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We study the charge transfer in a small grain oscillating between two leads. Coulomb blockade restricts the
charge fluctuations in such a way that only zero or one additional electrons can sit on the grain. The system
thus acts as a charge shuttle. We obtain the full counting statistics of charge transfer and discuss its behavior.
For large oscillation amplitude the probability of transferringñ electrons per cycle is strongly peaked around
one. The peak is asymmetric since its form is controlled by different parameters forñ.1 and ñ,1. Under
certain conditions the systems behaves as if the effective charge is 1/2 of the elementary one. Knowledge of
the counting statistics gives a new insight on the mechanism of charge transfer.
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I. INTRODUCTION

A few years ago Goreliket al. showed that a small con-
ducting grain can undergo a mechanical instability if it is
trapped in a harmonic potential between two leads kept at a
constant voltage bias(see Fig. 1).1 When the central grain is
charged, the electrostatic force induced by the leads pushes it
towards one of the electrodes, increasing the probability that
the excess charge be discharged. Since the resistance de-
pends exponentially on the distance, even small oscillations
can largely amplify the probability of transmission. Excita-
tion of this nanomechanical system at one of its resonating
frequencies can be generated by the stochastic tunnelling of
electrons from the leads. Since the charge state of the grain is
correlated with its position, under certain conditions, the en-
ergy accumulated in the mechanical systems increases in-
definitely, leading to an instability. The energy pumped de-
pends on the oscillation amplitude up to a maximum value
determined by the number of charges that can accumulate in
the grain at each cycle. After that point there is no additional
gain in increasing the amplitude and the grain stabilizes at a
fixed oscillation amplitude for which the energy pumped ex-
actly balances the energy dissipated. This scenario has been
investigated both in the incoherent1–3 and in the quantum
case.4–9 There are indications that Parkset al. have observed
this phenomenon in C60 molecules oscillating between two
leads.10

An other possibility to drive the oscillations is to use an
external alternate electric field acting on a cantilever. The
amplitude can thus be tuned independently of the source/
drain voltage bias, at least in principle. This case has been
experimentally realized by Erbeet al. who observed a cur-
rent of 0.11 electrons per cycle at low temperature induced
by the oscillation of the central grain. When the leads and the
grain are superconducting the existence of phase coherent
transport as been proposed.12–14

Many papers studied theoretically the conditions for the
realization of the instability or considered the dependence of
the current on the external parameters. Only few papers in-
vestigated instead current fluctuations. Weiss and Zwerger15

calculated the average number of electrons transmitted and
its fluctuation duringa singlecycle of a shuttle driven at a

given frequency and amplitude. This quantity differs from
the noise actually measured since typical measurement times
are much longer than one period of oscillation. Correlations
of charge fluctuations on different cycles are then important,
as we discuss in the following. Other authors considered the
finite frequency noise in superconducting shuttles14 or the
telegraph noise induced by the switching between two me-
chanical modes in a two-oscillating-grains device.16 A related
problem is the fluctuation of the acoustoelectric current car-
ried by surface acoustic waves propagating along a ballistic
quantum channel.17

The full counting statistics(FCS) of charge transfer in a
shuttle has not been considered so far. Recently, powerful
techniques have been developed to calculate the probability
thann electrons are transferred during a measurement timeto
in electronic devices.18–21 The FCS contains much more in-
formation on the dynamics of the charge transfer than the
current or the noise alone. This will be particularly clear in
this problem since few electrons are involved in the tunnel-
ling, and the probability thatñ electrons per cycle are trans-
mitted is actually a fundamental quantity. For a well devel-
oped shuttling regime the noise to current ratio is expected to
be small, since the number of electrons shuttled at every
cycle is determined by the Coulomb blockade conditions and
thus it does not fluctuate as it happens in a purely stochastic
tunnelling. This implies that the probability distribution has a
small width, but its actual shape still depends on the physical
parameters of the junction, like voltage bias, tunnelling prob-
ability, or oscillation amplitude of the shuttle. The impor-
tance of studying theoretically the FCS is thus twofold: first
it is, at least in principle, a measurable quantity and secondly,

FIG. 1. (Color online) Simple schematic of the system. A small
grain oscillating in an harmonic potential between two leads kept at
a constant voltage bias.
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its knowledge allows to infer detailed information on the
mechanism of charge transfer.

