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We consider the currents flowing in a solid-state interferometer under the effect of both an Aharonov-Bohm
phase and a bias potential. Expressions are obtained for these currents, allowing for electronic or electron-
boson interactions, which may take place solely on a quantum dot placed on one of the interferometer arms.
The boson system can be out of equilibrium. The results are used to obtain the transport current through the
interferometer, and the current circulating around it under the effect of the Aharonov-Bohm flux. The modifi-
cations of both currents, brought about by coupling the quantum dot to an incoherent sonic or electromagnetic
source, are then analyzed. By choosing the appropriate range of the boson source intensity and its frequency,
the magnitude of the interference-related terms of both currents can be controlled.
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I. INTRODUCTION

Solid-state interferometers, restricted to the mesoscopic
scale in order to retain the coherence of conduction
electrons,1 are constructed from narrow waveguides, possi-
bly containing scatterers, for the electronic paths. An
Aharonov-Bohm magnetic flux2 between the two paths in
such interferometers results in a periodic flux-dependence
behavior, which stems from interference of the electronic
wave functions. In recent experiments,3–10 carried out on in-
terferometers connected to several electronic reservoirs, the
current passing through the system in response to a voltage
difference has been used to investigatecoherent transport.
These experiments have revived interest in such systems,
whose theoretical11–13 and experimental14 study was begun
much earlier. The current experimental setups involve a
quantum dot(or two8,9) embedded in the interferometer,
aimed at the study of the transmission properties of the
former. These experiments have been followed by many the-
oretical works, exploring the possibility of deducing the
transmission phase of a quantum dot from the measured con-
ductance of the interferometer,15–26 and investigating its de-
pendence on various interactions.

The interference of the electronic wave functions in an
Aharonov-Bohm interferometer also creates a circulating
current, which flows even at thermal equilibrium, and even
when the ring is isolated(under these conditions it is usually
called “persistent current”). This current was invoked as
early as 1936 by Pauling,27 to explain the large orbital mag-
netic response ofp electrons moving on a ring in benzene-
type molecules, and soon after was calculated28 in terms of
the tight-binding model. The analogy between persistent cur-
rents and the Josephson effect has been expounded upon in
Refs. 29 and 30. Their discussion of the possible realization
of a “normal Josephson current” in small metallic(or semi-
conductor) rings, in the presence of some disorder, has
sparked much interest in this phenomenon and led to a con-
siderable experimental effort to detect it, either by various
magnetic response measurements31–36 or by optical

spectroscopy.37–39At thermal equilibrium, the persistent cur-
rent is equivalent to the thermodynamic orbital magnetic mo-
ment of the electrons. Since it arises from the interference of
the electronic wave functions, as long as the electrons are
phase coherent it will survive the presence of moderate static
disorder.1,30 Recently, most of the theoretical interest in this
phenomenon has shifted to studying charge-(or spin) fluc-
tuation effects,40–42 time-dependent properties and nonequi-
librium situations,43–46 or electronic interactions.47–51 In ad-
dition, recently there have been several attempts52–55to relate
the phenomenon of persistent current, which is intimately
connected to electronic coherence, to the dephasing of elec-
trons at equilibrium due to the coupling with a boson bath.

Here, we study the currents flowingaround and through
an “open” interferometer, connected to electronic reservoirs,
with a quantum dot placed on one of its arms, when the latter
is coupled to an external incoherent radiation source. The
electronic reservoirs are held at slightly different chemical
potentials, such that the voltages are small enough for the
system to be in thelinear transport regime. The external
radiation source, on the other hand, will be taken as being,
and possibly driving the system, out of equilibrium, so that
its intensity can serve as a “control parameter” of the cur-
rents. In other words, we study the currents when the elec-
trons are also coupled to an incoherentout-of-equilibrium
boson source. We take the electronic system to be free of any
interactions, except on the quantum dot, where the electrons
are coupled to an external source of sonic(or electromag-
netic) waves. The system is depicted in Fig. 1.

Although we use the term “electron-phonon interaction”
throughout this article, our results apply equally, with minor
modifications, to the case where the electrons are coupled to
an electromagnetic source, that is, for the electron-photon
interaction. In any event, in order to retain the coherence of
the electrons, the systems we consider are necessarily con-
fined to size scales small enough that the electrons stay co-
herent at the given temperature. At the same time, the
strength of the acoustic source is assumed to be such that the
additional decoherence due to it is not detrimental. The pre-
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cise parameter windows in which this can be achieved are
sensitive to acoustic(or electromagnetic) mismatch, details
of the sample geometries, etc.; hence, their calculations are
not carried out here. Also, we do not discuss dephasing, but
rather, as in Refs. 43 and 46, we concentrate on anonequi-
librium source of bosons.

When the electrons are coupled to a boson source, the
naive expectation is that the coherent current decreases due
to loss of coherence, caused by inelastic processes as well as
by renormalization effects due to the “dressing” of the elec-
trons by the bosons(the polaron effect56). The latter is mani-
fested by an overall Debye-Waller exponent. However, it
turns out that this is not the whole effect brought about by
the radiation. In the case ofisolated rings, it has been
found57 that when the electrons are coupled to phonons, the
persistent current is not only diminished; rather, there ap-
pears an additional term, which originates from delicate reso-
nance processes in which at least two phonons are involved
(those were termed “doubly resonant processes”). The addi-
tional orbital magnetic moment appears at nonzero tempera-
tures, and has a nonmonotonic temperature dependence at
sufficiently low temperatures.57 At thermal equilibrium, this
new term has been found to further reduce the persistent
current (beyond its value in the absence of the coupling to
the bosons). However, at nonequilibrium situations, the mag-
nitude of that “extra” contribution may be tuned by control-
ling the intensity of the radiation in a certain frequency
range, which is experimentally feasible. Possibly related ex-
periments with extremely interesting results have recently
been reported in, e.g., Refs. 58 and 59. Here, we examine the
effect of the electron-phonon coupling on a biased
Aharonov-Bohm interferometer, which consists of an “open”
ring, connected to two reservoirs. Then, in addition to the
circulating current induced by the magnetic phase, there ap-
pears a transport current. We find that, in a certain sense, the
open ring is more amenable to manipulations by an external
radiation source. We show that both the circulating and trans-
port currents are affected by a radiation source in a similar
manner: Besides the overall Debye-Waller factor, they each
acquire an additional contribution. In the case of an open
ring, that additional term does not necessitate the existence
of real resonant transitions between the initial and the final

state; it appears at a lower order in the electron-phonon in-
teraction(as compared to the situation in isolated rings) and
it exists even at zero temperature. The magnitude of that
contribution can again be tuned by controlling the intensity
of the radiation in a certain frequency range. In other words,
by coupling the electrons to anout-of-equilibriumradiation
source, one may control both the circulating and transport
currents. Such a relation between the radiation intensity and
the orbital magnetic moment may open interesting possibili-
ties for future nano-devices.

Our method of calculation is to express all partial currents
flowing in the system(i.e., I1, I2, I3, and I4; see Fig. 1) in
terms of the exact(and generally, unknown) Green function
on the dot, which includes all the effects of the coupling to
the interferometer, the external reservoirs, and the interac-
tions taking place on the dot. These expressions do not ne-
cessitate a near-equilibrium situation. Thus, we derive gen-
eral expressions for the current passing through the
interferometer,I, and the current circulating around it which
is induced by the Aharonov-Bohm flux, in terms of the exact
Green function on the dot. We then use these results to in-
vestigate the effect of coupling to a boson source on both
currents.

We begin in Sec. II with the derivation of the partial cur-
rents, the transport current, and the circulating current. The
expressions we obtain are valid also for the case in which the
electrons experience electronic interactions on the dot. In
particular, our result for the transport current generalizes the
ones reported previously,22,23 which were derived under the
assumption that there is no scattering on the reference arm.
Within that approximation, the flux dependence of the line-
width on the quantum dot level is lost. This flux dependence,
as we will show, turns out to be crucial in determining the
circulating current. Section II is supplemented by an Appen-
dix, detailing the computation of the partial currents. In Sec.
III we employ the general result for the transport current to
study the effect of the coupling to a boson source. To this
end, we use an approximate expression for that dot Green
function,60–62 for the case in which the electrons on the dot
are coupled linearly to a sonic source. Section IV is devoted
to the analysis of the circulating current under irradiation.
For the sake of completeness, we include in that section a
discussion of the effect of electron-phonon coupling on elec-
trons moving on electronically isolated rings(which are de-
coupled from the leads). Finally, we summarize our findings
in Sec. V.

