing l imp'LFL .

D. Burgers equation

For K50, high temperatures but weak disorder we ad
an alternative method by mapping the~classical! one-
dimensional problem onto the Burgers equation with nois31

With this approach one can derive an effective correlat
length given by

jB
21'jT

21F11
1

2 S jT

2LFL
D 3G , ~68!

wherejT!LFL , which changes the prefactor of the free co
relation function at high temperatures~57!. The full calcula-
tion of this result can be found in Appendix C.

V. SUPERFLUIDS

Next we consider the application of the results obtain
so far to aone-dimensional Bose fluid. Its density operator is
given by Eq.~1! if we identify Q f /p5r05r1 (p52):
11511
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f

p
]xw1r0$11cos@2~w1Qx!#%1•••. ~69!

]xw is conjugate to the phaseu of the Bose field operator.32

Keeping our definitions ofK, t and u, v denotes now the
phase velocity of the sound waves withv5Ak/(r0m) and
the elastic constant isc5k/(pr0)2, where k is the com-
pressibility per unit length~see also Table I!.

With the replacements

K→K21, t→t/K2, p52,

Eq. ~18! describes the action of the 1D superfluid in a ra
dom potential. The correlation functions for the superflu
can be obtained correspondingly from these replacements
avoid confusion we write down the full action in this ca
explicitly:

SSF

\
5

K

2p (
a,b

E
0

L

dxE
0

K/t

dtH @~]xwa!21~]twa!2#dab

2
K

2E0

K/t

dt8$u2cos 2@wa~x,t!2wb~x,t8!#

1s]xwa~x,t!]xwb~x,t8!%J . ~70!

Hence the RG equations follow from Eqs.~19a!–~19d! with
the above given replacements:

dt

dl
5F11

16u2

K2
B0S 4/K,

K

2t D coth
K

2tG t,

dK

dl
5

8u2

K
B0S 4/K,

K

2t D coth
K

2t
,

du2

dl
5F32

2

K
coth

K

2t Gu2,

ds

dl
5s,

i.e., the transition between the superfluid and the locali
phase occurs atKu* 52/3.11 Thermal fluctuations again sup
press the disorder and destroy the superfluid localiza
transition in 1D.

VI. LATTICE POTENTIAL

If the wavelengthl of the CDW modulation is commen
surate with the perioda (5p, due to dimensionless units! of
the underlying lattice such thatnl5qa with integersn and
q, the Umklapp term22p(w/K)cos(qw) appears in the
Hamiltonian.1 Therefore we switch on the lattice potenti
wÞ0 now. In this section we consider the caseu50 which
leads to the Sine-Gordon-type model:
8-10
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SLP

\
5E

0

L

dxE
0

K/t

dt
1

2pK
$~]xw!21~]tw!2%2

w

K
cos~qw!.

~71!

The model hasq degenerate classical ground states giv
by wm52pm/q with m50, . . . ,q21. Performing a calcu-
lation analogous to the one above~but with u50) the RG-
flow equations read

dK

dl
5

p

2
q4w2B2S q2K,

K

2t D coth
K

2t
, ~72a!

dt

dl
5F11

p

2
q4w2B1S q2K,

K

2t D coth
K

2t G t, ~72b!

dw

dl
5F22

q2

4
K coth

K

2t Gw, ~72c!

whereB1,2 are given in Eq.~20! with

g152x2cosx, g25~x21t2!cosx.

Plots of the functionsB1 andB2 can be found in Fig. 6 at the
end of Appendix A. A numerical solution of the flow equ
tions ~72a!–~72c! is shown in Fig. 4.

At zero temperature Eqs.~72a! and ~72c! reduce to

dK

dl
5

p

2
q4w2B2~q2K,`!, ~73a!

dw

dl
5F22

q2

4
KGw, ~73b!

and we find that foru50 the lattice potential becomes re
evant ~i.e., w grows! for K,Kw , where Kw is implicitly
defined by

w2~Kw!5
Kw*

2

2pq2h̃
S Kw

Kw*
21D 2

, ~74!

which follows from

FIG. 4. Typical flow diagram for the disorder-free model in t
three-dimensional parameter space ofK, w, and t. w denotes the
strength of the commensurate lattice potential.
11511
n

dw

dK
52

4

q4ph̃w
S 12

K

Kw*
D , ~75!

where we used Eqs.~73a! and~73b! and the initial condition
w(Kw* [8/q2)5w050; h̃52B2(q2Kw* ,`) ('0.4, for q
51).

