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We calculate analytically the full counting statistics for short normal metal-superconductor junctions for
arbitrary voltages and temperatures. We also consider the phase oscillations of the cumulant-generating func-
tion in Andreev interferometers. AtT=0 and at applied voltage much smaller than the proximity gapDf, the
current noisePI doubles and the third current cumulantC3 is 4 times larger compared to the normal state; at
eV@Df they acquire large excess components. At the gap edge,eV=Df, the differential shot noisedPI /dV
exhibits sharp peak, while the differential Fano factordPI /dI turns to zero along with the differential resis-
tance, which reflects the transmission resonance associated with the singularity of the density of states. At
nonzero temperature,C3 shows a nonmonotonous voltage dependence with a dip neareV=Df; the zero-bias
slope ofC3sVd is much larger(up to 5 times) than at the zero temperature.
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During last few years the statistics of quantum and ther-
mal fluctuations of the electric current in mesoscopic sys-
tems has been attracted a rapidly growing attention. It was
recognized that measuring the fluctuation properties of me-
soscopic conductors provide unique and important informa-
tion about correlations and statistics of charge carriers, the
information that is not accessible through conventional con-
ductance measurements. An adequate and powerful theoreti-
cal approach to the fluctuations was built on the concept of
full counting statistics(FCS), i.e., the statistics of the number
of particles transferred through the conductor. The concept of
FCS, which appeared first in quantum optics, was extended
to normal electron systems1 and then successfully applied to
superconducting structures.2

The basic problem of the FCS is to calculate a probability
Pt0

sNd for N particles to pass a system during an observation
time t0. Equivalently, one can find a cumulant generating
function (CGF) Ssxd,

expf− Ssxdg = oN
Pt0

sNdexpsiNxd, s1d

which determines the current correlation functions as fol-
lows:

Cn ;
1

enE
0

t0

dt1 . . .E
0

t0

dtnkkÎst1d ¯ Îstndll

= − s] /i ] xdnSsxdx=0, s2d

where kk¯ll denotes the irreducible part(cumulant) of a

correlation function. The first two cumulants,C1=N̄

;oN NPt0
sNd and C2=sN−N̄d2, correspond to the average

current I =se/ t0dC1 and noise powerPI =s2e2/ t0dC2. Intense
studies of the current noise have led to a number of interest-
ing results concerning statistical correlations in the current
transport(for a review, see, e.g., Ref. 3), and the effective
chargeqeff transferred during an elementary transport event.

The third cumulantC3=sN−N̄d3 has recently attracted a spe-

cial interest as the lowest-order correlation function which is
not disguised by equilibrium fluctuations.4 First measure-
ments ofC3sVd in the tunnel junction5 have revealed a high
sensitivity of this cumulant to an electromagnetic
environment.6

In normal metalsNd/superconductingsSd hybrid struc-
tures, the basic mechanism of charge transport at subgap
energies,E,D, is due to Andreev reflection of quasiparticles
at the NS boundary,7 i.e., conversion of electrons incident
from the normal side of the junction to retroreflected holes,
accompanied by escape of Cooper pairs into the supercon-
ductor. During an elementary Andreev reflection event, the
effective charge transferred through the NS interface is twice
the electron charge,qeff=2e. This charge doubling strongly
affects the current statistics in the NS junctions. For ex-
ample, it leads to a factor of two increase in the magnitude of
a zero-bias shot noise in the NS junctions as compared to
that in normal ones.2,8 At finite biases, the effective charge
becomes dependent on the applied voltage,9,10 due to varia-
tions of the size of the proximity region near the NS bound-
ary, where the quantum coherence holds between the elec-
trons and retroreflected holes.