II. THE CURRENTS IN A BIASED INTERFEROMETER

Figure 1 portrays an Aharonov-Bohm interferometer, with
a quantum dot placed on its upper arm, and a second elec-
tronic site placed on the other arm, serving as a “reference”
site. All interactions(among the electrons, or electron-boson
interactions) are taking place only on the quantum dot. The
interferometer is connected at the left and at the right to
electronic reservoirs, kept at slightly different(or equal)
chemical potentials. The connection is via single-channel
leads. The model Hamiltonian describing this system con-
sists of four terms

FIG. 1. An Aharonov-Bohm interferometer, containing a quan-
tum dot(QD) on its upper arm and threaded by a magnetic fluxF.
The lower arm of the interferometer contains a “reference” site
(RS). The ring is connected to two electronic reservoirs whose
chemical potentials are either equal or have a small difference, al-
lowing a currentI to flow from the left to the right. The wavy
vectors denote the external beam radiated on the dot.
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H = Hleads+ Href + Hd + Htun, s1d

in which the first term describes the leads, which are as-
sumed to be two free-electron systems

Hleads= o
k

ekck
†ck + o

p

epcp
†cp. s2d

(We omit spin indices when they are not necessary.) The left
lead states are denoted byk, and the right ones byp, with ck
scpd being the destruction operator for states on the left
(right) lead. For one-dimensional leads, described by a tight-
binding model with a nearest-neighbor hopping matrix ele-
ment J, one hasek=−2J cosk, and similarlyep=−2J cosp.
The chemical potential in the reservoir connected to the left
lead,m,, can differ from that on the right reservoir,mr. Oth-
erwise, the two leads are taken as identical, i.e., they have the
same large bandwidth, 2J. The reference site is taken for
simplicity as having a single localized level of energye0;
hence

Href = e0c0
†c0. s3d

The dot HamiltonianHd is not specified at the moment; it
may include electron-electron interactions or electron-
phonon interactions. For simplicity, we assume that only one
of the dot single-energy levels is effectively connected to the
leads. It is possible to carry out a more general calculation;
however, the algebra then becomes complicated and may ob-
scure the physical effects we wish to explore. Hence, we
write for the tunneling Hamiltonian

Htun = o
k

Vkck
†d + o

p

Vpcp
†d + o

k

ykck
†c0 + o

p

ypcp
†c0 + hc,

s4d

whered is the destruction operator for the electron on the
dot. The tunneling matrix elements for a one-dimensional
tight-binding model read

Vk = −Î 2

N
j, sink, Vp = −Î 2

N
jr sinp,

yk = −Î 2

N
i,e

if, sink, yp = −Î 2

N
ire

−ifr sinp, s5d

where N is the number of sites on each of the leads, and
gauge invariance allows one to assign the flux dependence to
the reference arm, such that the total flux(which is the mag-
netic flux threading the ring, measured in units of the flux
quantum) is

F = f, + fr . s6d

In Eq. (5), j, and j r are the matrix elements coupling the dot
to the left and right point contacts, andi, and i r are those
connecting the reference site to the same points. We empha-
size that the model considered here doesnot allow25 for any
electron losses. This is often referred to as a “closed inter-
ferometer.”

Under the circumstances described above, a transport cur-
rent I is passed through the ring, say from left to right. This

current splits into the currents moving in the upper and lower
arms of the ring

I = I1 + I2. s7d

When all electrons entering the interferometer from the left
reservoir leave it for the right reservoir, and are not lost to
the surrounding(as sometimes happens in the experiments),
one hasI1+ I3= I2+ I4=0. For reasons related to the detailed
calculations below, we keep the four partial currents sepa-
rate. The currentcirculating the ring under the effect of the
Aharonov-Bohm flux,Icir, is conveniently defined as

2Icir = U1

2
sI1 − I2dU

F

− U1

2
sI1 − I2dU

−F

, s8d

in order to avoid spurious currents caused by geometrical
asymmetries. It is therefore seen that the calculation of both
the transport current and the circulating one requires the
knowledge of the partial currents in the interferometer.

An efficient way to find those currents is to employ the
Keldysh technique, which is particularly suitable to handle
nonequilibrium situations.63 Using the Keldysh notations, the
partial currentsI1 and I2 are given by62 (in units in which
"=1)

I1 = eE dv

2p
o
k

Vk„Gkd
, svd − Gdk

, sv…d,

I2 = eE dv

2p
o
k

„yk
*Gk0

, svd − ykG0k
, svd…, s9d

where

Gab
, svd =E dt eivtikb†astdl, s10d

and the operatorsa andb stand forck, cp, c0, or d. The other
two partial currents,I3 and I4, are derived from Eqs.(9) by
changing the lead indexk into the second lead index,p.

The computation of all four partial currents is detailed in
the Appendix. Here, we summarize the results. The first step
taken there is to obtain explicit expressions[see Eqs.(A19)
and (A25)] for the partial currents in terms of the various
parameters, and theexactGreen function on the dot, which
includes all effects of interactions, as well as the couplings to
the interferometer, to the electronic reservoirs, and to the
phonon source. In the Keldysh technique this means that the
above-mentioned expressions include the Keldysh function
Gdd

, [see Eq.(10)], and the usual retardedsGdd
R d and ad-

vancedfGdd
A =sGdd

R d* g dot Green functions. The frequency
svd integration of the former,edvGdd

, , has a very clear
physical meaning: It gives the occupation number of the
electrons on the dot,nd.

When the interferometer is biased, the Keldysh Green
function Gdd

, and the occupationnd are affected by the volt-
age difference such that current conservation,I1+ I3=0, is
ensured(see Fig. 1). In practice, however, the calculation of
the Keldysh function is not simple(except for the
interaction-free system). We therefore resort to an approxi-
mation, which gives it in terms ofGdd

R and Gdd
A . Explicitly,
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one finds(see the Appendix, Sec. 2 for details)

I1 + I3 = eE dv

2p
fsSext

R − Sext
A dGdd

, + Sext
, sGdd

A − Gdd
R dg,

s11d

where the frequency dependence of the various functions is
suppressed for brevity. Here,Sext

R is that part of the retarded
self-energy on the dot which comes solely from the cou-
plings to the interferometer and to the leads. Namely, it is the
self-energy part for the interaction-free system. Similarly,
Sext

A =sSext
R d* is the advanced self-energy coming from those

couplings, andSext
, is the corresponding Keldysh function.

All three of the above self-energies can be found quite
straightforwardly, as they pertain to the noninteracting parts
of the Hamiltonian[see Eqs.(A27) and(28)]. When the sys-
tem is free of interactions, or when it is unbiased, namely,
m,=mr (see the Appendix, Sec. 2), the integrand in Eq.(11)
vanishes. When the(interacting) system is slightly biased,
the bias causes only very small changes in the Fermi func-
tions f, and f r, of the left and of the right reservoirs, except
in the rangem,−mr around the Fermi energy. Here

f,svd =
1

ebsv−m,d + 1
, f rsvd =

1

ebsv−mrd + 1
. s12d

Hence, we expect the integrand in Eq.(11) to be dominated
by contributions from that vicinity of the Fermi energy. If the
integrand in Eq.(11) varies slowly with the frequency there,
then the vanishing of the integral would also imply the van-
ishing of the integrand, namely

Gdd
, = Sext

, Gdd
R − Gdd

A

Sext
R − Sext

A . s13d

In some cases,62 this equation follows from the “wideband
approximation,” which neglects thev dependence of the
resonance widthISext

A . Equation(13) is used to eliminate the
dot Keldysh Green function from the expressions for the cur-
rents. It should be emphasized(see the Appendix, Sec. 4)
that the relationship Eq.(13) is exact for the unbiased sys-
tem. This point is important for the calculation of the persis-
tent current, for which one has to keep the contributions of
all frequencies. We note in passing that the sumI2+ I4 van-
ishes identically as checked by an explicit calculation.