In this region the periodic potential stabilizes true lon
range order of the CDW: the phase is everywhere close
one of theq classical ground stateswm . Thedepinning tran-
sition from the latticefor K→Kw20 is again of KT type.
The correlation length in the low-K ordered phasejw is de-
fined by w(ln jw)'1 and diverges atKw20.14 This can be
seen by considerations analogous to the disordered c
Defining

g52
K

Kw*
22, x25

p

8
q6h̃w2

~note thath̃.0) leads forugu!1, i.e., close toKw* , to the
KT equations~28b! and ~28a!.

At finite temperatures we find a similar scenario as in
case where we considered the influence of the disordew
first increases in aK-t region given byMw[$(K,t)uKw*
>K cothK/2t>0%, i.e., when the rhs of Eq.~72c! is positive,
but then decreases and flows into the region of larget and
small w. Thus the periodic potential becomes irrelevant
finite temperatures. This can be understood as follows
finite t the 1D quantum sine-Gordon model can be mapp
on the Coulomb gas model on a torus of perimeterlT since
periodic boundary conditions apply now in thet direction.
Whereas the entropy of two opposite charges increases
separationL@lT as ln(LlT), their action increases linearl
with L. Thus, the charges remain bound. The on
dimensional Coulomb gas has indeed only an insulat
phase.33

VII. CONCLUSION

To conclude we have shown that in one-dimensio
charge and spin density waves, Luttinger liquids and
prafluids, quantum phase transitions between a disord
~or locked-in! phase and an asymptotically free phase at z
temperature are destroyed by thermal fluctuations leaving
hind a rich crossover behavior. This was demonstrated
using a full finite temperature RG calculation. The crosso
regions were characterized by the behavior of the phase p
correlation functions. For vanishing quantum fluctuations o
calculation was amended by an exact solution in the cas
strong disorder and by a mapping onto the Burgers equa
with noise in the case of weak disorder, respectively. B
methods gave an exponential decay of density correlatio

We have also briefly discussed that the Coulomb inter
tion may destroy the unpinning~localization! transition.

The finite temperature calculation used in the present
per is also suited for treating the low-frequency low
temperature behavior of dynamical properties which may
pend crucially on the ratiov/T. This as well as the
discussion of the influence of quantum phase slips16 will be
8-11
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postponed to a forthcoming publication.
The combined effect of disorder and the lattice poten

on the zero-temperature phase diagram is still controvers
discussed34,35and cannot be explained by the RG results p
sented in this paper, since both perturbations become
evant for smallK. However, this problem is beyond th
scope of the present work and may be discussed in a fu
publication.
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APPENDIX A: RENORMALIZATION OF THE DISORDER

We present a short overview of the used finite tempera
anisotropic renormalization-group method in the case of
replicated disorder term. Starting point is the action~18!.

The phase field w(x,t)5(t/
KLL)(vn

( uku<1eı(vnt1kx)wk,vn
with the Matsubara frequen

cies vn52pnt/K and k52pm/(LL) ~note that re-
scaled coordinates are used! is split in a slow (uku,b21) and
a fast mode part (b21<uku<1), whereb5e2dl is a rescal-
ing parameter of order 1. Notice that thew" still have all
Matsubara Fourier components.

In order to find the RG corrections of the other paramet

in the model, we followWilson36 and expand̂ ^e2S u
(n)/\

21&&0,. in small (u/K)2, with

S u
(n)

\
52

u2

4pK2 (
a,b

E E dt dt8

3E dx R@wa~x,t!2wb~x,t8!#, ~A1!

whereR@ f #[cos(pf). ^^•••&&0,. denotes the cumulative o
connected average over the fast modes in the ‘‘momen
stripes’’ with the free Gaussian model. The correction in fi
order is given by

Su,1
(n)

\
5K K S u

(n)

\ L L
0,.

. ~A2!

For calculating the cumulative average of the functionalR, R
is expanded in smallDw.[wa,.(x,t)2wb,.(x,t8), e.g.,

^^R@Dw#&&0,.52p2$R@Dw,#^wa,.
2 &0,.2R@Dw,#

3^wa,.~x,t!wb,.~x,t8!&0,.%1O~Dw.
4 !.