The paper is organized as follows: In Sec. II the technique
for the calculation is developed and the equations for the
numerical approach are obtained. In Sec. III the FCS is cal-
culated analytically for small and large oscillations. In Sec.
IV the general(numerical) results are discussed and com-
pared with the analytical ones. Section V gives our conclu-
sions.

II. FULL COUNTING STATISTICS
FOR AN OSCILLATING GRAIN

Our aim is to calculate the FCS of charge transfer in an
oscillating grain between two leads. We assume that the
charge transfer is described by the “orthodox theory” of Cou-
lomb blockade.22,23 In this regime the tunnelling is incoher-
ent and the dynamics is governed by a standard master equa-
tion. Within these assumptions Bagrets and Nazarov have
developed an elegant and efficient technique to derive the
FCS for the static case.20 We will use their method general-
ized to a moving grain.

Since we are interested to a single grain structure, the
state of the system is completely determined by the probabil-
ity pk of havingk additional electrons in the island. For sim-
plicity we consider the case where the voltage biases guar-
antee that only the two states,k=0,1, areavailable, and that
only two events are possible: either one electron jumps on
the island from the left lead[with transition rateGLstd] or one
electron on the island(if present) jumps to the right lead
[with transition rateGRstd]. Within these assumptions the
time evolution of the probability is given by a master equa-
tion. We write it following the notation of Ref. 20:

]

]t
upstdl = − L̂stdupstdl, s1d

where the(classical) probability is represented by a state in a

vector space:upl=hp0,p1j, andL̂ is the matrix

L̂std = S GLstd − GRstd
− GLstd GRstd

D . s2d

In Ref. 20 it is shown how the FCS can be obtained by
calculating the time evolution of the probability with a modi-

fied operatorL̂std. The central quantity isPto
snd, the prob-

ability that n electrons have been transmitted during a mea-
surement timeto. This quantity is independent from the
initial condition in the limit of largeto. From the technical
point of view it is easier to calculate the generating function
Sto

sxd:

e−Sto
sxd = o

n=0

`

Pto
sndeinx. s3d

From S one can easily obtain all cumulants:n̄
=]s−Sd /]sixdux=0, sn− n̄d2=]2s−Sd /]sixd2ux=0, etc. Let us
count electrons crossing, for instance, the left junction. Ac-
cording to the prescriptions of Ref. 20 the modified operator

L̂xstd is obtained from Eq.(2) by multiplying the lower off-
diagonal matrix element by the factoreix. This factor keeps
track of the electrons that cross the left junction during the
time evolution. The generating functionSto

sxd is then simply
given by the formal integration of the modified time-
evolution equation:

e−Sto
sxd = kquT expH−E

0

t

L̂xst8ddt8Jups0dl, s4d

where ups0dl is the probability at timet=0, uql;h1,1j, and
T exp is the time ordered exponential. The derivation of this
equality was done in Ref. 20 for the static case whereG’s do
not depend on time. Following the steps of their proof it is
not difficult to verify that Eq.(4) holds also in the dynamical
case of interest here. The main difference is that for the static
case(and the zero frequency noise) one can restrict to the

study of the eigenvalues ofL̂, since the time ordering be-

comes immaterial whenL̂ does not depend on time. In our
case instead time-ordered exponential must be evaluated ex-
plicitly.