In the Andreev interferometers(see Fig. 1), the phase re-
lations between the electron and hole wave functions in the
normal wire can be controlled by the magnetic flux enclosed

FIG. 1. The model of Andreev interferometer. A diffusive wire
of the lengthL is attached between the normal reservoir and a short
SNS junction of the widthd connected to a superconducting loop
with the magnetic fluxF.
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by a superconducting loop, which results in the periodic de-
pendence of transport characteristics of the interferometer on
the superconducting phase differencef across the SNS junc-
tion. Initially, the oscillations of the conductance were inves-
tigated both experimentally(see a review in Ref. 11) and
theoretically,12 and, more recently, the oscillations in the cur-
rent noise were reported.10

Motivated by the growing interest in high-order correla-
tion functions, we develop in the present paper a systematic
approach to full statistics of charge transport in Andreev in-
terferometers. We adopt several simplifying assumptions,
which enables us to present an analytical solution for the
CGF and, without a loss of generality, to clearly demonstrate
essential features of coherent effects in the current statistics
in NS structures. Our approach is based on the extended
Keldysh-Green technique,13,14 in which the CGF is deter-
mined by the equation

−
ie

t0

] S

] x
= Isxd ;

1

8e
E dE Tr t̆KĬ, t̆K = sztx. s3d

The Pauli matricess std operate in the Nambu(Keldysh)
space. The counting currentIsxd is to be found from the
quantum kinetic equations15 for the 434 matrix Keldysh-

Green functionĞ in the mesoscopic normal region of the
interferometer confined between the reservoirs,

sNfszE,Ğg = i"D ] Ĭ, Ĭ = sNĞ ] Ğ, Ğ2 = 1̆, s4d

whereD is the diffusion coefficient,] denotes spatial deriva-
tive, andsN is the normal conductivity per unit length. The
counting fieldx is introduced via a modified boundary con-
dition involving the gauge transformation of the local-

equilibrium functionĞR, e.g., in the rightsRd normal reser-
voir,

ĞRsxd = expsixt̆K/2dĞR exps− ixt̆K/2d. s5d

A brief overview of this technique in the particular case of
normal structures is given in the Appendix.

For a multiterminal structure of Fig. 1, the solution of Eq.
(4) must be found separately in each arm of the interferom-
eter, taking into account the matching condition following
from the Kirchhoff’s rule for partial counting currents at the
node.16 The problem simplifies if the junction lengthd is
much smaller than the lengthL of the interferometer wire
(or, more precisely, in the case where the wire resistance
dominates the net interferometer resistance). In this case, the
wire weakly affects the spectrum of the junction,17 which
thus can be considered as an effective leftsLd reservoir. Cor-

respondingly, the functionĞL which imposes the boundary
condition to Eq.(4) at the junction node, is to be constructed
from the Green and distribution functions taken at the middle
of a closed equilibrium SNS junction. Furthermore, ifd is
much smaller than the coherence lengthj0=Î"D /D, these
Green functions take the BCS form, with the phase-
dependent proximity gapDf=Ducossf /2du.18 This results in
the BCS-like singularity at the gap edge in the density of
states(DOS) of the normal wire and suppression of the DOS
at E,Df. Within such model, the problem of current statis-

tics in the Andreev interferometer becomes equivalent to the
calculation of the CGF for an NS junction with the effective
order parameterDf in the superconducting reservoir. There-
fore our results apply to short NS junctions as well.

Proceeding with calculation, we encounter a common
technical difficulty, namely, the violation of the standard tri-

angle form ofĞ in the Keldysh space which results from the
gauge transformation in Eq.(5). In such a situation, Eq.(4)
cannot be decomposed into the Usadel equation for the
Green’s functions and the kinetic equations for the distribu-
tion functions, and therefore the well developed methods for
solving Keldysh-Green’s equations cannot be applied. This is
the reason why the FCS problem in the NS structures re-
quires generally a numerical analysis of the whole 434 ma-
trix boundary problem; such an analysis has been carried out
so far only in the limit of small characteristic energies
heV,Tj!D.9,10

In some particular cases, however, the analytical solution
to this problem can be attained by the methods of the gener-
alized circuit theory.19,20Within this approach, the CGF for a
mesoscopic connector between two reservoirs is expressed in
terms of the distributionrsTd of the transparencies of the
conduction channels,