The next step taken in the Appendix is to employ the
partial currents in order to obtain the transport current[Eq.
(7)] and the persistent current[Eq. (8)]. The former is ob-
tained using the wideband approximation, in which the fre-
quency dependence of the self-energies is suppressed(see
the Appendix, Sec. 3 for details)

I = eE dv

2p
sf r − f,dHTBS1 + Gdd

R Sext
R

+ Gdd
A Sext

A + Sext
R Sext

A Gdd
R − Gdd

A

Sext
R − Sext

A D
+ 4G,GrXB

Gdd
R − Gdd

A

Sext
R − Sext

A + ÎTBG,GrXB2 cosF

3 SGdd
R + Gdd

A + sSext
R + Sext

A d
Gdd

R − Gdd
A

Sext
R − Sext

A DJ . s14d

The transport current consists of three parts: The first term in
the curly brackets of Eq.(14) is the current flowing through
the reference arm(the lower arm of the interferometer in Fig.
1), “dressed” by the processes in which the electrons travel
around the ring, as is manifested by the appearance of the dot
Green functions. Here,TB is the transmission coefficient of
the reference arm of the interferometer(when decoupled
from the quantum dot). In the wideband approximation(in
which the energy is taken to be at the middle of the band)

TB =
4g,gr

e0
2 + sg, + grd2 , s15d

whereg, andgr [see Eq.(A38)] are the partial linewidths on
the reference site, caused by the couplings to the leads. The
second term in the curly brackets of Eq.(14) is the current
flowing through the interferometer arm containing the quan-
tum dot; here,G, and Gr [see Eq.(A39)] are the partial
linewidths on the dot, caused by the couplings to the leads,
and

XB = 1 −TB
sg, + grd2

4g,gr
. s16d

(Note that wheng,=gr, XB becomes equal to the reflection
coefficient of the reference branch,RB=1−TB.) The last term
in Eq. (14) results directly from interference, since it neces-
sitates transmission through both arms of the interferometer,
as is manifested by the productÎTBG,Gr there.

Several comments on the result(14) are called for.(1) The
transport currentI is evenin the Aharonov-Bohm flux as it
should be, obeying the Onsager symmetry.64 This happens
because25 the dot Green functionsGdd

R and Sext
R are even

functions ofF, due to additive contributions(with equal am-
plitudes) from clockwise and counterclockwise motions of
the electron around the ring.(2) When the electronic system
is free of interactions, the “external” self-energy partSext
constitutes the entire self-energy of the dot Green function,
namely

Gdd
R0 =

1

v − ed − Sext
R , s17d

whereed is the energy of the localized level on the dot, and
the superscript “0” denotes the absence of interactions. In
that casesGdd

R0−Gdd
A0d / sSext

R −Sext
A d=Gdd

R0Gdd
A0, and the transport

current becomes

I0 = eE dv

2p
„f rsvd − f,svd…T0svd .

e2

2p
T0s0dV, s18d

whereV is the potential difference on the interferometer, and
T0 is the transmission coefficient of the noninteracting ring

T0svd = uGdd
R0svdu2uÎTBsv − eddeiF + 2ÎG,GrXBu2. s19d

Equation(19) resembles thetwo-slit formula, as it consists of
the absolute value squared of the sum of two terms: The one
related to the transmission amplitude of the reference arm
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(having the factorÎTB) and the other which is related to the
transmission amplitude through the dot(as expressed by
ÎG,Gr), with the Aharonov-Bohm phase factor multiplying
one of those. However, in contrast to the two-slit formula,
here both terms arereal, resulting in an expression which is
even in the flux. This aspect of the transmission has been
discussed in great detail in Refs. 25 and 26. In the next
section, we find that it persists also when the electrons on the
dot are exposed to external radiation.(3) For general values
of the flux F, the interaction-free transmission(19) does not
show the Fano antiresonances, at which the transmission
vanishes(although the line shape will be asymmetric). The
reason is that whenFÞ0 or FÞp, the interference between
the two arms of the interferometer can never be made com-
pletely destructive, as was noted in Ref. 65. On the other
hand, finite values of the flux do not prevent the transmission
from achieving the unitary limit. Inspection of Eq.(19) in
conjunction with the explicit expressions for the external
self-energy, Eqs.(A40), shows that the maximal value for the
transmission,T0=1, is reached when the interferometer is
symmetric, i.e., whenG,=Gr and g,=gr, the local level on
the dot becomes a resonance, i.e.,v−ed−RSext

R =0, and the
Aharonov-Bohm flux takes the particular value cosF
=−TB/ s1+RBd.

We next turn to the computation of the circulating current
in an open ring, Eq.(8). In the case of noninteracting elec-
trons, that current has been the subject of several
studies.13,66–68Here, we generalize those calculations to the
case where the electrons experience interactions on the quan-
tum dot.

Inserting the expressions for the partial currents into Eq.
(8) (see the Appendix, Sec. 4 for details), we find that the
circulating current consists of two contributions. The first
one is related to thesumof the two electronic distributions,
f,+ f r. It therefore flows even when the interferometer is un-
biased, andf,= f r. The second contribution[see Eq.(A43)]
arises only when the system is biased, being related to the
difference f,− f r, and only when, in addition, the couplings
of the dot and/or the couplings of the reference site to the
interferometer are not equal, namely, wheni,Þ i r and/or j,

Þ j r [see Eqs.(5)]. Both contributions are induced by the
Aharonov-Bohm flux and hence are proportional to sinF.
However, the second term seems to be not as interesting as
the first. We therefore omit any further consideration of that
part of the circulating current, and focus only the first con-
tribution, which reads69

Ipc = eE dv

ip

f, + f r

4
F ]Sext

R

]F
Gdd

R − ccG . s20d

It is interesting to note that Eq.(20) averages the flux deriva-
tive of the external self-energy over energy, with weights
containing the densities of electrons and single-particle states
with that energy(which are contained inGdd). The flux de-
rivative of Gdd doesnot appear. This is reminiscent of the
equilibrium case, where the persistent current is given by the
flux derivative of the energies, weighed by the electronic
populations, without the appearance of the flux derivative of

those(see, for example, Ref. 57). Since bothSext
R andGdd

R are
even inF, Ipc is odd inF, as it should be.

It is sometimes useful to discuss the properties of an open
electronic system in the language of scattering theory,66,68

employing the concept of “transmission phases,” or the Frie-
del phase. Such a description is particularly useful in the case
of interaction-free electrons. Indeed, by manipulating Eqs.
(17) and(20), one obtains that the persistent current of such
a system,Ipc

0 , is given by

Ipc
0 = eE dv

p

f,svd + f rsvd
2

]d0svd
]F

, s21d

where d0 is the phase of the retarded Green functionGR0

=sGA0d*

tand0svd = −
ISext

R

v − ed − RSext
R . s22d

Hence, in a steady-state situation, the persistent current of
noninteracting electrons is related to the variation of the
transmission phase with the Aharonov-Bohm flux.(See Ref.
67 for a different derivation of this result.) This variation
replaces the variation of the eigenenergies with the flux in
the equilibrium situation as the origin of the persistent
current.57

III. RADIATION EFFECTS ON THE TRANSPORT
CURRENT

The coupling between the electrons residing on the dot
and a sonic source may be described by a linear, local,
electron-phonon interaction56

Hel−ph= o
q

aqsbq
† − bqdd†d, s23d

in which aq=−a−q=−aq
* is the electron-phonon coupling and

bq
† is the creation operator for the boson of wave vectorq. To

study the transport current in the presence of such an inter-
action, one has to addHel−ph to the Hamiltonian Eq.(1),
together with the free Hamiltonian of the boson excitations,
compute the dot Green function, and then use it in Eq.(14).
In the case of a linear electron-phonon interaction, one is
able to obtain an approximate form for the Green function,
Gdd, by assuming that the external self-energy does not de-
pend on the frequency.60,61 (For a numerical solution in the
presence of anequilibriumphonon source, see Ref. 70.) This
is a valid approximation, since the small potential difference,
temperature, etc., restrict the frequency integration in Eq.
(14) to a narrow range around the common Fermi energy of
the two reservoirs. The explicit expression forSext

R , valid for
the case of an Aharonov-Bohm interferometer, is given in
Eq. (A40).