Specific expressions for the shuttle: Let us now consider
explicitly the time dependence of the tunnelling rate. With
good accuracy one can assume that the dependence ofGL/R
on the position of the grain is exponential

GL/R = G0 exph7x/lj s5d

(we assumeGL=GR=G0 for x=0). Herex is the shift of the
grain from the equilibrium position andl is the tunnelling
length (see also Fig. 1). We will consider the case of sinu-
soidal oscillations of the grain. This can be driven by an
external device like in the experiment of Ref. 11, or it can be
induced by the voltage bias between the left and right
leads.1,10 In both cases

GL/Rstd = G0 exph7a sinsvtdj, s6d

wherea=xmax/l is the dimensionless ratio of the oscillation
amplitude to the tunnelling length andv is the frequency of
oscillation. It is also convenient to rescale the time byv−1

and definef=vt. With this substitution the problem is fully
characterized by the two dimensionless parameters:a and
G=G0/v. From the physical point of view,G gives the prob-
ability that an electron in the static junction withx=0 can
tunnel on or off the grain in the time 1/v. We will see that
the dependence ona of the FCS will be qualitatively differ-
ent if G is smaller or larger than 1.

The interesting physical quantity is the FCS for a long
measurement timeto. We chooseto to be a multiple of the
period:to=2pN/v, with N integer. The FCS of charge trans-
fer duringN periods is then given by

e−SNsxd = kquÂNups0dl, s7d

where

Â = T expH−E
0

2p

L̂xsf8ddf8J s8d

and
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L̂xsfd = S Ge−a sin f − Gea sin f

− Ge−a sin feix Gea sin f D . s9d

In the case of interest of largeN the FCS is given by the

eigenvaluelMsxd of Â that has the maximum absolute value:
SNsxd=−N lnflMsxdg. FromSNsxd one can calculate directly
the particle current and noise reduced to a period:I =nD
= n̄/N andP=2sn− n̄d2/N.

To obtain the probability of having transferredn electrons
during N periods it suffices to invert Eq.(3):

PNsnd =E
−p

+p dx

2p
e−SNsxd−ixn. s10d

For largeN the saddle point approximation gives a very ac-
curate estimate of this integral:

lnfPNsndg/N = lnflMsx0dg − ix0ñ, s11d

where ñ=n/N is the number of electrons transferred per
cycle andx0 satisfies the equation:

U 1

lMsx0d
dlM

dx
U

x=x0

= iñ. s12d

We find that Eq.(12) is solved byx0 pure imaginary.
The problem is now reduced to the evaluation of the time-

ordered product that enters the definition ofÂ. This can be
done numerically by integrating the system of differential
equations

]

]f
upsfdl = − L̂xsfdupsfdl s13d

with the two initial conditions ups1dsf=0dl=h1,0j
ups2dsf=0dl=h0,1j. One can readily verify that the matrix
with columnsups1dsf=2pdl andups2dsf=2pdl coincides with

Â. In the case of interest the numerical task is not hard,
nevertheless discussion of tractable analytical limits greatly
enhances the understanding of the results. We thus discuss in
the next section the small and large amplitude limits before
presenting the numerical results for the general case in Sec.
IV.

III. ANALYTICAL LIMITS FOR SMALL
AND LARGE AMPLITUDE

A. Static case and fractional charge

For a=0 we have a standard static single electron transis-

tor. SinceL̂x does not depend onf, the time-ordered expo-
nential becomes a simple exponential

Â = e−2pL̂x s14d

and the generating function for largeN can be obtained by

diagonalization of theL̂x matrix. The smallest eigenvalue in
modulus givesSNsxd at the leading order. The generating
function reads

− SNsxd/N = 2pGseix/2 − 1d, s15d

in agreement with the result obtained with a different tech-
nique in Ref. 24. The current and the noise are thus:I =P
=pG with a Fano factorF=P/2I equal to 1/2.