Ssxd =
gt0
4e2 E dEE

0

1

dT rsTdTr lnW̆sE,T,xd, s6d

W̆= 1 + sT/4dshGL,ĞRsxdj − 2d, s7d

whereg is the connector conductivity. Equation(6) generally
applies to the normally conducting structures with arbitrary
rsTd. It was also applied to the superconducting tunnel
junctions21 and point contacts20,22 with a singular transpar-
ency distribution localized at the junction transparency. In
general NS structures, the statistics of conducting modes, in
contrast to their behavior in normal structures,23,24 do not
reduce to statistics of transparencies—due to dephasing be-
tween the electron and hole wave functions described by the
left-hand side(lhs) of Eq. (4)—but require the knowledge of
full scattering matrices. However, if the characteristic ener-
gies are much smaller than the Thouless energy,heV,Tj
!ETh="D /L2, the dephasing term in Eq.(4) can be ne-
glected, and the transparency statistics for a normal wire23

can be applied to the NS structure. In long junctions,L@j0,
where the Thouless energy is small,ETh!D, the quasiparti-
cle spectrum is structureless at small energies,E!ETh,
which results in linear voltage dependence of the CGF and,
correspondingly, of all cumulants ateV!ETh.

14 In the oppo-
site limit, eV@ETh, the CGF for a long junction can be found
within the so-called “incoherent” approximation,25 by ne-
glecting the contribution of the coherent proximity region.
The calculations in Refs. 14 and 25 lead to the conclusion
that the FCS exhibits the reentrance effect: In both limits,
eV!ETh and eV@ETh, it is described by the same expres-
sion forSsxd. An interesting situation occurs in NS junctions
with opaque interfaces dominating the net resistance.26 In
this case, the crossover between the coherent and incoherent
transport regimes occurs at very small voltage of the order of
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the inverse dwell time of quasiparticles confined between the
interface barriers.

In our work we focus on short NS junctions with the
length smaller thanj0 and, correspondingly, with large Thou-
less energy,ETh@Df. In such situation, the energy region of
negligibly small dephasing,E!ETh, overlaps with the region
E@Df, in which the NS junction behaves as the normal
system. This enables us to apply Eq.(6) and the transparency
statistics for diffusive normal conductor at arbitrary voltages
and temperatures, and obtain the analytical solution of the
FCS problem in the full range ofV andT.

The calculation of the integrand in Eq.(6) is performed as
follows. The Keldysh-Green functionGRsxd in the normal
reservoir is traceless in the Keldysh space and therefore it
can be expanded over the Pauli matricest as

ĞRsxd = tWsgW1 + szgWzd, gW1gWz = 0, gW1
2 + gWz

2 = 1, s8d

where tW is the vector of Pauli matricesti, and the vectors
gW1,zsxd are expressed through the local-equilibrium distribu-
tion functions in the voltage biased electrode. In the subgap

energy region,E,Df, the functionĞL at the junction node
is the unity matrix in the Keldysh space proportional to the
Nambu matrix Green’s functionĝ,

ĞL = ĝ = sye
sxuf, ĝ2 = 1, uf = arctanhsE/Dfd. s9d

Then the calculation of the trace in the Nambu space in Eq.
(7) is reduced to the summation over the eigenvaluess
= ±1 of the matrixĝ,

Tr lnW̆= os
Trt ln W̆s, W̆s = a + tWbW , s10d

a = 1 −T/2, bW = sT/2dssgW1 − igWz sinh ufd. s11d

Noticing that any 232 matrix can be expressed in the expo-
nential form as

W̆s = expsln w + wp̆d, w2 = a2 − bW2, s12d

coshw = a/w, p̌ = tWbW/w sinh w, Tr p̆ = 0, s13d

where w is independent ofs due to orthogonality of the

vectorsgW1 and gWz, one easily obtains Trt ln W̆s=ln w2 and

Tr lnW̆=2 ln w2. At E.Df, the functionGL is traceless in
the Keldysh space,

ĞL = ĝstWgWLd, ĝ = sze
sxuf, uf = arctanhsDf/Ed, s14d

where the vectorgWL is constructed from the equilibrium dis-
tribution function at zero potential. In this case, the 434