The Green function of the dot, which takes into account
the electron-phonon coupling(23), was found in Refs.
60–62. Here, we extend their result to include the effect of
the reference arm and to allow for a finite electronic occupa-
tion, nd, on the dot. The resulting form is then
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Gdd
R svd = − iKfs1 − nddE

0

`

dt eisv−ed−Sext
R dteCstd

+ ndE
0

`

dt eisv−ed−Sext
R dteCs−tdg. s24d

In the nonequilibrium case,nd is determined by both the
acoustic intensity and the relaxation processes. The on-site
energy on the dot,ed, is now renormalized by the polaron
shift, eP=Squaqu2/vq, where vq denotes the phonon fre-
quency. Since this renormalization is temperature- and flux
independent, it will be omitted. The other phonon variables
are contained inK, the Debye-Waller factor, and inCstd.
Explicitly

K = expF− o
q

uaqu2

vq
2 s1 + 2NqdG ,

Cstd = o
q

uaqu2

vq
2 fNqe

ivqt + s1 + Nqde−ivqtg, s25d

whereNq=kbq
†bql is the phonon occupation of theq mode,

which is not necessarily the thermal equilibrium one, but
may be tuned externally.

Perhaps the simplest way to access the effect of the acous-
tic coupling is by expandingGdd in the electron-phonon cou-
pling uaqu2

Gdd
R svd = KGdd

R0svd + o
s=±

o
q

Cq
sGdd

R0sv + svqd, s26d

where the interaction-free Green functionGdd
R0 is given in Eq.

(17). Here,s=±, and

Cq
+ =

uaqu2

vq
2 sNq + ndd, Cq

− =
uaqu2

vq
2 s1 + Nq − ndd. s27d

For a weak electron-phonon coupling, the Debye-Waller fac-
tor is

K . 1 − o
s=±

o
q

Cq
s . s28d

However, it is instructive to keep the Debye-Waller factorK,
which multiplies the zero-order term in the expansion(26)
(and, in principle, all other terms in the expansion) in its
implicit form, in order to demonstrate its role in diminishing
all contributions to the current, and not only those arising
from interference.71

It is thus seen that the dot Green function in the presence
of the electron-phonon coupling may be written as a series of
terms in which there appear the interaction-free Green func-
tions, with their frequency argument shifted by the phonon
frequencies,72,73 each multiplied by the relevant phonon oc-
cupation numbers. Hence, it is quite obvious that the trans-
port current will have a similar form. Indeed, upon inserting
the result(26) into the expression for the transport current,
Eq. (14), one finds

I = eE dv

2p
„f rsvd − f,svd…T radsvd, s29d

in which the transmission of the irradiated interferometer,
Trad, is

Tradsvd = KT0svd + o
s=±

o
q

Cq
sT0sv + svqd, s30d

and the interaction-free transmission is given in Eq.(19). It
is seen that the processes contained inT0sv+svqd compen-
sate partially for the detrimental effect of the Debye-Waller
factor,K. We will encounter a similar situation in the discus-
sion of the circulating current. Since we are operating in the
linear response regime, it suffices to study the result(30) at
the Fermi energy, namely, at zero frequency in our notations.

Let us first consider the radiation effect on the transport
through the ring in the unitary limit, namely whenT0s0d=1.
This situation, as mentioned above, occurs for a symmetric
ring, when ed+RSext

R =0 and cosF=−TB/ s1+RBd. Under
these conditions

T0ssvqdures= 1 −RB

vq
2

sISext
R d2 + vq

2 . s31d

Inserting this into Eq.(30), and using Eq.(28), yields

Trads0dures= 1 −RBo
s=±

o
q

Cq
s vq

2

sISext
R d2 + vq

2

= 1 −RBo
q

uaqu2

vq
2 s1 + 2Nqd

vq
2

sISext
R d2 + vq

2 .

s32d

At resonance, the transmission is independent of the elec-
tronic occupation on the dot. The coupling with the bosons
reduces the transmission at resonance, the more so as the
intensity of the boson source in a certain frequency range
increases. It is interesting to note, however, that this effect
becomes smaller as the reflection coefficient of the reference
arm decreases(and therefore the current tends to go mainly
through that arm).

In the general case, the transmissionTrad takes the form

Trads0d = T0s0d +
1

2o
q

Aq
−fT0svqd − T0s− vqdg

+
1

2o
q

Aq
+fT0svqd + T0s− vqd − 2T0s0dg, s33d

where −2T0s0d comes from the Debye-Waller factor. Here,
Aq

+ is directly proportional to the radiation intensity, whileAq
−

does not depend on it. Explicitly

Aq
+ = Cq

+ + Cq
− =

uaqu2

vq
2 s1 + 2Nqd,
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Aq
− = Cq

+ − Cq
− =

uaqu2

vq
2 s2nd − 1d. s34d

Equation(33) shows that upon shining a beam of bosons at a
certain frequency range, the transport current varies linearly
with the intensity of the beam, as long as the latter is not too
large. For example, when the interferometer is far from reso-
nance, namely whenuedu@G0, whereG0=G,+Gr (G0 is the
width of the resonance level of the quantum dot itself, when
it is disconnected from the reference arm), we find that the
transmission, to lowest order inG0/ uedu, becomes

uTrads0duoff res= TB − ÎTBRB„TB + s1 + RBdcosF…

3 FG0

ed
S1 + o

q
Aq

+ vq
2

ed
2 − vq

2D
+ G0o

q
Aq

− vq

ed
2 − vq

2G . s35d

Of particular interest is the point where the magnitude of the
interference term can be controlled by coupling the dot to a
sonic source. The other factor,Aq

−, may change sign depend-
ing on the relative location of the on-site energy on the dot
and the Fermi level, but its magnitude cannot vary much,
−1ø2nd−1ø1.

In order to exemplify these results, we portray the trans-
mission, Eq.(33), as a function of the energy of the local
level on the dot(which may be controlled by a gate voltage),
in Figs. 2 and 3. In drawing these curves, we have assumed
a single phonon frequency,V, and scaled the beam intensity
by oqsuaqu2/vq

2dsNq+1/2d.72 The parameters used in these
figures(and following ones) are meant as representative ex-
amples; clearly, the current(as well as the persistent current
in the next section) is determined by the ratios of the relevant
energies.

Figures 2 and 3 show the transmission at zero flux. Hence,
in the absence of the radiation, the transmission exhibits the
asymmetric Fano line shape. The coupling to the radiation
source modifies this line shape(in particular, the transmis-

sion does not exactly vanish). It also produces additional
sharp structures at ±V, which have still the asymmetric Fano
line shape.

The dependence of the transmission on the Aharonov-
Bohm flux is shown in Fig. 4. It is interesting to watch the
oscillation magnitude as a function of the beam intensity. At
very small values of the latter(not shown) the curve follows
closely the transmission in the absence of the coupling to the
bosons. Then, as the intensity is increased, the oscillation
amplitude becomessmaller(the thick line in Fig. 4), until the
curve looks almost flat. Upon further increase of the inten-
sity, the amplitude grows again, but in the opposite direction
to the one in the absence of the boson source(dashed thick
line in Fig. 4).

IV. RADIATION EFFECTS ON THE CIRCULATING
CURRENT

The subtle effect that electron-phonon interactions may
have on interference-related properties of electrons was in-
voked a long time ago by Holstein,74 in his theory of the Hall
effect in hopping conduction. Holstein proposed that in order
to capture the Hall effect, it is necessary to consider pro-
cesses where the amplitude of the direct electron tunneling
between two “sites” around which the electronic wave func-
tions are localized interferes with an indirect tunneling am-
plitude, through an intermediate third site. Moreover, that
interference must involve energy-conserving electron transi-
tions to and from the intermediate site, which are assisted by

FIG. 2. The total transmission of the interferometer, under the
effect of the radiation(thick line), and in the interaction-free case
(dashed line), as function of the localized energy on the dot, at zero
flux and forTB=0.4, G0=0.3, and radiation intensity scaled by 0.3
(see the text). The phonon frequency isV=3 (energies are mea-
sured in meV).