Even if Eq.(15) has been derived before its meaning has
not been fully discussed and it is worth a short digression.
Tunnelling through a single barrier is a Poissonian process.
The generating function and the probability in this case is

− Sto
sxd = n̄seix − 1d andPto

snd = e−n̄n̄n

n!
, s16d

with n̄ the average number of charges transmitted during the
time to. A general feature of the generating function is the 2p
periodicity. It is a manifestation of the discrete nature of the
charge and follows directly from the definition(3). It is thus
surprising that the generating function(15) is periodic of 4p
as if the elementary charge was not one, but 1/2. This hap-
pens only whenGL=GR and for long measurement times
sN→`d, in all other casesSsxd is periodic of 2p. For in-
stance if GLÞGR, even in the largeN limit we have the
following 2p-periodic generating function

SNsxd
Ns2p/vd

=
GL + GR

2
−ÎsGL − GRd2

4
+ GLGReix. s17d

The result(15) for GL=GR indicates that the charge transfer
in our system[Fig. 2(a)] is equivalent to that happening in a
tunnel junction with charges 1/2 emitted with probabilityG0
[Fig. 2(b)].

This can be understood with simple arguments. Let us
consider a sequence of events in our system. These can be of
two types, either tunnelling from the left lead to the grain
(type L), or tunnelling from the grain to the right lead(type
R). Since the rates for both events are the samesG0d, the
system has the same probability per unit time to switch to the
other state. The statistics of the switching events(i.e., that
either R or L occurs, without specifying which one) follows
thus a Poissonian distribution, since all events are indepen-
dent (rates do not depend on the initial states).

FIG. 2. (Color online) The two equivalent systems for the sta-
tistics of charge transferred in the long measurement time limit:(a)
single electron transistor with equal probabilityG of hopping from
the left lead to the grain and from the grain to the right lead;(b) a
fictitious system of charges 1/2 that tunnel with probabilityG.
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To obtain the statistics of charge transfer from the statis-
tics of switching events it is enough to remember that every
two switching events one charge is transmitted. We can thus
associate the transmission of a fictitious 1/2 charge at each
switching event. It is clear that the counting statistics of the
fictitious charge coincides with that of the true charge, apart
from a possible charge 1/2 mismatch that is irrelevant for
long measurement timesstoG0→`d. Thus we proved that the
counting statistics of our system coincides with that pre-
dicted for a tunnelling junction of charges 1/2 transmitted
with rateG0: simple classical correlations can induce current
fluctuations typical for fractional charges! A similar “frac-
tional” behavior was also found and discussed by Andreev
and Mishchenko for charge pump in the Coulomb blockade
regime.25

One should keep in mind that for any finite measurement
time the periodicity of the generating function remains 2p, it
is only the leading term forto→` that is 4p periodic. We
thus expect that the Fourier series(3) is not uniformly con-
vergent and that for any finiteto higher moments will defi-
nitely depart from the prediction obtained with Eq.(15). This
can be verified by calculating the first correction to Eq.(15)
(we recall that 2pNG= toGo):

−
SN

2pNG
= seix/2 − 1d +

1

2pNG
logs1 + cosx/2d + ¯,

s18d

that holds with accuracyOse−2pNGd. From Eq.(18) we derive
all momentsMq;]qs−Sd /]sixdq. For q even the result is

Mq =
2pNG

2q F1 +
s− 1dq/2+1

2pNG

4zsqd
pq s1 − 2−qdsq − 1d ! G ,

s19d

while for q odd the correction in Eq.(18) gives a vanishing
contribution. For largeq and fixedN the second term in(19)
is approximatively 4sq/epdq/ s2pNGd. This means that forq
large enoughMq will depart from the prediction of(15). This
is the way in which the system may reveal the true nature of
the elementary charge, either by a short time measurement of
the first moments, or by the long time measurement of higher
moments.

To explain while for asymmetric tunnelling rates the pe-
riodicity is 2p even for largeto it is enough to notice that the
above discussed mapping cannot be realized whenGLÞGR.
It is worth mentioning that for not too large asymmetries the
fractional charge remains measurable, as it is clear from the
dependence of the Fano factor:24,26,27

F =
GL

2 + GR
2

sGL + GRd2 . s20d

But again one expects that departure from the prediction of
(15) will increase with the orderq of the moment, and for
any small asymmetry it will become large forq large
enough. Generating functions with periodicity induced by
smaller fractions of the elementary charge can be obtained
with several islands.