matrix W̌ has the formW̌=a+sWbW, wherea andbW2 are scalars,

a = 1 − sT/2ds1 − gWLgWz coshufd, s15d

bW2 = sT/2d2fsgWLgW1d2 − sgWL 3 gWzd2 sinh2 ufg, s16d

therefore it can also be transformed to the exponent form
similar to Eqs.(12) and (13), with the traceless matrixp̆

=sWbW /w sinh w. Following this line, we obtain Tr lnW̆

=2 ln w2, and then, integrating overT in Eq. (6), we arrive at
the final expressions for the CGF,

Ssxd =
gt0
4e2E

0

`

dE SsE,xd, s17d

SsE,xd = H2u2, E , Df,

u+
2 + u−

2, E . Df,
s18d

where the quantitiesu andu± are given by explicit relations,

Zs0dcosh2 u = Zs2xdcosh2 uf, s19d

Zs0dcoshu± = fZsxd + cosx − 1gcoshuf s20d

±tanh
e

2
fsinh p − sinhsp − ixd − i sin xg

3 S1 −
coshe + 1

coshp − 1
sinh2 ufD1/2

, s21d

uf = arctanhfsDf/EdsgnsE−Dfdg, s22d

Zsxd = coshe + coshsp − ixd, e =
E

T
, p =

eV

T
. s23d

By using Eqs.(2) and(17)–(23), one can obtain analytical
expressions for all cumulants. At zero temperature, the cal-
culation essentially simplifies. Indeed, atT→0 andE.eV,
the dominating terms in Eqs.(19)–(23) are proportional to
expsed, and thereforeu andu± are equal touf. This implies
that the CGF is independent of the counting field at these
energies, and all cumulants turn to zero. AtE,eV, the terms
with expsp− inxd dominate, and we arrive at simple rela-
tions,

coshu = e−ix coshuf, s24d

coshu± = e−ix coshuf ± se−ix − 1d. s25d

At subgap voltage,eV,Df, when the charge transport atT
=0 is only due to the Andreev reflection, the currentI, the
current noisePI, and the third cumulantC3 read

I = IDqszd, qszd =E
0

z dx

x
arctanhx, s26d

PI = 2efI − IDfsz−1dg, s27d

C3 = N̄ −
N̄D

2z2fs5z2 − 3dfsz−1d + zg,

fszd =
1

2
fz− sz2 − 1darctanhz−1g,

ID = gDf/e, N̄D = IDt0/e, z= eV/Df. s28d

At small voltages,eV!Df, the magnitude of the shot noise

doubles,PI =s4/3deI, andC3=4N̄/15 is 4 times larger com-
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pared to the normal case.1,2,8,27When the voltage increases
and exceeds the gap edge,eV.Df, the normal electron pro-
cesses at the energiesE.Df begin to contribute to the
charge transport, providing the normal-state voltage depen-
dencies of the cumulants ateV@Df. At large voltage, the
Andreev reflected particles produce voltage-independent ex-
cess components of the cumulants,

I = gV− IDfszd + Iex, Iex =
ID

2
sp2/4 − 1d, s29d

PI = 2eIDsz2 − 1dfszd + PI
ex, PI

ex = 2eIex, s30d

C3 =
N̄D

2
sz+ 1dhsz− 1df8z/3 − s8z2 − 3dfszdg − 1/3j + C3

ex,

C3
ex = sN̄D/2dsp2/4 − 4/3d. s31d

At TÞ0, we calculate the cumulant spectral densities
IsEd, PsEd, andCsEd defined as