FIG. 3. The same as in Fig. 2, when the radiation intensity is
doubled.

FIG. 4. The transmission as function of the magnetic flux(in
units of the flux quantum). The thin dashed line presents the
interaction-free case, the thick line pertains to the same beam inten-
sity as in Fig. 2, while the thick dashed line is for the intensity as in
Fig. 3. The parameters are as in those figures, withed=−1.
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phonons. It turns out that this “Holstein process” has intrigu-
ing consequences for the persistent current inelectronically
isolated interferometers.57 Since it is of interest to compare
the radiation effect on persistent currents in isolated and in
open rings, we begin this section with a brief summary of the
Holstein process and its consequences for the isolated sys-
tem, and then analyze the situation in an open ring.

The Holstein mechanism can be explained in a somewhat
technical language as follows. Under hopping conduction
conditions, transport can be related totransition probabili-
ties. Imagine now the transition probability per unit time,Pij ,
to tunnel from the electronic state localized ati to that local-
ized at j . When the system is subject to a constant magnetic
field, the tunneling amplitude betweeni and j is multiplied
by the magnetic phase factor acquired from the field along
the pathi – j . Upon taking the absolute value squared of such
an amplitude to obtainPij due to direct hopping alone, the
result is independent of the magnetic field. Now, let us add to
the direct tunneling amplitude betweeni and j the amplitude
for indirect tunneling, for example, the pathi –,– j , where,
denotes an intermediate site. The transition probability now
depends on the total, gauge-invariant, magnetic flux enclosed
by the two paths(i.e., the Aharonov-Bohm phase). However,
it is anevenfunction of the magnetic phase, as the tunneling
amplitudes themselves can always be chosen to be real. As
such, this transition probability cannot lead to a dc Hall con-
duction, which isodd in the field. This line of argument
shows that, technically speaking, an imaginary contribution
to at least one of the transition amplitudes is required in
order to render a term odd in the magnetic phase in the
transition probability.

Where can this imaginary part come from? Holstein74 ar-
gued that when electron-phonon processes are taken into ac-
count, the intermediate state becomes in fact a continuum of
energy states, consisting of the intermediate electronic en-
ergy and the continuum of phonon energies. This continuum
suffices to supply the required imaginary contribution.
Roughly speaking, when electron-phonon interactions are ac-
counted for, the tunneling amplitude for the indirect path
acquires, fore,.ei, terms such as

Ji−,−j , o
nq,q

nq8,q8

k,,nq − 1,nq8uVu j ,nq,nq8 ± 1l

ei − e j 7 vq8 + ih

3 k j ,nq,nq8 ± 1uVui,nq,nq8l. s36d

Here,ei, etc. denotes electronic site energies,h→0+, vq and
vq8 are boson energies, andnq andnq8 are the quantum num-
bers of theq− and q8− mode occupations, respectively. In
Eq. (36), V is the operator that transfers the electron between
sites, and at the same time may cause the phonon states to
change, obtained after an appropriate74 unitary transforma-
tion on the electron-boson Hamiltonian, Eq.(23). Since the
intermediate state now lies in acontinuumof energies, the
infinitesimal parth leads to afinite imaginary contribution,
provided that the sum of energies in the denominator van-
ishes, namely, when there is an exact energy conservation, as
would be needed to make areal transition75 between the

initial and intermediate states of the process. We emphasize,
however, that the boson created/destroyed in going from
i to j is only virtual; exactlythe sameboson is destroyed/
created in going fromj to ,. This exact identity is necessary
for incoherentphonons in order to retain phase coherence76

with the direct process fromi to ,. More technically, one
uses the relation 1/sx+ ihd=P /x− ipdsxd, whereP denotes
the principal part. The delta-function term within the infinite
sum over the phonon modes gives rise to the required finite
imaginary contribution. The resulting imaginary part inJi–,–j
yields a term odd in the flux in the transition probability. It is
worth noting that the energy-conserving process occurs here
in the intermediate state of the perturbation theory[of which
Eq. (36) is the lowest term] for the combined amplitudes.
Recently, this unique process has been proposed as the origin
of the anomalous Hall effect in ferromagnetic
semiconductors.77

The argument above exemplifies the necessity for one
resonant process. However, in fact the Holstein process re-
quires at least two resonant electron-phonon processes. This
can be explained as follows: The three electronic energies
involved in the indirect tunneling and their differences are in
general all different. Hence, at least one phonon(the one
denoted above byq) is needed to supply the energy differ-
enceei −e, between the initial and final electronic states. The
second phonon(q8 above) appears in the intermediate pro-
cess, as explained above. The phonon-assisted indirect am-
plitude, Eq.(36), gives rise also to a contribution which is
evenin the field(coming from the principal part). That con-
tribution does not require exact energy conservation within
the intermediate state of the perturbation energy(it does,
however, require the phonon supplying the energy difference
between the initial and final electronic states).

The fact that the transition probability per unit time for an
electron to hop between two sites may include a term which
is odd in the Aharonov-Bohm flux(in addition to the term
even in the flux) has an immediate result: detailed balance is
broken even at thermal equilibrium. Stated in terms of tran-
sition probabilities,Pij −Pji Þ0, and the difference isodd in
the magnetic flux. To appreciate the outcome of this obser-
vation, let us focus our attention on a triad of three sites,i, j ,
and,, the smallest cluster in which the doubly resonant tran-
sitions can take place. The transition probability to go from
site i to site j , Pij (which includes also the indirect processes
via site,), and the transition probability to go from that site
to site, (now also through the intermediate sitej), Pi,, are
such that

Pij + Pi, = Pji + P,i , s37d

so that charge balance is maintained at the electronic sitei.
However, sincePij ÞPji , there is a net current circulating
around the triad, proportional toPij −Pji , and therefore aris-
ing from the Holstein process. That current is additional to
the persistent current flowing in this system in the absence of
the coupling to the phonon source. In fact, it has been
found57 that it is always flowing in the reverse direction!
(The direction of the current in the triad is determined by
delicate effects related to the location of the Fermi level with
respect to the site energies, etc.) This current has therefore
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been termed “counter current.” When the full transition prob-
abilities, including the terms even and odd in the magnetic
flux, are used in the proper rate equations to find the current,
the resulting conductivity tensor satisfies the Onsager
relations.78

Having related the doubly resonant processes of Holstein
to the persistent current, it is worthwhile to re-examine the
resonance conditions from the point of view of coherence.
As we have pointed above, and as is borne out by the full
calculation,57 one of the two phonons is common to both
interfering tunneling paths, thus retaining their coherence,76

while the other is, as explained above, absorbed and re-
emitted by one of the paths, again retaining coherence with
the other path. Hence, despite the fact that the Holstein
mechanism also involves a real, energy-conserving, electron-
phonon transition, it still contributes in a nontrivial way to
the persistent current. However, since this contribution arises
from “real” processes, it requires real phonon modes,
namely, nonzero temperatures. One therefore expects that the
counter current willincreasewith the temperature. On the
other hand, the counter current is also multiplied by the over-
all damping Debye-Waller factor. Hence, the resulting tem-
perature dependence of the counter current is
nonmonotonic.57

We have not emphasized here the contribution of non-
Holstein processes[i.e., those arising from the principal part
in Eq. (36)]. Such processes are not specific to a definite
phonon frequency, and therefore cannot be increased without
heating/decohering the system.

When the interferometer is connected by leads to external
electronic reservoirs, the energy levels on the ring acquire
finite widths, given by the imaginary part of the external
self-energies. Then, the effect of the coupling to the sonic
source is modified. While for discrete states it required exact
energy conservation(up to the width introduced by the cou-
pling to the phonons), here it operates in a finite energy band.
Nonetheless, the radiation introduces again a unique effect,
which goes beyond that of the Debye-Waller exponent. In the
present situation the sonic effect is of a lower order in the
electron-phonon coupling, and may exist even in theT→0
limit, as will be discussed later.(For a concise summary of
this result see Ref. 69.)