B. Large oscillation amplitude

Let us now consider the opposite limit of large oscillation
amplitude of the shuttle. In this limit, since for most of the
time the ratioGL /GR is either very large or very small, we
can assume that(i) for 0,f,p the quantityGL vanishes
identically and(ii ) for p,f,2p the opposite holds:GR
=0. The approximation becomes exact forG!1, since in
that case electrons can tunnel only when the shuttle is near
one of the two leads.

Within this approximationÂ can be obtained analytically.
As a matter of fact in region(i) p0sfd+p1sfd is conserved,

since the matrix elementL̂ that multiplieseix vanishes.[We
recall thatpksfd is the probability thatk electrons are present
in the grain at timef.] The introduction of the counting field
normally breaks the conservation of the probabilityp0sfd
+p1sfd=const. Using this conservation and integrating the
remaining differential equation, we obtain for region(i),

Hp0spd = p0s0d + s1 − adp1s0d,

p1spd = ap1s0d,
J s21d

where 1−a is the probability of transferring one electron
during half cycle given with

a = expH− GE
0

p

ea sin fdfJ . s22d

In region (ii ) p0sfd+e−ixp1sfd is conserved and we find

Hp0s2pd = ap0spd,

p1s2pd = p1spd + s1 − ad0
pspdeix.

J s23d

By composing the evolution in(i) and (ii ) we find

Â = S a as1 − ad
s1 − adeix a + s1 − ad2eix D . s24d

The generating function is obtained by diagonalization of
(24):

lM = a + s1 − ad
y

2
Îs1 − ad2y2 + 4a + s1 − ad2y2

2
, s25d

where we introduced the short hand notationy=eix/2. Current
and noise follows by differentiation:

I =
1 − a

1 + a
, P = 4a

1 − a

s1 + ad3 . s26d

For G!1, Eq. (25) is very accurate and holds for 0øa
ø1. It is instructive to study its behavior in the two opposite
limits of a!1 and 1−a!1.

For a!1 the probability of transferring the electron dur-
ing the half cycle is nearly 1. Linearizing Eq.(25) in a we
find the generating function of a binomial distribution:

e−SNsxd = f2a + s1 − 2adeixgN. s27d

This means that at each cycle one electron is transmitted
with probability 1−2a. The cycles are independent: afterN
cycles the probability of having transmittedn electrons is
simply given by the binomial distribution s N

n
ds1
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−2adns2adN−n. Cycles are independent fora→0 since at
each cycle the system is reset to the stationary state within
accuracya2, regardless of the initial state. The stationary
solution is given by the eigenvector of Eq.(24) with eigen-
value 1 forx=0: upstl=ha / s1+ad ,1 /s1+adj. Calculating the
transmission probability for one electron during one cycle
with initial condition given byupstl one obtains, with linear
accuracy, the correct result 1−2a appearing in Eq.(27).

For a→1 the probability for one electron to tunnel during
a cycle is very small. We can thus expand the generating
function in the positive quantitys1−ad!1. This gives the
following surprising result:

e−SNsxd = fa + s1 − adeix/2gN. s28d

We find again that the periodicity of the generating function
has changed. Equation(28) describes a system of 1/2
charges that at each cycle have a probability 1−a of being
transmitted. The situation is similar to the static case. We can
again create a mapping on a fictitious system of charges 1/2
and say that every time that one electron succeeds in jump-
ing on or off the central island, one charge 1/2 is transmitted
in the fictitious system. This is possible, since it is extremely
unlikely that one electron can perform the full shuttling in
one cycle. Thus after many cyclessN@1d the counting sta-
tistics of these two systems coincide. The cycles are no more
independent like in the case fora!1, but the problem can
be mapped onto an independent tunnelling one. Fora inter-
mediate it is more difficult to give a simple interpretation of
Eq. (25), since different cycles are correlated in a nontrivial
way.