I = IDE
0

`

dE IsEd, IsEd = f1 sinh p/Zs0d, s32d

PI = 2eIDE
0

`

dE PsEd, C3 = N̄DE
0

`

dE CsEd. s33d

The functionsPsEd andCsEd at E,Df read

PsEd =
2

Z2s0d
f2Qf1 + s1 − f2dsinh2 pg, s34d

CsEd =
sinh p

Z3s0d
f4f1 sinh2e + s2f2 + 3f3dsinh2 p

+ 2Qs3s1 − f2d − 2f1dg, Q = 1 + coshe coshp,

s35d

whereas atE.Df they are given by equations

PsEd =
2

Z2s0d

3FQS1 + 2f1 − 2f2
coshp − 1

coshe + 1
D + sinh2 p − Zs0dG ,

s36d

CsEd =
sinh p

Z3s0ds1 + coshed
hf2s5 coshe − 1dsinh2 p

+ 3fZs0ds1 − 2f3d + Qs4s1 − f2 + f3 coshed

+ 3 coshe − 2f3d + sinh2 es2f3 − coshe

+ s3 − 5 coshpdf2dg + 4f1s1 + coshedsQ + sinh2 edj.

s37d

In Eqs.(33)–(37), the functions

f1 = uf coth uf, f2 =
f1 − 1

sinh2 uf

, f3 =
f2 − 1/3

sinh2 uf

s38d

describe energy variation of quasiparticle spectrum which is
most essential in the vicinity of the gap edgeDf.

As shown in Figs. 2(a) and 2(b), the cumulants oscillate
with the phase and exhibit deep minima atf mod 2p=p,
when the gap closes and the cumulants approach their nor-
mal values. When the proximity gapDf approacheseV,
PIsfd exhibits a peak, whileC3sfd shows a step-like struc-
ture. Shown in Figs. 2(c) and 2(d) are voltage dependences
of the cumulants for different temperatures plotted as func-
tions of variables that provide the universality of the curves
for any f. As the temperature increases, the current noise
approaches finite value ateV=0 due to thermal fluctuations,
and exhibits quadratic dependence on the applied voltage at
eV!T. Within the intermediate voltage region,T,eV,Df,
PIsVd becomes linear with doubled slope produced by the
Andreev reflected particles, and ateV.Df, the slope turns to
its normal-metal value. A considerable excess noise at large
voltages is contributed by both the thermal fluctuations and
Andreev reflection. A more interesting behavior is discov-
ered for the third cumulant. At nonzero temperature, the
zero-bias slope of the normalizedC3sVd is much larger than
at zero temperature(up to the factor 5 which is similar to the
normal structures4), approaching the value 4/3. At larger
voltages,T,eV,Df, the slope of the normalizedC3sVd re-
turns to the value 4/15 found forT=0. At eV,Df, the curve
C3sVd showsN-like feature, and finally, ateV.Df, it ap-
proaches a straight line with the(normal-state) slope 1/15.
Such a behavior indicates thatC3 acquires anomalously large
thermal component at voltageeV,Df, which, however, rap-

FIG. 2. Shot noise power and third cumulant vs superconducting
phase(a), (b) and vs voltage(c), (d) at different temperatures.
Dashed lines are voltage dependencies in the normal state atT=0.
In the panel(d), zero-bias slopes of the normalizedC3sVd are
indicated.
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idly decreases ateV.Df and/orT.Df towards the normal
metal level.

The singularity in the DOS at the proximity gap edge
produces interesting features of the differential transport
characteristics of the interferometer shown in Fig. 3. First,
we note that the differential resistanceRd=dV/dI turns to
zero ateV=Df [see inset in Fig. 3(a)], which is explained by
full transmission of the NS junction at the resonant energy
Df. Correspondingly, the differential Fano factordPI /dI
=RdsdPI /dVd, which is commonly interpreted as effective
transferred charge,qeff=s3/2ddPI /dI, also turns to zero,
qeff=0e, while the differential noise normalized in a similar
way, s3R/2ddPI /dV, shows a large peak of the height 3e.
Thus we conclude that none of these quantities can be un-
ambiguously associated with the physical elementary trans-
ferred charge, but they rather reflect the energy variation of
the transmission characteristics. Similar effects have been
predicted for an NS structure with opaque interfaces26 where
a considerable enhancement ofdPI /dV and suppression of
dPI /dI occur, however, at small applied voltage determined
by large dwell time of quasiparticles.