Indeed, inserting the expansion of the dot Green function
at small electron-phonon coupling, Eq.(26), into our general
result for the circulating current, Eq.(8), yields

Ipc = Ipc
0 + DIpc, s38d

whereIpc
0 is the persistent current of the noninteracting inter-

ferometer, given by Eq.(21) above, andDIpc is the acousto-
persistent current, given, within our approximation, by

DIpc =E dv

p

f,svd + f rsvd
4 o

q
FAq

− ]

]F
„d0sv + vqd

− d0sv − vqd… + Aq
+ ]

]F
„d0sv + vqd + d0sv − vqd

− 2d0svd…G , s39d

whered0, the Friedel phase of the noninteracting system, is
given in Eq. (22), and Aq

± are defined in Eqs.(34). The
acousto-induced persistent current,DIpc, consists of two
parts: The first term depends only on the dot’s occupation,
nd, and its sign may change according to the relative location
of ed with respect to the Fermi energy. The second term in
Eq. (39) is dominated by the phonon occupations[see Eq.
(34)], via Aq

+. [Note that the term −2d0svd there comes from
the expansion of the Debye-Waller exponent.] Examining
this contribution shows that by shining a beam of phonons of
a specific frequency, the magnitude of that term can be con-
trolled experimentally, as long as the temperature of the elec-
tronic system and the intensity of the phonon sourceNq are
low enough to retain coherent motion of the electrons.(The
intensity is also limited in the present calculation by the as-
sumption of weak electron-phonon coupling; however, there
is no conceptual difficulty to extend the calculation to stron-
ger values.) Similar considerations apply to photons. Both
the precise magnitude of these effects and the above bounds
depend on the detailed geometry of the dot and on the acous-
tic (or electromagnetic) mismatch.

It is important to appreciate the difference between this
result and the corresponding one found for the isolated ring.
In the isolated ring, the Holstein process56 required the emis-
sion (absorption) of a specific phonon, with the exact exci-
tation energy of the electron on the ring. In the present case,
the coupling to the leads turns the bound state into a reso-
nance, with a widthG0 which decreases when the ring is
decoupled from the leads. As a result, there is always some
overlap between the tail of the Green functionGdd

R0svd and
the Fermi distribution fsvd, yielding contributions from
Holstein-type processes via phonons with many(including
very low) energies. Indeed, each contribution toDIpc con-
tains the phased0svd, which vanishes withG0 (d0,G0/ uedu
far from the resonance). In particular, this results in a non-
zero DIpc even at zero temperature: In that limit, ifed,m,

=mr =0, thennd=1. Even with no phonons,Nq=0, the square
brackets in Eq.(39) become proportional to]fd0sv+vqd
−d0svdg /]F, reflecting processes which begin by an emis-
sion of phonons. None of this remains for the isolated ring,
whenG0=0.

To obtain explicit expressions, we now evaluate the fre-
quency integration appearing in Eq.(39). Since we are oper-
ating within the linear response regime, the voltage is not
essential to our effect and we may safely assumef,svd
= f rsvd; fsvd. Furthermore, we take the electronic tempera-
ture to be low compared to all other energies, so thatfsvd
<Qs−vd. We also take the typical phonon frequency to be
much smaller than the large bandwidth in the leads. With
these approximations the frequency integration in Eq.(39) is
easily performed, yielding

DIpc =
G0

4p
sinFo

q
fAq

+
„Fsvqd + Fs− vqd − 2Fs0d…

+ Aq
−
„Fsvqd − Fs− vqd…g, s40d

whereFsvd is given in terms ofd0svd, Eq. (22)
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Fsvd = − ÎTBRBd0svd − TB lnu sind0svdu. s41d

The acousto-persistent current contains two types of contri-
butions: the part associated withFs0d, which simply repre-
sents the “trivial” Debye-Waller renormalization of the cur-
rent, and the frequency-dependent parts, which reflect the
change in the persistent current due to Holstein-type pro-
cesses.

As is the case in the absence of the coupling to the boson
source, the acousto-persistent current is closely related to the
Friedel phase of the dot, at resonance frequencies.69 This
leads to a sharp structure ofIpc as function of, e.g.,ed, oc-
curring whenevered coincides with the resonance energies of
the system; see Fig. 5.

On the other hand, the dependence of the persistent cur-
rent on the flux is rather smooth. We portray that dependence
in Fig. 6. Inspecting the behavior of the oscillation magni-
tude as a function of the beam intensity, we observe a similar
phenomenon as has been found above for the transport cur-
rent (see Fig. 4). Namely, upon increasing the intensity, the
magnitude of the oscillations first decreases, then increases
in the opposite direction. In order to exemplify this behavior,
the thick dashed line in Fig. 6 is drawn for a rather high
intensity(in our unit scheme), which is not necessarily com-
patible with our assumption of weak electron-phonon inter-
action. This sign reversal of the persistent current at a certain
flux is reminiscent of the counter current alluded to above.57

V. SUMMARY

We have considered the effect of coupling the electrons to
a boson source on their interference pattern in an Aharonov-
Bohm interferometer, and in particular focused our attention
on the modifications in the transport current and in the cir-
culating current. In both cases the overall Debye-Waller ex-
ponent appears, which reduces the interference term(as well
as the “classical” term), and hence the currents, as the tem-
perature is raised. This outcome of the coupling to the boson
source is not surprising. However, in both cases there is an
additional contribution, which is confined to a bounded range
of phonon energies, dictated by the electronic energies.

In the case of hopping conduction, which involves transi-
tions between discrete localized electronic states that in gen-
eral differ in energy, a phonon(common to the two paths) is
necessary to conserve energy in the overall hopping
process.75 In the case of an open interferometer that phonon
is not necessary, since the electronic states on the two leads
form continua and overlap in energy. To obtain a term odd in
the magnetic field in the hopping regime, another, “second,”
phonon is needed, which hasto conserve the total energy
between the initial and intermediate states.74 The reverse
phonon process(namely, restoring the phonon system back
to its original state) then occurs between the intermediate and
final states, thus retaining phase memory in the overall pro-
cess (which can then interfere with another phonon-less
path). The conservation of energy in the intermediate state is
a rather unusual feature, which introduces an imaginary part
to the hopping amplitude for that path, and hence a nontrivial
phase. That phase was crucial for the theory of the Hall
effect in the hopping regime. When the ring is coupled to
external leads, the effect of the radiation appears at a lower
order in the electron-phonon interaction, as compared to the
situation in isolated rings with localized electronic states.57

In addition, the intermediate electronic state acquires a width
via coupling to the leads. Therefore, the process may exist
even at zero temperature. This is due to the finite overlap of
the intermediate electronic state with the “band.”

Because this contribution to the currents comes from a
confined range of boson frequencies, it is expected that by
modulating the intensity of the radiation in that frequency
range it will be possible to manipulate the magnitude of the
currents. This will require boson intensities low enough to
retain the coherent motion of the electrons. However, the fact
that this unique effect is confined to a rather narrow region of
boson frequencies(while the detrimental Debye-Waller fac-
tor comprises all boson frequencies) gives some hope that
such an acousto-magnetic effect is feasible in experiments.
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FIG. 5. The persistent current as function ofed. The thin dashed
line showsIpc

0 , the thick line is for beam intensity 0.3, and the thick
dashed line for 0.6. The flux is taken atp /2, and the other param-
eters are as in Fig. 2.