~A3!

The first term in Eq.~A3! gives a correction to the disor
der parameteru and the second term a correction toK. The
11511
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free thermal average over the fast modes can be evalu
with the free propagator (k21vn

2)21 and using the formula

(
n52`

`
cos~nx!

n21a2
5

p

uau
cosh@~p2x!a#

sinh~puau!
, 0<x<2p

to treat thesumover the Matsubara frequencies yielding

^wa,.~x,t!wb,.~x,t8!&0,.5
K

2

cosh~K/2t2uDtu!
sinh~K/2t !

da,bln b,

~A4!

with Dt[t2t8.
In order to find a good Gaussian approximation forR, we

perform a variational calculation for a Sine-Gordon mode

HSG5H01H1[H02mE ddr cos@w~r !#, ~A5!

whereH0 is the Gaussian part. We approximateH1 by

H̃15E ddr
k~r !

2
w2~r !, ~A6!

and defineH̃[H01H̃1. To find the optimal functionk(r ),
the variational free energy37 Fvar with

FSG<Fvar[F̃1^HSG2H̃&H̃ ~A7!

is minimized with respect tok:

05
dFvar

dk~ r̃ !
5b^HSG2H̃&H̃K w2~ r̃ !

2 L
H̃

2bK ~HSG2H̃!
w2~ r̃ !

2 L
H̃

5
b

2E ddr ^k~r !2m cos@w~r !#&H̃^^w2~r !w2~ r̃ !&&H̃ .

~A8!

For the last equality we took into account that the avera
are Gaussian such that we could apply theWick theorem.
From Eq.~A8! we finally get

k~r !5m^cos@w~r !#&H̃5mexpS 2
1

2
^w2~r !&H̃D . ~A9!

For small disorder Eq.~A9! yields for R@Dw,# the ap-
proximate expression

R@Dw,#.2
p2

2
~Dw,!2e2(p2/2)^(Dw,)2&0,,. ~A10!

The same result can be obtained in terms of an oper
product expansion39 of R@ f #. In order to get a RG correction
to K a gradient expansion of (Dw,)2 in Eq. ~A10! in small
Dt is performed, which is justified by the exponential dec
of the correlation function~A4! on the integration interva
such that higher orders inDt do not contribute to the RG
correction: (Dw,)2'@]Tw,(x,T)Dt#2 with T5(t1t8)/2.
8-12
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The pair-correlation function in the argument of the exp
nential function in Eq.~A10! can be approximated by th
expression already shown in Eq.~55!, i.e.,

^@w~x,t!2w~0,0!#2&0.
K

2
lnH 11S K

2pt D
2FcoshS 2ptx

K D
2cosS 2ptt

K D G J . ~A11!

After integration of the fast modes ofw, one rescales the
system to maintain the fluctuation strength and the spa
density of the degrees of freedom (l 5 ln b):

x→x85xb21,

t→t85tb2z, T→T85Tbz,

w→w85wb2z,

which leads to rescaled parameters. For our model these
given by ~here ind dimensions!

c85cbd1z2212z, ~A12a!

v85vbz21, ~A12b!

K85Kb12d22z, ~A12c!

t85tb22d22z, ~A12d!

u85ub22d/2, ~A12e!

s85sb22d, ~A12f!

w85wb2d. ~A12g!

Due to the invariance of the system under a phase shif
2np, z is zero for symmetry reasons.

The RG contribution to the flow equation foru2 follows
from the first term of Eqs.~A3! and ~A4! with Dt50:

u825u2S 12
p2K

2
coth

K

2t
ln bD . ~A13!

Together with Eq.~A12e! (d51) one gets

FIG. 5. FunctionB0(p2K,K/2t) plotted with respect toK for
different temperatures.
11511
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u822u2

dl
5S 32

p2K

2
coth

K

2t Du2. ~A14!