It is instructive to compare our analytical results for short-
arm interferometers with that obtained numerically for long
NS junctions with a small minigapEg,ETh!D. The results
are qualitatively similar: in long junctions,qeff is equal to 2e
at eV!Eg and has a minimum ateV<Egsfd, which moves
towards small voltage atf→p;10 the differential noise is
also nonmonotonous and approaches maximum ateV
<5ETh.

9 After this comparison we see that the proximity gap
Df in short junctions plays the role of the minigapEg in long
junctions and determines the feature in the effective charge,
though this feature ateV,Eg in long junctions is much less
pronounced. However, as noted above, a qualitative differ-
ence of long junctions is the existence of an intermediate
incoherent voltage regionEg!eV!D, where both the effec-
tive charge and the normalized differential noise have the
value 2e, and their crossover toe occurs only ateVùD.28

In conclusion, we have studied the full counting statistics
of a short diffusive NS junction and apply the results to the
Andreev interferometer. Assuming the size of the structure to
be much smaller than the coherence length, we calculated
analytically the cumulant-generating function for arbitrary
applied voltage and temperature. We studied in detail the
second(the current noise) and the third cumulants. Both

quantities oscillate with the phase difference across the junc-
tion and show nonmonotonous voltage dependence in the
vicinity of the proximity gap edge, which reflects resonant
transmission of the structure at the singularity of the density
of states.

This work was supported by the U.S. Department of En-
ergy, Office of Science under Contract No. W-31-109-ENG-
38.

APPENDIX

In this Appendix we outline, for reference purposes, the
procedure and summarize the results of calculation of the
CGF for a diffusive connector between normal reservoirs, by
using the extended Keldysh-Green’s technique. For general-
ity, we consider a diffusive wire interrupted by tunnel barri-
ers, which enables us to present several original results and
to examine various limiting situations.

In normal systems, the matricesĞ and Ĭ are traceless in
the Keldysh space and therefore they can be expressed
through 3-vectors with the components diagonal in the

Nambu space,Ğ=gWtW, Ĭ = IWtW, where tW is the vector of the
matricest, andgW2=1. Since the lhs of Eq.(4) turns to zero in
normal systems, the formal solution of Eq.(4) for the matrix

current densityĬN in each segment of the wire can be easily
obtained,

ĬN = gN ln Ğ1Ğ2 = gN lnfgW1gW2 + itWsgW1 3 gW2dg = tWIWN,

IWN = igNpWfN, fN = arccosgW1gW2, sA1d

wheregN is the conductivity of the wire segment,Ğ1,2 are the
Green’s functions at the left and right segment edges, respec-
tively, fN is the angle between the(complex) unit vectorsgW1
and gW2, and pW =sgWL3gWRd /sin fN is the unit vector perpen-
dicular togW1 andgW2.

The matrix currentĬB through the tunnel barrier can be

expressed in terms of Green functionsĞ− and Ğ+ at the
left-hand and right-hand sides of the barrier by using the
boundary condition,29

ĬB = ĬB+ =
gB

2
fĞ−,Ğ+g = tWIWB,

IWB = igBpW sin fB, fB = arccosgW−gW+, sA2d

wherepW =sgW−3gW+d /sin fB andgB is the barrier conductance.
The conservation of the matrix current along the connec-

tor, Ĭ =const, following from Eq.(4) and the boundary con-
dition in Eq. (A2), results in conservation of the vector cur-

rent, IW= IWN= IWB=const. This implies that for all elements of
the connector, the unit vectorspW coincide, therefore the
Green’s vectorsgW lye in plane, and the vectorpW can be con-
structed from known Green’s vectorsgWL andgWR in the reser-
voirs, pW =sgWL3gWRd /sin f, wheref is the angle betweengWL

andgWR,

FIG. 3. Effective transferred charge(a), differential noise(b),
and differential resistance(inset) vs voltage atf=0 (solid lines) and
f=0.7p (dashed lines), T=0.
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f = arccosf1 + P−+seix − 1d + P+−se−ix − 1dg,