In Ref. 15 the current and noise within a similar model
have been calculated, but only for a single cycle using the
the stationary solution as initial condition. This approach
clearly neglects correlations among different cycles. We have
seen that this is an excellent approximation fora→0: Eq.
(27) representsN uncorrelated cycles. But it fails completely
in the opposite limit ofa→1, where the main contribution to
the current fluctuations comes from the cycle-cycle correla-
tions. This can be seen as follows. Starting from the station-
ary solution fora→1 (i.e., h1/2,1/2j) one can calculate the
average number of particles transmittedn̄=s1−ad /2 and its
fluctuation sn− n̄d2=s1−ad /2 during a single cycle. From
Eq. (28) we see that the average current over a large number
of cycles is correctly reproduced, but the noise differs by a
factor of 2. This difference increases with higher moments.
Even if the fluctuation during a single cycle is an interesting
physical quantity, the experimentally relevant one is the long
time fluctuations.

“Mixing” regions : We expect that Eq.(25) describes
pretty well the counting statisticsPNsnd for n,N, but it is
clear that it fails completely forn.N for which it gives
PNsn.Nd=0 identically. As a matter of fact, the approxima-
tion does not take into account than more than one electron
per cycle can be transmitted. This is an artefact of the as-
sumption thatGL andGR are never nonvanishing at the same
time.

In order to improve the approximation, but keeping the
problem solvable analytically, we need to treat differently the

left and right “mixing” regionsf<0, p , 2p. In these re-
gions at lowest orderGL<GR. We thus divide the time evo-
lutions in five steps. Forf,f0, uf−pu,f0, and 2p
−f,f0,1/a!1 we calculate the evolution withGL=GR
=G0. For f0,f,p−f0 and p+f0,f,2p−f0 we use
instead the previous approximation for regions(i) and (ii ).
The approximation is summarized in Fig. 3 where the exact
and the approximate dependence ofGLsfd is shown.

The contribution toÂ of the three mixing regions depends
on f0 and G only through their productGf0;t. The ap-
proximation is meaningful only fora small, otherwise the
constant approximation for the probabilities in the mixing
regions would not be accurate. We thus consider only the
small a limit. Keeping linear terms ina we have

lMsxd =
e−4t

2
fs1 − 2adsy2 − 1d + 2y sinhs4tyd

+ s1 + 2a + s1 − 2ady2dcoshs4tydg s29d

with the same short hand notationy=eix/2.
This expression, through −SNsxd /N=ln lMsxd gives the

FCS for largea in different limits. Let us begin with the case
t!1. Expanding Eq.(29) up to second order int we obtain

e−SNsxd = lMsxdN = fb0 + b1e
ix + b2e

2ixgN s30d

with

5b0 = 2as1 − 4t + 8t 2d,

b1 = 1 − 2as1 − 4t + 4t 2d − 4t 2,

b2 = 4t 2s1 − 2ad.
6 s31d

The interpretation is again simple, Eq.(30) gives a trino-
mial distribution, at each cycle there is a probabilitybñ of
transmittingñ electrons per cycle. This approximation holds
for any 0, ñ,2 and t<G /a!1, a@1. In this case the
probability of transmitting more than two electrons within a
cycle is extremely small sincebñ.1,t 2ñ−2. The importance
of the parametert for bñ.1 proves that to understand the
probability of charge transfer forn.N it is crucial to cor-
rectly treat the mixing regions whereGL and GR are both
nonvanishing. This means that in this limit the FCS forñ
=n/N.1 is determined mainly by the value oft, while for
0, ñ,1 is a that controls the FCS.