The RG correction toK follows from the second term o
Eq. ~A3! with Eqs.~A4! and ~A10!:

K85KS 12
p4

2
u2coth

K

2tE0

K/(2t)

dt t2

coshS K

2t
2t D

cosh
K

2t

3e2(p2/2)^[w(0,t)2w(0,0)]2&0ln bD , ~A15!

and the flow equation~for d511e) follows from Eq.
~A12c!,

K82K

dl
5F2e2

p4

2
u2coth

K

2t
B0S p2K,

K

2t D GK ~A16!

with B0 given in Eq.~20!, for which we used Eq.~A11!.
The functionB0 which appears in this flow equation i

plotted in Fig. 5.
For completeness we also plot the functionsB1 and B2

in the relevantK region for the lattice unpinning transitio
@see Eqs.~72a! and ~72b!#. Note that for evaluating thes
functions at zero temperature, one has to execute
integrals at finite temperature first and then take the li
t→0 ~see Fig. 6!.

FIG. 6. FunctionsB1(q2K,K/2t) and B2(q2K,K/2t) plotted
with respect toK for different temperatures, written next to th
graphs, andq51.
8-13
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APPENDIX B: STRONG PINNING

To calculate the phase correlation function in the stro
pinning limit, it is necessary to study the order statistics
the impurity distancese i5(xi2xi 21)2 l imp . Following
David,38 we obtain for the probability density function~pdf!
of the e i ’s in the case of uniformly distributed impurity po
sitions 0<xi<L: p(e i)5 l imp

21 @12(1/L)(e i1 l imp)#N21 with
2 l imp<e i<L2 l imp . In the thermodynamic limit the pd
can be rewritten as

p~e i !'
l imp

21

e
e2 l imp

21 e i, 2 l imp<e i,`. ~B1!

With this, one can calculate thenth momente i
n ~for n

.1, e i50) as follows:

e i
n5E

2 l imp

` l imp
21

e
e2 l imp

21 e ie i
n de i5

l imp
21

e
~21!n

]n

]lnU
l5 l

imp
21

el l imp

l
.

~B2!

Using ]n/]xnux51ex21/x5(21)nn! @(k51
n (21)k/k! 11#

yields e i
n5(n!/cn)(k52

n ((21)k/k!) and for the correlator
e ie j5 l imp

2 d i j . With these results we can derive the pa
correlation function~63!. Therefore we calculate the discre
version^(wn2w1)2& in the limit T→0. With the definitions
given below Eq.~36!, we can rewrite

~wn2w1!25
4p2

p2 F (
i 51

n21 S hi2
pQe i

2p
2g D G2

. ~B3!

Using e i5hi50 andhihj}d i j leads to

~B4!

Because only the value@pQe i /2p1g# for hi is taken into
account for evaluation of the thermal average, we get

C̃5S pQe i

2p
1g2FpQe i

2p
1gG D 2

5E
2 l imp

`

de i

l imp
21

e
e2 l imp

21 e iS pQe i

2p
1g2FpQe i

2p
1gG D 2

.

If we substitutex5 l imp
21 e i11 and take into account that@x

1n#5@x#1n for nPZ, we get

C̃5E
0

`

dx e2xS x

2a
2F x

2a G D 2

~B5!

with the parametera5p/pQlimp . Now the quadratic term
in the integral is expanded, which leads to the followi
three~converging! integrals:
11511
g
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I 1[
1

4a2E0

`

dx e2xx25
1

2a2
,

I 2[2
1

aE0

`

dx e2xxF x

2aG
52

1

a (
k51

` E
(2k21)a

(2k11)a

dx e2xxF x

2a G ~B6!

I 3[E
0

`

dx e2xF x

2aG2

5 (
k51

` E
(2k21)a

(2k11)a

dx e2xF x

2aG2

,

with C̃5I 11I 21I 3. For (2k21)a<x<(2k11)a, kPZ,
@x/2a#5k, such that theGaussian bracketsin the finite in-
tegrals inI 2 and I 3 can be replaced byk or k2, respectively:

I 252
1

a (
k51

`

kE
(2k21)a

(2k11)a

dx e2xx,

I 35 (
k51

`

k2E
(2k21)a

(2k11)a

dx e2x. ~B7!

The values of these two simple integrals are

E
(2k21)a

(2k11)a

dx e2xx52e22ka@~112ka!sinh~a!

2a cosh~a!#,

E
(2k21)a

(2k11)a

dx e2x52e22kasinh~a!.

The remaining sums inI 2 and I 3 are only derivatives of
the geometric series which can be easily evaluated.