Pss8 = nss1 − ns8d, n− = nFsEd, n+ = nFsE + eVd.

sA3d

From the current conservation, we also conclude that all el-
ements are characterized by a single variableh,

gB sin fB = gNfN = gh = const, sA4d

where the normalization constantg is chosen to be equal to
the conductance of the whole connector. Thus, the vector
current is given by

IW =
igh

sin f
sgWL 3 gWRd. sA5d

The planar rotation of the Green’s vector results in the addi-
tivity of the angles between all consecutive vectorsgW, there-
fore the sum of these angles is equal tof,

o
wires

fN + o
barriers

fB = f, sA6d

which leads to the equation for the parameterhsfd,

gNh + o
k

arcsinsgkhd = f,

gN = RN/R, gk = Rk/R, gN + o
k

gk = 1, sA7d

whereRN is the net resistance of all wires,Rk is the resis-
tance of thekth barrier, andR=g−1.

By using the definitions in Eq.(3), we obtain the counting
electric currentIsxd and the CGF,

Isxd =
ig

4e
E dE Tr

szh

sin f
sgWL 3 gWRdx, sA8d

Ssxd =
gt0
4e2 E dE TrF rNh2

2
+ o

k

1 −Î1 − rk
2h2

rk
G .

sA9d

We note that the statistics are insensitive to the position of
the barriers and depend only on the barrier resistances and
the net resistance of the diffusive part of the connector. In the
absence of barriers,rk→0, the CGF reads

Ssxd =
gt0
8e2 E dE f2. sA10d

At zero temperature, the integration over energy in Eq.(A9)
can be explicitly performed,

Ssxd =
N̄

2FrNh2/2 + o
k

s1 −Î1 − rk
2h2d/rkG , sA11d

whereN̄=gVt0/e. From Eq.(A11) we find the Fano factorF
in the shot noise powerPI =eFI,

F = s2/3ds1 + 2B3d, Bn = o
k

rk
n, sA12d

which varies between the Poissonian valueF=2 for the tun-
nel connector and 1/3-suppressed value,F=2/3, in the ab-

sence of barriers. The third cumulantC3 varies betweenN̄

for Poissonian statistics in the single barrier case andN̄/15
for a diffusive conductor,

C3sV,0d =
N̄

15
f1 + 10B3s1 + 4B3d − 36B5g. sA13d

It is interesting to note that Eq.(A7) can be easily trans-
formed into equation for the transparency distributionrsTd,
by making use of the relation of the generalized circuit
theory between the counting currentIsxd and the matrix cur-

rent Ĭ following from Eqs.(6) and (3),

Isxd =
1

4e
E

0

`

dE Tr txszĬ , sA14d

Ĭ =
g

2
E

0

1

dT rsTdT fĞL,ĞRsxdgW̆−1. sA15d

Rewriting these equations in the vector representation, com-
paring them with Eq.(A8), and introducing the variablez
=s1−gWLgWRd /2, we obtain the equation forrsTd,

E
0

1 T dT rsTd
1 − zT

=
h

2Îzs1 − zd
, sA16d

whereh obeys Eq.(A7) with the functionfszd=2 arcsinÎz
on the right-hand sidesrhsd. The solution of Eq.(A16) has
the formrsTd=Reh /2pTÎ1−T, wherehsTd is the solution
of Eq. (A7) with the functionp+2i arccoshs1/ÎTd on the
rhs.24