FIG. 3. (Color online) Exact and approximate dependence onf
of GL used to obtain analytically the FCS in the large oscillation
limit. GRsfd has the same form shifted byp in the f axis.
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Using the saddle point approximation, it is possible to
obtain explicitly the probability forñ<1:

lnfPNsñdg
N

=H ln b1 − s1 − ñdlns 1−ñ
b0/b1

d for ñ , 1

ln b1 − sñ − 1dlns ñ−1
b2/b1

d for ñ . 1.
J

s32d

The probability has a sharp maximum atñ=1, as expected,
and its logarithm decreases approximately linearly on both
sides, with slopes controlled by two different parameters. For
ñ,1 the slope is approximately given by −lns2ad, while for
ñ.1 it is given by lns4t2d. Since the parametera decreases
exponentially witha, while t is only inversely proportional
to a, the peak aroundñ=1 is asymmetric with an excess to
the left for moderately largea, and with an excess to the
right for largera.

When t@1 the previous expansion int cannot be used,
but in the small regionñ<1 we can find analytically the FCS
expandinglMsxd in powers ofy. In fact, it turns out that the
saddle point equation(12) is solved byx= ix with x real and
large, thus withy!1. We find that the expansion oflM
contains only even powers ofy and at the fourth order coin-
cide with Eq.(30), but with theb coefficients given by(for
larget)

5b0 = 2ae−4t,

b1 = 4s1 + 2ade−4tt 2,

b2 = 16
3 s1 + 2ade−4tt4.

6 s33d

For smally it exists a regionb0/b2,y2,b1/b2 where the
b1y

2 term dominates the other two terms. We thus find again
the same behavior of Eq.(32) for the probability, but with
the coefficients given by Eq.(33). Note that nowb2.b1,
this means that the probability of transmitting more than one
electron per cycle is always larger than the probability of
transmitting less than one per cycle. Actually for largea the
asymmetry is extreme, the slope forñ,1 is much larger than
the slope forñ.1 which is moderately positive.

For ñ@1 we cannot expand anymore for smally. Sincea
is not crucial to understand this region we can seta=0 into
Eq. (29):

lMsxd = e−4t fy coshs2t yd + sinhs2t ydg2. s34d

For large realy we thus find that the generating function is
that of a static grain active[cf. Eq. (15)] for a fraction
4f0/ s2pd of the time:

− Ssxd/N = 4f0Gseix/2 − 1d. s35d

IV. GENERAL RESULTS

The results discussed above can be now compared with
the numerical results valid for arbitrary values of the ampli-
tudea. These are obtained by solving numerically the system

of differential equations(13) to calculateÂ. The matrix is
then diagonalized and the maximum eigenvalue in modulus
selected. Current and noise are obtained by numerical differ-
entiation, while the FCS is obtained by solving numerically
Eq. (12).

We begin by discussing current and noise. Figure 4 shows
the average number of electrons and its fluctuation for dif-
ferent values ofG as a function of the amplitudea. We first
notice the qualitative difference betweenG smaller or larger
than 1. In the first case the oscillation of the central grain
largely increases the current, while in the second case it re-
duces it. In both cases for largea the current saturates to-
wards one electron per cycle. From our previous analysis we
know that for largeG the saturation happens only for very
largea, whent=2G /a becomes small enough to reduce the
contribution of the central region.(The choice of a factor 2
into the definition oft is arbitrary and it simply improves the
accuracy of the analytical approximation. Any factor of the
order of one does not change significantly the results.) A
striking feature that appears from the plot for the noise is the
enormous reduction of the Fano factor. The transport be-
comes deterministic due to the shuttling, it is very difficult
that the grains perform an oscillation without transmitting
one electron.

We believe that measuring noise and current in a device
can give a clean indication if the system is actually shuttling
electrons. It can discriminate between a simple coupling be-
tween the mechanical and the electronic degrees of freedom
of the system not associated with the shuttling mechanism.

In Fig. 4 we also plot the comparison with our simple
analytical approximation for large and smalla. The agree-
ment is pretty good, indicating that the crucial features are
correctly reproduced by our simple picture of evolution in
five steps.