The result is

C̃5
1

2a S 1

a
2

1

sinh~a! D5
1

12
2

7

720
a21

31

30240
a41O~a6!,

~B8!

where the expansion is useful only ifa is small, i.e.,Qlimp
@1. If we would have neglected the order statistics of t
impurity distances we would get only the leading consta
C̃51/12.

Euation~B8! yields the presented expression for the pa
correlation function~63!.

APPENDIX C: CORRELATION LENGTH IN THE
CLASSICAL REGION AT FINITE TEMPERATURE

In the weak pinning limit, 1! l impQ!c/(Uimpr1) or
LFL@ l imp , the classical Hamiltonian can be rewritten to
random-field XY model:
8-14
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Hclass~L !5E
0

L

dxH c

2
@]xw~x!2s̃#2

1
Uimpr1

l imp
cos$p@w~x!2a~x!#%J , ~C1!

wherea(x) is a random phase with zero average and

eıp[a(x)2a(x8)]5 l impd~x2x8!. ~C2!

In the following we consider only the backward-scatteri
term of the correlation functionCb and therefore neglect th
forward-scattering terms̃5Uimpf /(cp l imp).

The goal is now to find an effective temperature, whi
replacesT in the correlation function for the free case~64!.
We start with aBurgers-likeequation, which one gets after
Cole-Hopf transformationfrom the transfer-matrix equation
for the restricted free energyF(x,w)52T ln Z(x,w) with
the partition function

Z~x,w![E
w(0)

w(x)5w

Dw e2H(x)/T.

The equation reads

~C3!

Using the Fourier transform

F~x,w!5E dk dv

~2p!2
eı(vw2kx)F~k,v!

@analogous forU(x,w)], Eq. ~C3! is rewritten as

2ıkF~k,v!52
Tv2

2c
F~k,v!1U~k,v!

1
1

2cE dk8dv8

~2p!2
v8~v2v8!

3F~k2k8,v2v8!F~k8,v8!, ~C4!

with

U~k,v!5
pUimpr1

l imp
$h1~k!d~v2p!1h2~k!d~v1p!%,

h6~k![E dx eı[kx7pa(x)] . ~C5!

Introducting the dimensionless quantities

g0~k,v!5
1

ptv2/22ık/L
, ~C6!
11511
e5
Uimpr1

l impL
2c

, ~C7!

u~k,v!5~eLc!21U~k,v!, ~C8!

and settingF(k,v)[ceg(k,v)u(k,v) we obtain the follow-
ing, self-consistent equation for the Green’s functi
g(k,v):

g~k,v!u~k,v!

5g0~k,v!u~k,v!1
e

2
g0~k,v!

3E dk8 dv8

L~2p!2
v8~v2v8!g~k2k8,v2v8!

3g~k8,v8!u~k2k8,v2v8!u~k8,v8!. ~C9!

For e,1, i.e., for weak disorder, this equation is iterated
first nonvanishing order ine ~one-loopapproximation! and
averaged over disorder. The disorder avera
u(k,v)u(k8,v8) can be calculated using Eqs.~C5! and~C2!,
which gives

u~k,v!u~k8,v8!

5L2p2$h1~k!h2~k8!d~v2p!d~v81p!

1h2~k!h1~k8!d~v1p!d~v82p!%

52L2l impp
3d~k1k8!d~v1v8!$d~v1p!1d~v2p!%

[2d~k1k8!d~v1v8!D~v,k!. ~C10!

Therefore, we get forg in ordere2

g~k,v!5g0~k,v!1e2g0
2~k,v!E dk8 dv8

L2~2p!4
~v2v8!

3v8v~2v8!g0~k8,v8!g0~k2k8,v2v8!

3g0~2k8,2v8!D~k8,v8!. ~C11!

The diagrams visualizing Eqs.~C9! and ~C11! are de-
picted in Fig. 7.

For k50 Eq. ~C11! reduces to

FIG. 7. Diagrams for~a! Eq. ~C9! and ~b! Eq. ~C11!.
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TABLE III. List of used quantities.

Symbol Quantity Eq. Ref.

a Lattice constant
b5e2 l Rescaling parameter of order 1
Bi Functions used in flow equations ~20!

c Elastic constant ~4a!
C(x,t), Cf , Cb Phase correlation functions ~52!, ~59!

d Spatial dimension
f (T) Condensate density ~4!