In some limiting cases, one can obtain an analytical solu-
tion of Eq. (A7). In particular, if the numberM of the barri-
ers is large,M @1, then the resistance of each barrier is small
compared to the net resistance,Rk!R. In this case, the ap-
proximate solution of Eq.(A7) is h=f, and the CGF coin-
cides with that for diffusive wire, Eq.(A10). In the tunnel
limit, when the resistance of each barrier much exceeds the
net resistance of diffusive segments,Rk@RN, the first term in
Eq. (A7) can be neglected. Then an analytical expression for
the parameterh and the CGF at arbitraryM can be obtained
in the case of equivalent barriers,rk=1/M,

h = M sin
f

M
, Ssxd = N̄M2 sin2arccoseix/2

M
, sA17d

when the Fano factor is given byF=s2/3ds1+2/M2d. In the
limit of a large number of the barriers,M @1, we return to
the diffusive statistics, while for single-barrier structure,M

=1, we obtain Poissonian statistics,Ssxd=N̄seix−1d.
At arbitrary temperature, the cumulants can be found ana-

lytically by asymptotic expansion in Eqs.(A7) and(A9) over
small h andx. In particular, the noise power,
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PIsV,Td =
4T

3R
Fs1 + 2B3d

p

2
coth

p

2
+ 2s1 − B3dG ,

sA18d

exhibits crossover between the shot noise atT!eV and the
Johnson thermal noisePT=4T/R at large temperature,T
@eV. The voltage dependence of the third cumulant,

C3sV,Td = C3sV,0d +
2

5
N̄s1 − 10B3

2 + 9B5d
sinh p − p

p sinh2sp/2d
,

sA19d

is linear in both limits and approachessN̄/3ds1+2B3d at high
temperatures. In the absence of barriers,Bn=0, Eq. (A19)
reproduces the result of a modified kinetic theory of fluctua-
tions for a diffusive wire.4

In order to access FCS in multiterminal structures, which
consist of a set of connectors attached between several nor-
mal electrodes and a diffusive island(node) with negligibly
small resistance, separate counting fieldsxa and parameters
ha are to be introduced in each arm,16

IWa = ijasgWa 3 gWcd, ja = gaha/sin fa. sA20d

The quantitiesha obey the equations similar to Eq.(A7),
with the anglesfa=arccossgWagWcd in the rhs, where the
Green’s vectorgWc at the node can be found from the current

conservation law,oa IWa=0,

gWc = GW /ÎGW 2, GW = o
a

jagWa. sA21d

According to Eq.(A21), the vectorgWc depends on all
counting fieldsxa, which reflects cross correlations between
the currents in different connectors. For the system of tunnel
connectors, where the quantitiesja are equal to the conduc-
tancesga and therefore become independent ofx, the CGF at
zero temperature can be explicitly evaluated,21

Shxj =
Vt0
2e

GÎ1 + 4o
a

ḡVḡaseixa − 1d, sA22d

where ḡa=ga /G, G=ob gb, and the indexV denotes the
voltage biased electrode.

For arbitrary connectors, the cumulants can be found from
asymptotic solutions of the equations forha andgWc at small
xa. For instance, the partial current throughath connector is
Ia=VgaḡV, and the Fano factors defined asFab=s2ei/ Iad
3s]Iahxj /]xbdx=0 read

Fab = S2 −
4

3
ḡVDdab −

4

3
ḡbF1 + ḡVsB3a + B3bd − B3Vs1 − ḡVd2

− ḡVo
gÞV

ḡgB3gG . sA23d

The diagonal elementsFaa of the matrix Fab have the
meaning of the Fano factors for the shot noise inath con-
nector and may vary between 2/3 and 2. For a large number
of the terminals, when the normalized conductancesḡa be-
come small, they approach Poissonian valueFaa=2. The
cross-correlatorsFabsaÞbd between the currents in differ-
ent terminals are negative due to Pauli principle.28 In a par-
ticular case of diffusive connectorssBa=0d, Eq.(A23) repro-
duces the result of Ref. 30 for a so-called star-shaped
geometry.
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