Let us now discuss the counting statistics. In Fig. 5 we
show the evolution of lnfPNsñdg /N whena is increased from
0 to 5 by steps of one unit. We show the caseG=0.1 that is
a good representative of the smallG limit. The full evolution
from the static(a=0 andI =pG) to the deep shuttling regime
sa=5,I <1d is obtained(cf. also the current in Fig. 4). The
maximum of the distribution moves from approximately
p /10 to 1. Two features are particularly striking:(i) the peak

FIG. 4. (Color online) Current (plain line) and noise(dashed
line) as a function of the oscillation amplitude for different values
of G. From the top-left pannelG=0.001, 0.1, 1, 5. The dashed light
lines are obtained with the analytical approximation(29). The short
lines ata=0 are the static results given by(15).
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becomes very sharp at the point that a discontinuity of the
slope of lnP appears atñ=1; (ii ) it becomes asymmetric.
The fact that the peak is symmetric in the static case is not
surprising, the probability of transferring more or less elec-
trons than the average should not be very different. Whena
becomes large we have instead shown that those probabilities
are controlled by two different parameters, forñ,1 by a
and for ñ.1 by t=2G /a. The numerical results confirms
this prediction. The behavior around the maximum is well
described by the(nearly linear) form (32).

Figure 6 shows the caseG=1. In contrast with the previ-
ous case now fora=0 the maximum of the distribution if for
ñ=2p, larger than 1. Shuttling will reduce the current to 1.
The main contribution to the transport comes from the se-
quential hopping through the grain when bothGL andGR are
non vanishing. The oscillation reduces this region in favor of
regions where only oneG is non vanishing. In this limit one
electron per cycle is transferred. Since this regime is attained
when the contribution of the regionx<0 becomes negli-
gible, i.e., whent=2G /a→0, this means that one needs
huge oscillation amplitudes to reach the truly shuttling re-
gime of nD =1. For largea, but not yet in this limit, the prob-
ability has the form shown in Fig. 6. We considered also this
limit analytically after Eq.(33). Like in the previous cases a
singularity develops at 1, but in this case the probability
remains monotonic at 1(for not too largea). The effect of
the shuttling is thus mainly to enormously reduce the prob-
ability that less than one electron is transferred, and then to
slightly shift the maximum in the distribution frompG.1
towards 1. This is due to the fact that due to the oscillations
at least one particle is always transferred and the probability
of transferring more than one particle is reduced, since the
time spent by the shuttle in the central regionuxu!l is
shorter.

V. CONCLUSIONS

In conclusion we have studied the full counting statistics
of charge transfer in a single electron transition structure

where the central grain can oscillate at a given frequency.
The two relevant parameters are the oscillation amplitude
divided by the scale of the exponential dependence of the
resistancesad, and the probability of a tunnelling event dur-
ing the time 1/v for the static structuresGd. We have ob-
tained both numerical and analytical expressions for the
FCS. The results apply to both driven or self oscillating
shuttles, when the fluctuation of the amplitude of oscillation
can be neglected. The probability of transferringñ electrons
changes qualitatively as a function ofa andG. WhenG.1
the tunnelling events happening when the shuttles passes
through the regionx<0 are always important and very large
shuttling amplitudes are necessary to have a well defined
shuttling regime.

We also discussed in some detail the first two moments of
the FCS: the current and the noise. We found quantitative
prediction for the reduction of the Fano factor for large os-
cillation amplitudes.

The study of the FCS permits us to understand more
deeply the dynamics of charge transfer. In some cases we
found that the effective elementary charge becomes 1/2 the
actual one, due to correlations, both in the static and in the
dynamic regime. In other limiting cases the statistics is in
general polynomial, taking into account the probability of
different outcomes at each cycle. Generalization of the
theory to a larger number of available states in the grain, or
the inclusion of an asymmetric hopping probability is
straightforward and can be important to study more realistic
systems.
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FIG. 6. (Color online) The same as Fig. 5 forG=1.FIG. 5. (Color online) lnfPNsñdg /N as a function of the number
of electrons transferred per cycleñ for G=0.1, and oscillation am-
plitude a=0, 1, 2, 3, 4, and 5(from left to right).
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