F Free energy ~15!

g Dimensionless electron-phonon coupling constant ~4!

gi Functions used inBi ~20!

gq Electron-phonon coupling constants ~2!

hi Integers~cf. strong pinning! ~38!

Ĥ, Ĥ0
Hamiltonian~complete and free! ~4!

k, kn Wave vectors
kF Fermi wave vector
K, K( l ), K0 Dimensionless parameter for quantum fluctuations ~8b!, ~19b!
Ku , Ku* K values defining the separatrix/fixed point of the disorder

unpinning transition
~27!

Kw , Kw* K values defining the separatrix/fixed point of the lattice
unpinning transition

~74!

L System length ~4!

LFL Fukuyama-Lee length ~7!

l imp Mean impurity distance ~5!

L0 Free~Gaussian! part of the Lagrangian ~16!

ni Integers~cf. strong pinning! ~37!

Nimp Number of impurities ~4b!

p Commensurability used in the density ~1!

p(e i) Probability density function ofe i ~61!

P̂ Momentum operator, conjugate toŵ ~4!

Q Density wave vector ~1!

q Commensurability used in the lattice potential ~4c!
S, S0 Action ~full and Gaussian part! ~18!

S (n) Replicated action ~16!

SSF ,SLP Action for superfluids and lattice potential, respectively ~70!

S, S1 Density correlation functions ~48!, ~49!

T Temperature
Tc

MF Mean-field condensation temperature
t, t( l ), t0 Parameter for thermal fluctuations ~8a!
tu51/(LLFL) Crossover temperature from classical disordered to

thermal regime
tK Temperature separating the thermal and disordered regime
U(x) Disorder potential ~4b!

Ui Impurity potential ~4b!

Uimp Mean impurity potential ~5!

u, u( l ), u0 Dimensionless parameter for disorder fluctuations ~8c!
vF Fermi velocity
v phason velocity ~4!

Vc(x) Coulomb potential ~10!

W Lattice potential strength ~4c!
w, w( l ), w0 Dimensionless parameter for lattice potential strength ~8d!

xi Impurity positions ~4b!

z Dimensionless distance int-x space
a Parameter used in the strong pinning limit ~63!
115118-16
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TABLE III. ~Continued.!

Symbol Quantity Eq. Ref.

b Inverse temperature
g Parameter for KT flow equations ~28a!
D Order parameter ~2!

e i Deviation from mean impurity distance ~38!

z Transverse width of the quasi-one-dimensional system

h, h̃ 5B0(p2Ku* ,`), 52B2(q2/Kw* ,`), respectively

l Density wave length
lT de Broglie wavelength ~9!

L Momentum cutoff
j, ju , jw , etc. Correlation lengths Table I
r(x), rSF(x) Charge/spin or superfluid density ~1!, ~69!

r0 Mean density ~1!

r1 Density amplitude for harmonic part ofr(x) ~1!

s Forward-scattering amplitude ~18!

t Imaginary time coordinate
w Phase variable ~2!

x Parameter for KT flow equations ~28b!
Y Auxiliary function ~21!

vn Matsubara frequencies
m

ce
r

g~0,v!5g0~0,v!F11e2
p2l imp

8ptv E dk8
1

~k8/L!21~pp2t/2!2

3H p2v

pt~v2p!2/22ık8/L

2
p1v

pt~v1p!2/22ık8/L
J G . ~C12!

Because we calculate the correlation length in the ther
regime ~see Fig. 3! with t*tu the k8 integral in Eq.~C12!
gives the biggest contribution tog at smallv. In this case the
k8 integral can be easily calculated which leads to

g~0,v!1!'g0~0,v!S 12e2
L l imp

2p3p2t3D ~C13!
ys

,

d

11511
al

or for the effective temperatureTe f f

1

Te f f
'

1

T S 12e2
L l imp

2p3p2t3D 5
1

T F12
1

2 S tu

pp2t
D 3G

~C14!

which yields for the correlation length

j21'
p

2
f ~T!tF11

1

2 S tu

pp2t
D 3GL, ~C15!

as written in the text. For high temperaturest@tu we recover
the lineart dependency of the free case.

A related calculation for directed polymers and interfa
growth can be found in Ref. 40. Note that in this papex
plays the role ofw and t the role ofx in the above calcula-
tion.
,

ett.

d,
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