FIG. 6. The persistent current as function of the Aharonov-
Bohm flux. Parameters are as in the previous figures, withed=−1.
The thin dashed line portraysIpc

0 , the thick line is for beam intensity
0.3, and the thick dashed line is for beam intensity 2; see the text.
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APPENDIX: DETAILS OF THE CURRENT CALCULATION

As is clearly explained in Ref. 63(see also Ref. 62), the
Green functions required in the Keldysh technique can be
found by considering the time-ordered Green functions,GT.
The latter satisfy the frequency-dependent Dyson equation
for GTsvd

GT = G0T + G0TSTGT. sA1d

Then, the retardedsGRd and the advancedsGAd Green func-
tions are obtained by replacingT above byR or A, while G,

is found according to the rule63

sSGd, = SRG, + S,GA, sA2d

and similarly for any other product. In the following, we
omit for brevity the notationT from the time-ordered Green
functions.

1. The calculation of the partial currents

The Green functions required forI1 areGkd
, andGdk

, . We
present the detailed derivation of the first one. The equation
of motion for the temporal Fourier transform of the time-
ordered counterpart reads

Gkd = VkgkGdd + vkgkG0d, sA3d

in which gk is the free Green function of the left lead, namely

gk
R,A =

1

v ± ih − ek
, gk

, = f,svdsgk
A − gk

Rd. sA4d

Here,h→0+, f, [Eq. (12)] is the electron distribution in the
left electronic reservoir, and Eq.(10) has been employed to
obtaingk

,. Since we assume that the two leads in Fig. 1 are
identical except for being connected to reservoirs of different
chemical potentials, the free Green functions of the right lead
are given by Eqs.(A4), with f, replaced byf r. For brevity,
the dependence on the frequencyv will be suppressed in
most of the equations. Using Eq.(A2), we find

Gkd
, = Vksgk

RGdd
, + gk

,Gdd
A d + vksgk

RG0d
, + gk

,G0d
A d. sA5d

Writing explicitly the couplingsVk and vk [see Eqs.(5)], it
turns out that it is useful to define

aR,A =
2

N
o
k

gk
R,A sin2 k, sA6d

and

D = aA − aR ;
4pi

N
o
k

dsv − ekd sin2 k. sA7d

With these notations, the partial currentI1 becomes

I1 = eE dv

2p
s− D j,

2fGdd
, + f,sGdd

R − Gdd
A dg + j,i,e

if,ff,DG0d
A

+ aRG0d
, g − j,i,e

−if,faAGd0
, + f,DGd0

R gd. sA8d

The equation of motion for the time-ordered Green function
G0d reads

G0d = g0So
k

vk
*Gkd + hk → pjD , sA9d

in which the notationshk→pj stand for the analogous sum
on the right lead, andg0 is the free Green function on the
reference site, with

g0
R,A =

1

v ± ih − e0
. sA10d

Since the bare reference site is not coupled to any electronic
reservoir, the free Keldysh Green function for that site van-
ishes. Making use of Eqs.(A3), we have

G0d
A = YD0

AaAGdd
A , sA11d

whereD0
A is the reference site Green function when the upper

arm of the ring is cut off

D0
A =

1

v − ih − e0 − aAsi,
2 + i r

2d
, sA12d

andY denotes the interference coupling

Y = i, j,e
−if, + i r j re

ifr . sA13d

A similar calculation yields

Gd0
A = Y*D0

AaAGdd
A . sA14d

Applying Eq. (A2) to Eq. (A9) yields

G0d
, = aRD0

RYsGdd
, − f,Gdd

A d + f,aAD0
AYGdd

A + DD0
RGdd

A

3sf r − f,di r„Jr
RsFd… * eifr , sA15d

and similarly

Gd0
, = aAD0

AY*sGdd
, + f,Gdd

R d − f,aRD0
RY*Gdd

R + DD0
AGdd

R

3sf r − f,di rJr
RsFde−ifr . sA16d

Here, we have introduced the effective couplings connecting
the quantum dot to the right part of the ring

Jr
RsFd = j r + i ra

RD0
Rsi, j,e

iF + i r j rd, sA17d

and to the left side

J,
RsFd = j, + i,aRD0

Rsi, j, + i r j re
−iFd, sA18d

and used the relationD0
R−D0

A=−DD0
RD0

Asi,
2+ i r

2d.
Introducing all these results intoI1, Eq. (A8) gives that

partial current in terms of the dot Green function

I1 = eE dv

2p
h2i sinFsi, j,i r j rdfsaAd2D0

AGdd
A − ccgf,

+ faRj,J,
Rs− Fd − ccgfGdd

, + f,sGdd
R − Gdd

A dg

+ f„Jr
RsFd… * j,i,i re

iFaRD0
RGdd

A − ccgDsf r − f,dj.

sA19d

(Note thatD* =−D.) Examining Eq.(9), it is seen that the
partial currentI3 is obtained fromI1, upon the replacements
,↔ r with k↔p, andf,↔−fr, namelyF→−F. Then[see
Eqs.(A17) and (A18)], J,

Rs−Fd↔Jr
RsFd.

Next, we consider the partial currentI2. A similar calcu-
lation to the one leading to Eq.(A8) yields
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I2 = eE dv

2p
s− Di,

2fG00
, + f,sG00

R − G00
A dg + j,i,e

−if,faRGd0
,

+ Df,Gd0
A g − j,i,e

if,fDf,G0d
R + aAG0d

, gd. sA20d

The equation of motion for the time-orderedG00 gives

G00 = g0 + g0Fo
k

vk
*Gk0 + hk ↔ pjG , sA21d

with

Gk0 = VkgkGd0 + vkgkG00. sA22d

Making use of Eqs.(A12) and (A14), we find

G00
R = D0

R + sD0
RaRd2uYu2Gdd

R , sA23d

and

G00
, = DD0

RD0
Asi,

2f, + i r
2f rd + uYaRD0

Ru2fGdd
, + f,sGdd

R − Gdd
A dg

+ fDaRD0
RD0

AYirJr
RsFde−ifrsf r − f,dGdd

R − ccg

+ uYu2f,fsaAD0
Ad2Gdd

A − ccg. sA24d

The first term here is the contribution of the lower arm of the
ring alone; the other terms arise from interference.

Introducing these results into Eq.(A20) for I2, we find

I2 = eE dv

2p
hD0

RD0
Ai,

2i r
2D2sf, − f rd − 2i sinFsi, j,i r j rd

3fsaAd2D0
AGdd

A − ccgf, + faRJ,
Rs− Fd„sJ,

Rs− Fdd * − j,…

− ccgfGdd
, + f,sGdd

R − Gdd
A dg + faRD0

Ai,i re
−iFGdd

R Jr
RsFd

3 s j, − DD0
Ri,e

if,Yd − ccgDsf r − f,dj. sA25d

Examining Eq.(9), it is seen that the partial currentI4 is
obtained from I2, upon the replacements,↔ r and f,

↔−fr.

2. Current conservation

Having obtained the partial currents in terms of the dot
Green functions, we now examine the consequences. The
important point to bear in mind is that in the presence of
interactions(confined to the quantum dot alone), those Green
functions are not known and may be found only approxi-
mately. Therefore, imposing current conservation will yield
general relations which theGdd’s have to satisfy.

Current conservation means(see Fig. 1) that I1+ I3= I2
+ I4=0. A lengthy calculation of the sumI2+ I4 shows that it
indeed vanishes. In contrast, the sum of the currents on the
interferometer arm containing the dot gives

I1 + I3 = eE dv

2p
fsSext

R − Sext
A dGdd

, + Sext
, sGdd

A − Gdd
R dg,

sA26d

in which Sext denotes the self-energy of the dot Green func-
tion, which arises from the connection of the dot to the in-
terferometer and the leads. This quantity is found from the
Dyson equation(A1), using only the noninteracting parts of
the Hamiltonian

Sext
R = aRs j,

2 + j r
2 + aRD0

RuYu2d, sA27d

with an analogous expression forSext
A , and

Sext
, = Dff,uJ,

RsFdu2 + f ruJr
RsFdu2g. sA28d

When the electronic system is unbiased, namely, when the
chemical potentials on both reservoirs are identical

f, = f r ; f th, sA29d

then

Sext
, = f thsSext

A − Sext
R d, sA30d

and also63

Gdd
, = f thsGdd

A − Gdd
R d. sA31d

It follows that, without a bias, the integrand in Eq.(A26)
vanishes. In other words, when the ring is not biased, current
conservation is trivially satisfied.

Another case in which Eq.(A26) is trivially satisfied is
when the dot is free of any interactions. Then, the dot Green
function Gdd

R0 is given in Eq.(17), and obeys

Gdd
R0 − Gdd

A0 = Gdd
A0fSext

R − Sext
A gGdd

R0, sA32d

where for simplicity it has been assumed that there is only a
single electronic level on the dot, denoteded. For the nonin-
teracting system, one also has63

Gdd
,0 = Gdd

A0Sext
, Gdd

R0, sA33d

and therefore, again, the integrand in Eq.(A26) vanishes.
Had we known the exact forms ofGdd

R,A and Gdd
, for the

interacting electronic system, we would have found that cur-
rent conservation is also satisfied when the ring is biased.
However, as mentioned above, the dot Green function is not
known exactly. Therefore, we may regard the relation Eq.
(A26) as a condition imposed onGdd

R,A and Gdd
, . In order to

make practical use of this condition, we assume that the main
contribution to thev integration in Eq.(A26) comes from
frequencies at about the Fermi level of the electrons, and
require that theintegrandin Eq. (A26) will vanish, yielding
Eq. (13) above. This approximation(sometimes referred to
as the “wideband” approximation) is insufficient to deter-
mine the dot Green function, but at least it eliminates the
necessity to calculate the Keldysh Green functionGdd

, , and
ensures that the current through the ring is conserved. In
particular, this yields the charge in the dot, which is equal
to the expectation value of the dot occupation,nd
=−i esdv /2pdGdd

, svd [see Eq.(10)]. With a finite bias, Eq.
(13) is only approximate. However, the implied dependence
of nd on the bias voltage will still obey current conservation.
We emphasize again that when the ring is not biased, or
when the dot is free of any interactions, the relation(13) is
always satisfied.

3. The current through the ring

A glance at Fig. 1 shows that the current through the ring,
I, is given byI = I1+ I2=−I3− I4. This current is conveniently
found by calculatingsI1+ I2− I3− I4d /2. The terms propor-
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tional to sinF are then canceled. Making use of the approxi-
mation (13), the current through the ring takes the form

I = I ref + Idot + I int, sA34d

where the first term here,I ref, reduces to the current through
the reference arm when the other arm is disconnected

I ref = eE dv

2p
sf, − f rdD2i,

2i r
2uD0

Ru2

3S1 + Gdd
R Sext

R + Gdd
A Sext

A + Sext
R Sext

A Gdd
R − Gdd

A

Sext
R − Sext

A D .

sA35d

Similarly, the currentIdot, which reduces to the one flowing
in the absence of the reference arm, is

Idot = eE dv

2p
sf, − f rdD2j,

2j r
2u1 + aRD0

Rsi,
2 + i r

2du2
Gdd

R − Gdd
A

Sext
R − Sext

A .

sA36d

Each of these currents is “dressed” by processes in which the
electrons travel through the other branch. As might be ex-
pected, the interference between the two branches always
appears via the productj, j ri,i r cosF. In addition to appear-
ing implicitly, via Sext, in Idot and I ref, this product appears
explicitly in the last member in Eq.(A34)

I int = eE dv

2p
sf, − f rdD2i,i r j, j rD0

Rf1 + aAD0
Asi,

2 + i r
2dg

3 cosFSGdd
R + Gdd

A + sSext
R + Sext

A d
Gdd

R − Gdd
A

Sext
R − Sext

A D .

sA37d

An important aspect of the result(A34) is that it is aneven
function of the fluxF (since bothGdd

R,A and sext
R,A are even

functions ofF). Namely, the current through the interferom-
eter obeys the Onsager relations.64 It is interesting to note
that this property is not apparent from the formal expression
for the current; however, once we use the relation(13),
which ensures current conservation, then the flux parity ofI
becomes clear.

To present the current in a more transparent manner, we
write the couplingsi,, i r, j,, and j r, in terms of the partial
widths they induce on the localized levels of the interferom-
eter (the one on the reference arm and the one on the dot).
Making use of the matrix elements, Eqs.(5), in conjunction
with Eq. (A7), we define

g, = i,
2 D

2i
, gr = i r

2 D

2i
, sA38d

for the partial widths on the reference site, and

G, = j,
2 D

2i
, Gr = j r

2 D

2i
, sA39d

for the partial widths on the quantum dot. In accordance with
the approximation used to obtain the current Eq.(A34), we

also neglect the frequency dependence of those widths. One
then finds

Sext
R = − iSG, + Gr −

TBsg, + grd
4

ZBD + sgnse0d
ZB

2
ÎTBg,grXB,

sA40d

where

ZB =
G,

gr
+

Gr

g,

− 2 cosFÎG,Gr

g,gr
, sA41d

andTB andXB are given in Eqs.(15) and (16), respectively.
It is thus seen that both the imaginary and the real parts of
Sext depend on the flux threading the interferometer, through
the interference termZB. This expression for the external
self-energy differs from the one reported in Ref. 23, in which
the imaginary part ofSext

R is independent of the flux, while its
real part vanishes forF=p /2. Although the details ofSext

R

are necessarily model dependent, the result given there,
which apparently neglects any scattering on the reference
arm, is obviously rather restricted to a very specific situation.
Using these results yields our final result for the current
through the interferometer, Eq.(14), where for simplicity we
have chosen the sign of the on-site energy on the reference
site to be positive. We note that this result is not the same as
the ones given in Refs. 22 and 23, which neglected the scat-
tering on the reference site. On the other hand, our expres-
sion reduces to the result obtained from a straightforward
calculation(that does not employ the Keldysh technique), for
an interaction-free system, as discussed above; see Eqs.(18)
and (19).

4. The circulating current

In order to calculate the current circulatingaround the
interferometer, we consider the quantitysI1− I2− I3+ I4d /2
employing Eqs.(A19) and(A25), and then take its antisym-
metric part with respect to the flux. Clearly the first term in
Eq. (A25) will eventually disappear, since it is independent
of F. A detailed calculation shows that once the interferom-
eter is biased, there appear terms in the circulating current
resulting from asymmetries in the couplings. Accordingly,
we separate the circulating current into two parts

Icir = Ipc + Ia, sA42d

where Ipc denotes the part of the circulating current which
survives even when the system is unbiased(“persistent cur-
rent”), and is given in Eq.(20). The additional circulating
current, which arises only when the system is biased and
when there are asymmetries in the couplings, is denotedIa

Ia = ei,i r j, j rsi sinFd E dv

4p
sf r − f,dDFsi r

2 − i,
2duaRD0

Ru2SGdd
R

+ Gdd
R + sSext

R + Sext
A d

Gdd
R − Gdd

A

Sext
R − Sext

A D + 2s j r
2 − j,

2duaRu2

3D0
A
„1 + aRD0

Rsi,
2 + i r

2d…
Gdd

R − Gdd
A

Sext
R − Sext

A G . sA43d

In particular, when the system is free of interactions, the
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“asymmetric” part of the circulating current is given by

Ia
0 = ei,i r j, j rs2i sinFd E dv

4p
sf r − f,dDuaRD0

RGdd
R0u2

3 fsi r
2 − i,

2dsv − edd + s j r
2 − j,

2dsv − e0dg. sA44d

In the main text we omit this part of the circulating cur-
rent, which arises from the coupling asymmetries, and con-
sider only the termIpc. Moreover, since the potential differ-
ence across the interferometer is small(namely, the system is

in the linear response regime), one may neglect this differ-
ence altogether in the sumf,+ f r, and replace the electron
distributions by the thermal distribution one, Eq.(A29). Note
that then, the relation(13) becomesexact, and therefore the
result(20) for Ipc does not rely on the wideband approxima-
tion. This is quite fortunate, since the persistent current, as
opposed to the transport current, requires integration over the
entire band. Hence, using for it an approximation which is
valid at a narrow range around the common Fermi energy is
not easily justifiable.

*On leave from the School of Physics and Astronomy, Raymond
and Beverly Sackler Faculty of Exact Sciences, Tel Aviv Univer-
sity, Tel Aviv 69978, Israel.
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